
Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 1

Flash 8
Flash Screen (Choose missing panels from Window menu)

Stage
Tools Panel (ctrl+F2)
Properties Panel (ctrl+F3)
Color Mixer/Swatches Panel/Align Panel (shift+F9/ctrl+F9/ctrl+k)
Info/Transform Panel (ctrl+i/cntrl+t)
Library Panel (ctrl+l)
Timeline (Layers and Frames)
Actions Panel (alt+F9)
Output Panel (F2)

Tools and Shortcuts
Selection Tool (v)

Properties: Size (width/height), Background color, Frame rate, and others
Modify ➜ Document brings up a window of this properties
Property Panel changes to reflect the kind of object selected
Double click to choose contiguous pieces
Shift-click to choose several objects
Edit ➜ Select All (ctrl+a) and Edit ➜ Deselect All (shift+ctrl+a)

Oval Tool (o)
Shift drag gives a circle
Drawing same color makes shapes merge together
Drawing different color causes a cut out from bottom shape
Show grid to help drawing

View ➜ Grid ➜ Show Grid (ctrl+')
Snap to grid to help drawing

View ➜ Snapping ➜ Snap to Grid (shift+ctrl+')
Undo (ctrl+z) and redo (ctrl+y) for mistakes
Stroke color (border) and fill color
Border and fill are distinct shapes (double click to select both)
Properties: Change stroke size, shape size, shape position, and colors

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 2

Rectangle Tool (r)
Shift drag gives a square
PolyStar Tool: Options (polygon or star) in Properties Panel

Pencil Tool (y)
Shift drag gives 90° lines
Properties: Change stroke size and kind of line
Properties: Set Cap and Join
Options: Straighten and Smooth

Paint bucket Tool (k)
In rectangle and ovals
In drawn figures
Paint bucket may not fill if gaps occur in figure

Ink Bottle Tool (s)
Used to change the color of strokes in the same way the Paint Bucket is used
to change the color of fills.
Provides access to the Properties Panel where the stroke style, color, and size
can be changed and then the Ink Bottle can be clicked on the stroke of a shape.
Can be used to add a stroke to a shape with no stroke.

Pen Tool (p)
Used to create Bézier curves, named for the mathematician Pierre Bézier.
Polygonal Figures

Alternate clicking and moving the mouse to create a polygon.
Close the polygon by returning to the starting point or by
Double clicking to end the drawing or
Selecting another drawing tool for the Tools Panel to end the drawing.

Curved Figures
Click to place an anchor point on the stage.
Click at another place and drag the mouse to describe an invisible tangent line
to the curve being drawn from the anchor point.
(You can start with a drag if you want to establish a starting tangent.)
Clicking and dragging again continues the curve along another tangent line.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 3

Just clicking also continues the curve, but clicking yet again continues the curve
in a straight line.
The drawing can be finished by closing the figure or by double clicking.

Visual Help
Show the progress of Pen tool drawings:

Edit ➜ Preferences ➜ Drawing or
Flash Professional ➜ Preferences ➜ Drawings (Macintosh)

Check
Show pen preview (for Pen Tool)
Show solid points
Show precise curves

Editing Bézier Curves
Choose the Subselection tool and alter articulation points, curve segments,
or tangent lines or
With the Pen tool selected, hold down the control key and edit the curve.

Pen States and Icons (Pen Tool chosen)

Pen displays a small x when it is simply over the stage.
When the Pen hovers over an endpoint, it display an o to indicate that is
an endpoint.

When the Pen hovers over a corner point, it displays a - to indicate that clicking
this corner point deletes it.
When the Pen is over a path between two points, it displays a + to indicate
that clicking here adds point to the path.
When the Pen hovers over an existing point (not a corner), it displays a ^ to
indicate that clicking that point turns in into a corner point.

Brush Tool (b)
Shift drag gives 90° lines
Drawing will merge (same color) or cut out (different colors)
Draws with fill color not the stroke color

Line Tool (n)
Shift drag gives 45° lines
Reshape by dragging

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 4

Subselection Tool (a)
Shows articulation points on line, brush, and pen drawings (and others)

Free Transform Tool (q)
Select what you want to transform
Use handles in the transform selection to make changes
Use the Transform Panel to make changes

Eraser Tool (e)
Erase any parts of a drawing by dragging eraser

Lasso Tool (l)
Select a figure that cannot be outlined by a rectangle
Option: Polygonal lasso by clicking and double clicking at end

Text Tool (t)
Properties: Font, size, color, style, alignment
Types: Static Text, Dynamic Text, Input Text
Just start typing or
Draw a rectangle to type inside

Eyedropper Tool (i)
Pick up a color to use as a fill with the Paint Bucket

Hand Tool (h)
Adjust the position of the stage
Spacebar provides a temporary hand without changing the tool selection

Zoom Tool (m,z)
Options allow enlarge or reduce
ctrl+= provides a temporary enlarge without changing tool selection
ctrl+- provides a temporary reduce without changing tool selection

Object Drawing (j)
This Options makes each drawn figure a different object (no merge, no cut out).

