Exception Handling

An exception is an event that occurs during the execution of
a program that disrupts the normal flow of instructions.

* Unexpected events (End of File)

* Erroneous events (Subscript out of bounds)

When an exception occurs, the method currently executing
creates an exception object and passes it to the runtime

system, which looks for a special block of code, called an
exception handler, that deals with the exception.

* A method “throws” an exception.
* An exception handler “catches” an exception.

Five reserved words: try, catch, throw, throws, finally

Advantages

e Code that handles errors and unusual events can be
separated from the normal code.

* Errors automatically propagate up the calling chain until
they are handled.

* Errors and special conditions can be classified and
grouped according to common properties.

Classifying Exceptions
Checked Exceptions
* Programmer may not ignore these exceptions.

* Class Exception and all its subclasses except
RuntimeException and its subclasses

Must be handled by an exception handler using catch
or
Must be specified using a throws clause in method header.

Copyright 2004 by Ken Slonneger Exception Handling 1

Compiler verifies that each method only throws those
checked exceptions that it declares it will throw.

Unchecked Exceptions (usually programmer errors)

Need not be specified in a throws clause in header
of a method.

Need not be caught (although, they may).
Can occur anywhere in a program.

» Class RuntimeException and its subclasses

e Class Error and its subclasses

Note: All exceptions occur at runtime.

Some Exceptions

Object java.lang
Throwable java.lang
Exception java.lang
ClassNotFoundException java.lang
InterruptedException java.lang
NoSuchMethodException java.lang
|OException java.io
EOFException java.io
FileNotFoundException java.io
MalformedURLException java.net
UnknownHostException java.net
AWTEXxception java.awt

2 Exception Handling Copyright 2004 by Ken Slonneger

RuntimeException

ArithmeticException
ClassCastException
lllegalArgumentException
NumberFormatException
IndexOutOfBoundsException

ArraylndexOutOfBoundsException
StringlIndexOutOfBoundsException

NegativeArraySizeException
NullPointerException
NoSuchElementException

RuntimeException

Object

Throwable

Exception

java.lang
java.lang
java.lang
java.lang
java.lang
java.lang
java.lang
java.lang
java.lang
java.lang
java.util

Error

/ N\

Copyright 2004 by Ken Slonneger

Exception Handling

Throwing Exceptions

* Explicitly using the throw command in a method:
throw new ArithmeticException();
Creates an exception object and throws it.
e Implicitly by operations being performed by the runtime
system:
Accessing a null pointer
Subscript out of range
Out of memory
* Implicitly by (library) methods called from the current program:
Check the throws clauses in the documentation.

Example (restoring a saved object)

public final Object readObject()
throws |OException, ClassNotFoundException

Catching Exceptions

Enclose the code that may raise exceptions in a try block
followed by catch blocks:
try
{ /I code that expects an exception might be thrown
/l or that calls methods that may throw exceptions
}

catch (ExceptTypel e)

{ /I handle exceptions of this type and its subclasses
}

catch (ExceptType2 e)

{ /I handle these exceptions

}

finally

{ /I always execute this block
}

A try block must have at least one catch block or a finally block.

4 Exception Handling Copyright 2004 by Ken Slonneger

Consequences

* When an exception is raised, the runtime system probes
backwards in the calling chain of methods (and blocks) until
it finds a handler (catch block) that responds to the thrown
exception.

* If none is found, the system reports the exception at the
top level and terminates the program if it is an application.

* If and when an exception is caught, control continues with
the code immediately following the try-catch-finally block in
which the exception was caught.

Possible Execution Sequences

Suppose this method is called, say getNumber(okay), where
okay has some unknown boolean value.

static int getNumber(boolean b)

{
try

{ System.out.print("A");
compute();
System.out.print("B");
if (b) return 456;

catch (FileNotFoundException e)

System.out.print("C");
return -123;

Y
catch (IOException e)

System.out.printin("D");
return -953;

4
finally

System.out.print("E");
}

Copyright 2004 by Ken Slonneger Exception Handling

System.out.print("F");

return 789;
}

Suppose that code inside the compute method may throw an
exception.