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 5

Drawing Guides
Need to have rulers: View ➜ Rulers (alt+shift+ctrl+R)
Drag guide down from ruler or to the right from ruler
Show guide (default) View ➜ Guides ➜ Show Guides (ctrl+;)
Snap to guides: View ➜ Snapping ➜ Snap to Guides (shift+ctrl+;)
Guides are invisible in movie

Grouping Drawn Objects
Modify ➜ Group (ctrl+g) and Modify ➜ Ungroup (shift+ctrl+g)
Make a duplicate of a drawn object: Edit ➜ Duplicate (ctrl+d)

Playing a Movie
Play Enter
Advance one frame .
Move back one frame ,
Create swf file and display movie ctrl+Enter
Publish (create swf and html) File ➜ Publish (ctrl+F12)

Layers
Shapes and figures drawn on separate layers do not merge or cut out.
A layer may contain: a drawing

a sound
ActionScript (code)
an animation

Layers should be given descriptive names (double click on layer name, type
a new name, and Enter).
Add a layer

Insert ➜ Timeline ➜ Layer or
Press button on left below layer window

Active layer is highlighted with a pencil.
Choosing a layer selects all the objects on that layer.
Selecting an object on the stage may change the active layer.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 6

Three States of a Layer
show or hide (eye icon)
lock or unlock (padlock icon)
display objects as outlines or not (square icon)

A hidden layer still appears in final movie.
To hide all but one layer

 alt+click below eye icon or right-click and use menu.
A locked layer cannot be altered.
To lock all but one layer

alt+click below padlock icon or right-click and use menu.
Outline show what belongs to a layer using colored outlines (each layer has its own color).
To show outlines all but one layer

 alt+click below square icon or right-click and use menu.
To change Outline properties

double click on outline icon or right shift ➜ Properties.
More than one layer may be selected at a time: shift+click or ctrl+click
Delete a layer

Select and click Trash can on bottom of layer window.
Copy a layer

Select the layer
Edit ➜ Timeline ➜ Copy Frames
Create a new layer
Select the new layer
Edit ➜ Timeline ➜ Paste Frames

Order of layers: Top layer is front of movie, bottom layer in back.
Drag layers to reorder them.
Layers may be placed in folders for organization.
Layer Properties: Modify ➜ Timeline ➜ Layer Properties or

right click on layer and choose Properties
Several objects on the stage can be placed in separate layers

Modify ➜ Timeline ➜ Distribute to Layers (shift+ctrl+d)

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 7

Symbols
Three kinds

Graphic symbols (static)
Movie clip symbols (may have animation)
Button symbols (may have animation and behavior)

Creating Symbols
 Select a drawing and use Modify ➜ Convert to Symbol (F8)
Insert ➜ New Symbol (ctrl+F8): Brings up a new drawing surface

Return to Scene from editing a symbol
ctrl+e
click on scene name in title bar
Edit ➜ Edit document

Change Properties of a Symbol
right click on symbol in Library and choose Properties.

Place an instance of a symbol on stage: Drag it from Library.
Editing a Symbol

Double click on Symbol icon in Library.
Double click on an instance of the Symbol.
Select a Symbol instance, right click, and choose

Edit
Edit in Place
Edit in a New Window

Editing a Symbol Instance
Select instance
Use Properties Panel to change instance with the Color Menu:

Brightness, Tint, Alpha, Advanced

Animation
Three methods

Frame by frame (tedious)
Tweening
Timeline Effects

We can change a movie only on Keyframes.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 8

Insert a Keyframe
Select frame and Insert ➜ Timeline ➜ Keyframe (F6)

Insert a (regular) frame
Select frame and Insert ➜ Timeline ➜ Frame (F5)

Example: Disks jump from position to position according to Keyframe drawings

Tweening
Two kinds: Motion and Shape
Motion Tweening

Can act on Symbol instances, groups, or text instances
Change: position, size, rotation, skew, color, transparency

Creating a Motion Tween
Place two Keyframes on timeline, say frame 1 (already a Keyframe) and frame 30.
Select Keyframe 1 and place Symbol instance or text on stage.
Select Keyframe 30 and place Symbol instance or text on stage.
Create Motion Tween (three methods): Arrow with light blue background

Click on left Keyframe and select Motion from Properties panel Tween menu
Right click anywhere between Keyframes and choose Create Motion Tween
Click anywhere between Keyframes and choose

Insert ➜ Timeline ➜ Create Motion Tween
Examples: Moving Symbols, Rotation word, Skewing symbol, Text moving down and
increasing in size, Symbol changing color and transparency
Note that changes in Symbol instance are made using Transform Tool or the Color
menu in Properties Panel.

Shape Tween
Works with a drawn object, not with a Symbol or text object.
Change a Symbol or text object into a drawing

Modify ➜ Break Apart (ctrl+b)
Once for a single text character
Twice for a text object with multiple characters

Creating a Shape Tween
Place two Keyframes on timeline, say frame 1 (already a Keyframe) and frame 30.
Select Keyframe 1 and create a drawing on stage.
Select Keyframe 30 and create a drawing on stage.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 9

Create Shape Tween: Arrow with light green background
Click on left Keyframe and select Shape from Properties panel Tween menu.

Shape Hints
Labeled a to z (up to 26 hints)
Create a Shape Hint

Modify ➜ Shape ➜ Add Shape Hint or
ctrl+shift+H

Arrange shape hints on start drawing (yellow hints) and on end drawing (green hints)
Place hints counter-clockwise from upper left

Moving Object Along a Path
Only possible with a Motion Tween
Steps

Insert Keyframes left and right.
Choose layer and create a Motion Guide layer (three methods):

Insert ➜ Timeline ➜ Motion Guide or
Click second icon at bottom of Layers window
Right click and choose Add Motion Guide

Select Motion Guide layer.
Draw a path on this layer (pencil, brush, or other drawing tool).
Select View ➜ Snap to Objects (the default setting).
Place a Symbol at beginning of path on left Keyframe (snap center point).
Place a Symbol at end of path on right Keyframe (snap center point).
Create a Motion Tween on Motion Guide layer.

Motion Guide layer may be locked and/or hidden.

Editing Animation
Drawing on stage can be changed only on Keyframes.
Stretch or contract a tween: Double click on a Keyframe and drag either way.
Reversing animation: Select animation layer and Modify ➜ Timeline ➜ Reverse frames.
Add regular frames in a tween to slow animation down.
Change frame rate to speed up or slow down animation.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 10

Differences between Motion Tweens and Shape Tweens
Motion: Works on Symbol instances, grouped drawings, and text objects.
Shape: Works on drawn shapes and figures.
Movement along a path only possible with a Motion Tween.
Morphing a shape only possible with a Shape Tween.

Movie Clip Symbols
Insert ➜ New Symbol (ctrl+F8)

Name symbol and select Movie Clip for type
Edit Symbol as a new movie with its own layers and tweens.
Example

Fat oval to a Skinny oval and then back to a Fat oval
Center drawing (Cut and Paste)
Create a tween from Fat oval to Fat oval so that the start and end pictures line up
Create a Keyframe in the middle with the Skinny oval using Transform to shrink it
Return to main scene (ctrl+e)
Place several of the new Movie Clip Symbols on the stage

Button Symbols
Insert ➜ New Symbol (ctrl+F8)

Name symbol and select Button for type.
Edit Symbol: Create graphics for

Up state
Over state
Down state
Hit state (maybe): a solid shape covering the button graphic

Need a Keyframe for each state that we edit.

Add a Sound
Import a sound file

File ➜ Import ➜ Import to Library (or Scene)
Edit Button Symbol
Put a Keyframe at Down state
Place sound

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 11

Drag sound from Library toe Down frame or
Select sound from Properties Panel for Button Symbol.

Animated Button
Place a Movie Clip Symbol on the Keyframe state that should be animated.

Action for a Button
Two possibilities

Write ActionScript code (later)
Use Window ➜ Behaviors (shift+F3)

Place a Button Symbol on the stage.
Choose the Behaviors Panel.
Click the plus sign and choose category and subcategory.

Example
+ ➜ Web ➜ Go to URL
Enter a complete URL with protocol in window.
Options: _self uses the same browser window

_blank opens a new browser window

Example
Place text on stage: "Enter a web address: ".
Use Text Tool with Input Text selected to place a text field on the stage and give
the field an instance name, say webAddress.
Draw a rectangle around the text field with white fill.
Place a Button Symbol on the stage and give it an instance name, say myButton.
Create a new layer called Actions,
Choose Actions layer, open Window ➜ Actions (alt+F9), and type

myButton.onRelease = function()
{

getUrl("http://"+webAddress.text, "_self");
}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 12

Masks
Actually portholes for spotlights
Place an image on the stage

File ➜ Import ➜ Import to Library (or Scene)
Match stage size with image size

Create another layer
Place a Symbol on the layer at different positions for a left Keyframe and
a right Keyframe
Create a Motion Tween between the Keyframes
Turn new layer into a Mask: right click and choose Mask or use Layer Properties
Mask layer is locked when it becomes a Mask

Place matching Keyframes on the background (image) layer.
The tween on the Mask layer could as well be a Shape Tween.

Mask with a Motion Guide
Place an image on the stage.
Create a new layer, which will be the motion mask.
On the motion mask layer,

Draw a shape, say a disk.
Convert it to a Symbol as a Movie clip (F8).
Double click on the disk to go into Symbol edit mode.

This edit mode provides a new layer to work on.
Convert the disk itself into a Symbol as a Movie clip (F8).
Create a Keyframe at frame 60 of the symbol editing layer.
Add a Motion Guide to the new Symbol editing layer.
Draw a path from the disk Symbol on the Motion Guide layer.
Select Keyframe 60 of the Motion Guide layer.
Place a disk Symbol at the end of the path on the Motion Guide layer.
Create a Motion Tween on the main layer for the Symbol edit.

Return to the main scene.
Make the motion mask layer into a Mask.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 13

Timeline Effects
Flash provides eight Timeline Effects that act as shortcuts for creating animations
and drawings.

Copy to Grid
Insert ➜ Timeline Effects ➜ Assistants ➜ Copy to Grid
Options

Grid Size
Grid Spacing

Examples: Matrix of stars, Matrix of spam cans

Distributed Duplicates
Insert ➜ Timeline Effects ➜ Assistants ➜ Distributed Duplicates
Options

Number of Copies
Offset Distance
Offset Rotation
Offset Start Frame (delay in frames for creating duplicates)
Scaling (Exponential or Linear)
Color, Final Color, and Alpha

Example: Duplicate a die

Blur
Insert ➜ Timeline Effects ➜ Effects ➜ Blur
Options

Effect Duration
Resolution (number of copies displayed)
Scale (factor by which object grows)
Allow Horizontal Blur
Allow Vertical Blur
Direction of Movement

Example: fire.jpg

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 14

Expand
Insert ➜ Timeline Effects ➜ Effects ➜ Expand
Object expanded must be a Symbol
Options

Effect Duration
Expand, Squeeze, or Both
Direction of Movement
Shift Group Center by
Fragment Offset
Change Fragment Size by

Example: Beating heart

Explode
Insert ➜ Timeline Effects ➜ Effects ➜ Explode
Options

Effect Duration
Direction of Explosion
Arc Size
Rotate Fragments by
Change Fragment Size by
Final Alpha

Examples: Herky, fire.jpg

Drop Shadow
Insert ➜ Timeline Effects ➜ Effects ➜ Drop Shadow
Options

Color
Alpha Transparency
Shadow Offset

Examples: Herky, star

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 15

Transform
Automatic Tweening
Insert ➜ Timeline Effects ➜ Transform/Transition ➜ Transform
Options