Possible strings that can be printed and return values.

ABEF ABE ACE ADE AE
789 456 -123 -953 none
Variation
Change the finally block as follows
finally
System.out.print("E");
return 999;
}
Consequences

1. The compiler complains that the last two commands

System.out.print("F");
return 789;

are unreachable.
Comment the last two lines of the method to get by compiler.

2. The return in the finally replaces the suspended return, either
in the try block or in one of the catch block.

The function returns 999 whenever no exception occurs or in
the case an exception is thrown but also caught in the
function.

6 Exception Handling Copyright 2004 by Ken Slonneger

Possible Execution Sequences

try
{ .

if (...) throw e;
\ ;
catch (...)

finally
{ .

2

// édditional code

Copyright 2004 by Ken Slonneger Exception Handling

Example: No Catching

public class XTrace

{

private String note = null;

void printLength()
{ System.out.printin("Length =" + note.length());
System.out.printin("After printing length");

}

void caller()
{ printLength();
System.out.printin("After call");

}

public static void main(String [] args)

{

System.out.printin("Starting main");
XTrace xt = new XTrace();

xt.caller();

System.out.printin("Normal termination");

}
}

Calling chain
main = caller = printLength

Output

% java XTrace
Starting main

Exception in thread "main” java.lang.NullPointerException
at XTrace.printLength(XTrace.java:7)
at XTrace.caller(XTrace.java:13)
at XTrace.main(XTrace.java:21)

8 Exception Handling Copyright 2004 by Ken Slonneger

Catching the Exception

public static void main(String [] args)

{

System.out.printin("Starting main");
XTrace xt = new XTrace();

try
{ xt.caller();

}

catch (Exception e)
{ System.out.printin("Message =" + e.getMessage());

System.out.printin("Stack trace: ");
e.printStackTrace();
}

System.out.printin("Normal termination");

}

Output

% java XTrace
Starting main
Message = null
Stack trace:
java.lang.NullPointerException
at XTrace.printLength(XTrace.java:7)
at XTrace.caller(XTrace.java:13)
at XTrace.main(XTrace.java:23)
Normal termination

Copyright 2004 by Ken Slonneger Exception Handling

Examples: Control

void main(...)

i

10

void main(...)

{
p(---)j

void p(...) void q(...) void r(...)
{ { {
) A r(...)—/ ® throw
try
{ }
}
catch (...) ?atch (...)
}-
} }
void p(...) void ¢(...) void r(...)
{ [- {
t|:y try ® throw
{ { :
2 / r(...)/ \

finally

catch (...)
{ {
} }
j {3
} :
handled J

not handled

Exception Handling

Copyright 2004 by Ken Slonneger

Declaring New Exceptions

Normally user-defined exceptions are created as subclasses of
Exception.

e These are checked.

e Subclass RuntimeException only if you have an exception
that is an error you cannot recover from.

Example
class AutoException extends Exception
{/...®
}
class FlatTireException extends AutoException
{I...®
}
class OutOfGasException extends AutoException
{1...®
}
class TicketException extends AutoException
{I..®
}
class SpeedingException extends TicketException
{/I...®
}
class ParkingException extends TicketException
{/I...®
}

Copyright 2004 by Ken Slonneger Exception Handling

11

Catching these exceptions

catch (ParkingException pe)
{ //... handles only ®

}

catch (TicketException te)
{ //... handles ®, ®, and ®

}

catch (AutoException ae)
{ /... handles ®, ®, ®, ®, ®, and ®

}

catch (Exception e)
{ /I ... handles all exceptions

}

Heirarchy

12

Object
Throwable
Exception
AutoException

FlatTireException

OutOfGasException

TicketException
SpeedingException
ParkingException

Exception Handling Copyright 2004 by Ken Slonneger