Effect Duration
Change Position by
Scale
Rotate or Spin
Change Color
Final Alpha
Motion Ease (Slow at Start or End)

Example: star

Transition
Fade in/out and Wipe
Insert ➜ Timeline Effects ➜ Transform/Transition ➜ Transition
Options

Effect Duration
Fade in/Fade out
Wipe: object appears bit by bit along a line
Direction
Motion Ease (Slow at Start or End)

Examples: fire.jpg and stars

Notes on Timeline Effects
Cannot edit Timeline Effects Symbols in the normal Symbol editing mode.
Cannot add Keyframes on a layer with a Timeline Effect.
To alter a Timeline Effect, select

Modify ➜ Timeline Effects ➜ Edit Effect.
To delete a Timeline Effect, select its layer and click

Modify ➜ Timeline Effects ➜ Remove Effect.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 16

Scenes
Sequential animation can be organized into scenes to make development easier.
Flash documents open with one scene, called "Scene 1".
Open another scene (two ways)

Insert ➜ Scene
Window ➜ Other Panels ➜ Scene (shift+F2) and click + at bottom of Scene Panel.

Scenes can be renamed by double clicking on them in the Scene Panel.
Drag scenes in the Scene Panel to reorder them.
Changing from one scene to another scene:

Select scene from Scene Panel or
Choose scene from the menu below the movie clapperboard icon in the title bar.

Delete a Scene: Choose it in Scene Panel and click on trash can.

ActionScript Examples
ActionScript is a programming language similar to JavaScript.
An action (a code fragment) can be attached to a Keyframe or to an object (a symbol or
component).
Example

Create a Button Symbol.
Give it an instance name, say "xyz".
Select the button instance an open the Actions Panel using

Window ➜ Actions (alt+F9)
Enter the following code in the Actions Panel:

on (release)
{ stopDrag(); }
on (press)
{ startDrag(xyz); }

Create a Scene 2 with some animation, say a Transform Timeline Effect.
Play the movie and note that Scene 1 moves directly into Scene 2.
Return to Scene 1, choose frame 1, a Keyframe, and enter the following code:

stop();
Create another Button Symbol on Scene 1.
Select the new button, open the Actions Panel (if not open), and enter this code:

on (release)
{ gotoAndPlay("Scene 2", 1); }

Try the movie now.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 17

Custom Colors
Consider the Color Mixer Panel, choosing Stroke icon or Fill icon.
Note Option button on the right side of the title bar.
Choose RGB (the default) or HSB .
RGB

Red-Green-Blue: eight bits each, represented as an unsigned byte, 0 to 255.
HSB

Hue-Saturation-Brightness: eight bits each, represented as an unsigned byte, 0 to 255.
Hue: Color type (red, blue, etc.)

Ranges from 0 to 360 degrees of a color wheel.
red 0° yellow 59°
green 120° cyan 179°
blue 240° magenta 301°

Saturation: Intensity of color
Ranges from 0% to 100%.
0% is no color, a shade of grey between black and white.
100% is an intense color.

Brightness (or value): Amount of white in the color
Ranges from 0% to 100%.
0% is black.
100% is white or a more or less saturated color.

Color Selection Square (Rectangle): Click to choose a color.
Luminance Slider: Shade of color
Hexadecimal value: #000000 to #FFFFFF (RGB or HSB).
Alpha Percentage: Ranges from 0% to 100%.
Three Special Buttons: Black/White, No Color, and Swap Stroke and Fill.
Select a Color from Elsewhere:

Click and drag on the fill (or stoke) icon in the Color Mixer Panel.
Color can be chosen from outside of Flash, say a Web page or an image.
When the mouse (an eyedropper) is released, the color it is over becomes the fill color.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 18

Save a Custom Color
Options menu ➜ Add Swatch
Swatch is placed below existing swatches in the Color Swatches Panel.
Alternatively, switch to the Color Swatches Panel and click in the region below
the existing swatches (pointer is a paint bucket.).

Click on Stroke icon or Fill icon
Produces Color Swatches
216 web-safe colors
Swatches that we have added
Some gradient swatches
Color Picker Button (on right at top): Produces different panels on PCs and Macs.

Color Swatches Panel
Options Menu

Delete swatch
Web 216
Sort by Color
Save Colors
Replace Colors

Gradients
Coloring effect that blends bands of color into each other.
Linear gradients: Straight left-to right, which can be rotated to other

orientations (see Gradient Transform tool).
Radial gradients: Bands of color that begin in the center of a circle and radiate outward.
Six gradient swatches reside on the Color Swatches Panel.
Custom Gradients

Enter the Color Mixer Panel.
Choose Linear or Radial from the Type menu.
Current gradient shows in rectangle at the bottom of the Panel.
Above the sample is a narrow rectangle that acts as a slider with two pointers,
a dark pointer and a light pointer.
The pointers can be moved and even reversed.
Change Pointer Color

Select pointer (its arrowhead is black).

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 19

Choose a color using RGB sliders, clicking in the Color Square, entering
a new hexadecimal value, and/or moving the luminance slider.
Also, by clicking a pointer until a swatches panel drops down for selecting
a new color.

Add a New Pointer
Click on the narrow slider rectangle.

Delete a Color Pointer
Drag the point down away from the narrow rectangle.

A gradient may be switched between Linear and Radial, maintaining the same
color bands, using the Type menu.

Gradient Transform Tool (f)
Edits gradients already applied to a fill or stoke of a drawing on the stage.
Can be applied to gradient fills and to bitmap fills.
Handles for the Gradient Transform

Round white circle: Center point of the gradient.
Circle with delta: Used to rotate the gradient.
Square with arrow: Used to stretch or shrink the gradient along one axis.
Del symbol:

Focal point of gradient; used to move the highlight (radial gradients only).
Circle with arrow on ring:

Used to scale gradient symmetrically (radial gradients only).
Linear Gradients under the Gradient Transform

Vertical lines to left and right of gradient, marking the ends of the gradient.
Can be moved using the Square with an arrow.
When the gradient is smaller than the shape that contains it, the Overflow rule
 fills the rest of the shape.

Radial Gradients under the Gradient Transform
A circle surrounds the gradient, marking the edge of the gradient.
Can be moved using the Square with an arrow or with the Circle with an arrow.
When the gradient is smaller than the shape that contains it, the Overflow rule
 fills the rest of the shape.

Overflow Options
Extend (default): The color(s) at the edge(s) of the gradient is (are) continued.
Reflect: A reversed version of the gradient continues from the edge(s).
Repeat: A new copy of the gradient continues from the edge(s).

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 20

ActionScript
Code is executed when an event occurs:

Movie clip is loaded.
Keyframe on timeline is entered (a frame event).
User clicks a button.

We write an event handler to respond to the event with an action.
Two groups of code

Scripts for events that occur on the timeline.
Scripts for object instances (buttons, movie clips, and components).

Write code in
Actions Panel (alt+F9)
Script window (File ➜ New and select ActionScript File) creates a file
with an as extension.

Actions Panel
Script Pane: Write code here.
Actions Toolbox: List of language elements.
Script Navigator: Clickable tree showing elements that have scripts.
Tab at bottom left of Script Pane shows the element the current script is attached to.
Note that a timeline Keyframe with a script has a little a on it.

Add an item to a script (Double-click item or drag it to Actions Pane)
Item from Actions Toolbox
Item from menu below plus sign

Options Menu
Go to Line
Find and Replace (ctrl+f)
Auto Format (ctrl+shift+F)
Check Syntax (ctrl+t)
Print
Hidden Characters (ctrl+shift+8)
Preferences (ctrl+u)
Import Script … (ctrl+shift+I)
Export Script … (ctrl+shift+X)

Example: Script for Frame 1.
Button with a script.
Script for Frame 20.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 21

Global Variables
Visible to every timeline and symbol in document.
Creating:

_global.gName = "Herky";
Can be hidden by timeline variables and local variables in inner scopes, but can
always be accessed using _global.gName.
Global variables cannot be typed because they are created without the var keyword.

Timeline Variables
Visible to any script on that particular timeline (all layers).
Creating:

var tName = 66;

Local Variables
Visible only in the method where they are declared using var.
Can hide Global variables and Timeline variables.
Actionscript does not allow anonymous blocks (braces not belonging to a method).

Declaring Variables
Untyped (can be assigned any kind of value):

var x;
Typed:

var n:Number;
var s:String;

With Initialization:
var y = 123;
var z:Boolean = true;

Identifiers
Names of variables, methods, classes, etc.
Rule: A letter, underscore, or dollar sign followed by zero or more letters,

digits, underscores, and dollar signs.
Avoid the Reserved Words: 51+12 Keywords and 93 Class and Interface names.
Avoid several predefined constants: true, false, null, undefined

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 22

Primitive Data Types
Boolean

Values: true and false
Number

Digits with an optional sign in front, an optional decimal point, and
an optional exponent using e or E.
Number is an integer if no decimal point and no exponent.
Number.MAX_VALUE: 1.79769e308
Number.MIN_VALUE: 4.940546e-324

String
Sequence of Unicode characters delimited by quote symbols or apostrophes.

undefined
One value: undefined
Value of uninitialized variables.

null
One value: null
Means "no value".
Default data type for all classes that define complex data types except Object.

Complex Data Types
Object

Base class for all class definitions.
MovieClip

Its methods are used to to control Movie Clips.
Array

Used to type arrays.
Void

One value: void
Used to designate the return type of methods that return no value.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 23

Coercion
In the absence of typed declarations, primitive type values are coerced if possible.
If not possible, the value NaN is produces.
Without typed declarations, ActionScript has dynamic typing and virtually no
type checking.
Examples

var n = 12;
var b = true;
var s = "abc";
var sd = "123";

if (n) trace(true); // true
else trace(false);

if (s) trace(true); // true
else trace(false);

trace(sd-5); // 118

trace(s-5); // NaN

trace(b+100); // 101

With typed declarations, ActionScript has static typing so that errors are caught
by the compiler and reported in the Output Panel.

Trace Method
The method trace takes one parameter, converts it to a string, and prints it in
the Output Panel, which automatically appears.
This Output Panel also appears if you script has a syntax error.
The error will be reported in the Panel.

Example: Prime Number Tester
Scene 1

A text string: Prime Number Tester
A text string: Enter an integer
An input text field (Text Tool) surrounded by a rectangle; instance name
of field is testNum.
A Button Symbol with the message "Test Number" and an ActionScript:

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 24

on (release)
{

var prime:Boolean;
var num:Number = Number(testNum.text);
if (isNaN(num) || num==1)
{

prime = false;
}
else
{

if (num == 2)
prime = true;

else if (num % 2 == 0)
prime = false;

else
{

prime = true;
var div:Number = 3;
while (div<=Math.sqrt(num) && prime)
{

if (num % div == 0)
prime = false;

else
div = div+2;

}
}

}
if (prime)

gotoAndStop("Scene 2", 1);
else

gotoAndStop("Scene 3", 1);
}

Scene 2
A text string: Number is Prime
A Button Symbol with the message "Return to Start Page" and an ActionScript
that returns to Scene 1 when the button is released.

Scene 3
A text string: Number is Not Prime
A Button Symbol with the message "Return to Start Page" and an ActionScript
that returns to Scene 1 when the button is released.

Make certain that the labels on the buttons are static text.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 25

Dynamic Text (and Input Text)
Two ways to access contents:

Instance name: abc
Var: xyz
Both must be ActionScript identifiers.
Access text

abc.text = "Herky";
xyz = "Hawk";

Buttons on Properties Panel
Selectable (can be copied and pasted)
Render as HTML
Show border around text

Example
Keyframes at 1, 20, and 40 that change the value of a dynamic text field.

Input Text
Additional field in Properties Panel: Maximum characters

Movie Clip Control
ActionScript code can be used to control the execution of a Movie Clip.

Example
1. From Keyframe 1 to Keyframe 20 have a word (Herky) move from off the stage to

the center using a Motion Tween.

2. From Keyframe 20 to Keyframe 30 have the word rotate once: Create a Motion
Tween in the Properties Panel and select Rotate: CW.

3. On Keyframe 30 enter code: gotoAndPlay(20);

What if we stretch or compress the tweens? Keyframe 20 may no longer be the beginning
of the rotation action.

4. Select Keyframe 20 and enter a Frame label "Start Loop". Change the code at
Keyframe 30 to gotoAndPlay("Start Loop");

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 26

Buttons to Control Action
Continue Example
5. Create a new layer called Buttons so we do not affect the existing tweens.
6. Create a Button Symbol and place two instances of it on the stage, one with label

"Start" and one with "Stop".
7. Add code for Start button

on (press)
{ play(); }

8. Add code for Stop button
on (press)
{ stop(); }

9. On Keyframe 1 of either layer (or a new one) enter
stop();

Put All Code on Timeline
Continue Example
10. Remove code from two buttons.
11. Give each button an instance name, say start and stop.
12. Add a layer called Actions.
13. Enter this code on Keyframe 1 of the Actions layer.

stop();
start.onPress = function()

{ play(); }
stop.onPress = function()

{ stop(); }
Note that these two functions have no names; they are anonymous functions.

Nested Movie Clips
Flash documents typically have Movie Clip instances on their main timeline.
These Movie Clips may have other Movie Clip instances inside of themselves, and so on.
Example
1. Create a spoked wheel; Draw a circle with one line bisecting it. Use Transform Panel,

Rotate 60° with "Copy and apply transform" button.
2. Change the color of several of the spokes so the motion can be seen.
3. Convert drawing to a Movie Clip Symbol called Wheel.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 27

4. Select the instance of Wheel and convert it to a Movie Clip Symbol called
RotatingWheel.

5. Edit RotatingWheel, which contains a Wheel Symbol inside of it.
6. Place a Keyframe at from 30 and create a Motion Tween, selecting CW from the Rotate

menu in the Properties Panel.
7. Place another RotatingWheel instance on the stage and draw a car over the two wheels.

Select all and create a Movie Clip Symbol called Car.
8. Add a new layer (Buttons) and place two instances of a Button Symbol on the new

layer.
9. On one button enter the code

on (press)
{ stop(); }

and try the movie (the wheels do not stop).
10. On the other button enter the code

on (press)
{ play(); }

11. Edit the Car Symbol. Give instance names to the two RotatingWheels, say frontWheel
and backWheel. Give the Car instance a name, say car.

12. Select the stop button and change the code to
on (press)
{

stop();
car.frontWheel.stop();
car.backWheel.stop();

}
13. Select the start button and start a new line below play();

Click "Insert a target path" button (a circle over a cross) and choose car ➜ backWheel.
Then type "play();".
Do the same with frontWheel to get the following code.

on (press)
{

play();
this.car.frontWheel.play();
this.car.backWheel.play();

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 28

Bouncing Ball
This example is designed to show how to complete the next project.

Example
1. Draw a green disk on the stage and convert it to a Movie Clip Symbol called

GreenBall.
2. Movie Clip Symbols recognize a number of predefined properties such as _x, _y,

_width, and _height. By altering the _x and _y properties, we can cause the Movie
Clip Symbol to move across the stage.

3. Just as Buttons respond to events (press and release), Movie Clips respond to events
such as load, enterFrame, mouseDown, keyDown, among others.

4. In the same way we handle Button events with an on command, we handle Movie
Clip events with an onClipEvent command.

5. Add the following code to the instance of GreenBall.
onClipEvent (load)
{

speedX = 8;
}
onClipEvent (enterFrame) // executed as each frame is entered
{

_x = _x + speedX;
}

The ball will move horizontally across the stage, continuing off the right side.
6. To get the ball to bounce against the right edge to the stage, change the code as follows.

onClipEvent (enterFrame)
{

_x = _x + speedX;
if (_x >= 550)
{

_x = 550; // bring back to the edge
speedX = -speedX; // change directions

}
Problem: Ball misses the edge by a little because the _x property is the registration
point of the Movie Clip instance (the plus sign) usually at the center of the object.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 29

7. Assuming the registration point is at the center of the disk, change the code as follows.
onClipEvent (enterFrame)
{

_x = _x + speedX;
if (_x + _width/2 >= 550)
{

_x = 550 - _width/2;
speedX = -speedX;

}
8. Now the ball bounces correctly on the right but continues forever moving to the left

off the stage. Another problem is that if we change the dimensions of the stage, the
550 numeral in the code may no longer be accurate. The next version of the code
solves both of these problems.

onClipEvent (enterFrame)
{

_x = _x + speedX;
if (_x + _width/2 >= Stage.width)
{

_x = Stage.width - _width/2;
speedX = -speedX;

}
else if (_x - _width/2 <= 0)
{

_x = width/2;
speedX = -speedX;

}
}

9. Variations: Change onClipEvent (enterFrame) to onClipEvent (mouseDown) or to
onClipEvent (keyDown) and observe that pressing the mouse or pressing any
key will cause the ball to move.

Movie Clip Events (parameters to onClipEvent)
load, unload, enterFrame, mouseDown, mouseMove, mouseUp,
keyDown, keyUp

Button Events (parameters to on)
press, release, releaseOutside, rollOver, rollOut, dragOver, dragOut,
keyPress "some key"

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 30

History Panel
Records each action taken as you create a Flash document.

Window ➜ Other Panels ➜ History (ctrl+F10)
Default: History Panel stores 100 actions, a number that can be altered in Flash Preferences.
Options Menu (or right button click)

Replay Steps (also a button at bottom of panel).
Copy Steps (also a button at bottom of panel).
Save As Command (also a button at bottom of panel).
Clear History (no undo).
View (Arguments in Panel or JavaScript in Panel).

Example
Make a rectangle Movie Clip Symbol.
Replay commands.
Save As Command.
Redo it.
Add a text field.
Choose View ➜ Arguments in Panel.
Choose View ➜ JavaScript in Panel.
Drag arrow in History Panel up.
Then drag it back down.

CopyPasteMove
On History Panel choose View ➜ Arguments in Panel.
Place a colored disk on the stage.
Select the disk.

Edit ➜ Copy (ctrl+c).
Edit ➜ Paste (shift+ctrl+V).
Move object to the left about 100 pixels.

Select last three commands from History Panel.
Select Save As Command and name the command "CopyAndMove".
Use the new command: Commands ➜ CopyAndMove.
This behavior is essentially the same as the Edit ➜ Duplicate (ctrl+d) command.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 31

Managing Commands
Commands ➜ Manage Saved Commands

Select a command.
The command may be renamed or deleted.

CenterOnStage
Select an object on the stage.
In Align Panel, click To Stage modifier, click Align horizontal center,
and click Align vertical center.
Select the last two actions in the History Panel and Save As Command with
the name "CenterOnStage".
This new command can be very useful.

Filters
Accessed by a tab on the Properties Panel.
Filters can be applied to a Symbol instance (Button or Movie Clip only) or to a text object.
Procedure

Open Filters Panel.
Select the object to be altered.
Select a filter to apply using the Add filter button + menu.

Use the Remove filter button – to delete the chosen filter.
The Add filter button also allows Remove All, Enable All, and Disable All.

More than one filter may be applied to an object.
The order of filter application may make a difference.

Blur Filter
This filter blurs the entire content of the instance.
Parameters allow more or less blurring in the x or y direction.

Example
Enter some fairly large text, say "Flash Filters" with a sans serif 40 point font.
Select the Blur filter.
Place a Keyframe at frame 40 and change the Blur x and Blur y values to zero there.
Place a motion tween between Keyframe 1 and Keyframe 40.
Change Blur x and Blur y values to 70 at Keyframe 1.
To reduce flicker in the tween, change the Quality value to High at both Keyframes.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 32

Glow Filter
This filter makes a duplicate of the instance's shape and blurs it.
It is like having a blurred red figure with a copy of your original figure layered on top.

Drop Shadow Filter
This filter creates a single-color copy of the instance's shape, slips it underneath the
instance, and offsets its location.
Options include the strength (alpha), blur, angle, and offset distance.

Example
Enter some large text, say "Flash Filters" with white characters on a black background.
Select the Glow filter.

High Strength, say 380%.
Medium Quality.
Select a green Color.

Select Drop Shadow filter.
Medium Quality.
Distance equal to 7.
Select a yellow Color.
Try different Angle values.

Try some other options.
Knockout: Removes original figure.
Inner Shadow: Puts glow or shadow inside the figure.
Hide Object (Drop Shadow only): Shows only the shadow.

Controls
Strength: Amount of the effect, usually changing the brightness and alpha of the effect.
Quality: Higher quality means better transitions (smoother) and greater aliasing, but also
more computation (slower).

Bevel Filter
This filter gives the instance an embossed look.
This effect is produced by lightening the upper left of the drawing and darkening the
lower right as if there is a light source coming from the upper right.
Options allow a change in the direction of the light source and the colors of the effect.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 33

Example
Create a Movie Clip Symbol from a blue rectangle.
Apply the Bevel filter to an instance of the Symbol.
Options: Blur x, Blur y, Strength, Quality, Angle, Distance, Type, and Knockout.
Note: A negative distance reversed the bevel, which can be useful in showing
a button press.
Do the same thing with large colored text.

Gradient Glow and Gradient Bevel Filters
These filters are essentially the same as the Glow and Bevel filters except that they allow
a gradient color for the effects.

Adjust Color Filter
This filter provides tools for manipulating the color properties of the instance.
Since instances made from drawings or text objects can be manipulated by other means,
this filter is useful primarily for instances formed from a bitmap picture.
Slider Options: Brightness, Contrast, Saturation, and Hue.
Try an example on a jpeg, gif, png, or some other picture type.

Keypad Example
This example illustrates the use of buttons to produce and process data.
1. Create a new Button Symbol, called TheButton.

Up: Red square with a Bevel filter, Blur x, Blur y: 10 and Quality: High).
Over: Adjust Color filter, Brightness - 35.
Down: Remove Adjust Color filter and change Bevel Distance to -5.

2. Place four buttons on the stage in a horizontal row. Give them instance names,
one, two, three, and four. Call this layer "Buttons".

3. On an new layer, called "Labels", above the Buttons layer, enter four digits,
1, 2, 3, and 4, on top of the buttons using Arial 18 point bold black font.

4. Build another Button Symbol, called ResetButton,
Up: Blue rectangle with a Bevel filter, Blur x, Blur y: 8 and Quality: High).
Over: Add a Glow filter with Strength: 190% and Color: White.
Down: Remove Glow filter and change Bevel Distance to -5.

5. Place one of the ResetButton Symbols on the stage with the instance name reset.

6. On the Labels layer, enter "Reset" over the new button using Arial 18 point
bold white font.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 34

7. Between the digit buttons and the reset button place a Dynamic Text field using
Arial 24 point bold black font. Give it the instance name countField.

8. Above the four digit buttons place another Dynamic Text field using bold 36 point
Arial in black. Click the border button and the right justify button in the Properties
Panel. Give this object the instance name display.

9. Add another layer above the previous two. Call it "Actions".

10. Select Keyframe 1 in the Actions layer and enter the following code.

display.text = "";
countField.text = "Number of digits: 0";
var count:Number = 0; // KeyPad.fla

one.onRelease = function()
{ keyPressed("1");
}

two.onRelease = function()
{ keyPressed("2");
}

three.onRelease = function()
{ keyPressed("3");
}

four.onRelease = function()
{ keyPressed("4");
}

reset.onRelease = function()
{ keyPressed("reset");
}

function keyPressed(key:String)
{

if (key == "reset")
{

countField.text = "Number of digits: 0";
count = 0;
display.text ="";
return;

}
display.text = display.text + key;
count++;
countField.text = "Number of digits: " + count;

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 35

Conversion Functions

These functions can be used to convert values from one primitive type to another.

parseFloat : String ➞ Number
parseInt : String ➞ Number
Number : String ➞ Number
toString : Number ➞ String (an instance method)
String : Number ➞ String
Number : Boolean ➞ Number
Boolean : Number ➞ Boolean
Boolean : String ➞ Boolean
toString : Boolean ➞ String (an instance method)
String : Boolean ➞ String

The three conversion functions, Number, Boolean, and String, can be applied
to values of any type, resulting in some kind of value no matter what.

Number Function
Parameter Result
undefined 0

null 0
Boolean 1 if true, 0 if false

Number string Equivalent number if
string is a properly
formatted number

"Infinity" Infinity
"-Infinity" -Infinity

"NaN" NaN
Other strings NaN

Array NaN
Object Result from applying

valueOf() to the object
Movieclip NaN

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 36

String Function
Parameter Result
undefined ""

null "null"
Boolean "true" if true, "false" if false

NaN "NaN"
Numeric value String representation

of the number
Infinity " Infinity"
-Infinity " -Infinity"
Array Comma-separated list of

array values
Object Result from applying

toString() to the object
Movieclip Path to movie clip instance

Boolean Function
Parameter Result
undefined false

null false
NaN false

0 false
Infinity true
-Infinity true

Other numeric value true
Empty string false

Nonempty string true
Array true
Object true

Movieclip true

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 37

Object Oriented Programming in ActionScript
Classes
• Classes are syntactic units used to define objects.
• A class may contain instance variables, which will occur in each instance of the

class, instance methods, which can be executed by objects of the class, and one
constructor, which is called automatically when an object is created using new.

• Classes may also have class variables and class methods, but these belong to the
class itself and have no direct effect on the objects. ActionScript does not allow final
as a modifier.

• A class must be defined in a file of its own using the name of the class as the file
name and using as as the extenstion. The following example will be defined in
the file MyClass.as.

class MyClass
{

private var value : Number;
public function MyClass(n : Number)
{ value = n; }
public function perform(m : Number) : Void
{

for (var k:Number = 1; k<=value; k++)
trace(m*k);

}
public function compute() : Number
{ return value*value; }

}
Modifiers public accessible anywhere

private accessible in this class and any subclass
no modifier same accessibility as public

Objects
• Objects are created from a class using the new operator, which invokes a

constructor with matching parameter types.
• These objects may be assigned to variables declared of the type given by the

class name.
• Each object has a copy of every instance variable in its class definition and in

every superclass of that class.
• Instance methods in a class can be called only with an object of the class type

(or a subclass).
• This object is called the receiver of the method and can be referred to by the keyword

this inside of the method.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 38

• The following code might appear in a Flash document. If so, the class file
MyClass.as must be in the same directory as the Flash document.

var first : MyClass = new MyClass(5);
var second : MyClass = new MyClass(3);

first.perform(6);
Prints: 6 12 18 24 30

second.perform(-4);
Prints: -4 -8 -12

Constructors
• A constructor is a method that is called automatically when an object is created.
• If the programmer supplies no constructor, a default constructor with no

parameters is provided.
• This default constructor disappears if the programmer writes a constructor in the class.
• A class can have at most one constructor since ActionScript does not support the

overloading of methods.
• In a constructor, super(…) calls a constructor of its superclass with the given parameters.

Inheritance
• A new class can be defined as a subclass of an existing class using the extends keyword.
• Then every object of the new subclass will have copies of the instance variables from its

superclass (and its superclass and so on) as well as its own instance variables.
• It can also call instance methods defined in its superclass.
• Any method in the superclass can be overridden (re-defined) by writing a method

in the subclass with the same signature.
• Any class definition without an extends clause is a subclass of Object by default.
• A variable of the superclass type may refer to an object of its class or an object of

any of its subclasses.
• If an overridden method is called on a variable of the superclass, the class of the object

referred to determines which version of the overridden method will be executed. This
property is known as polymorphism or dynamic binding.

• In an instance method, the identifier this refers to the object, the receiver, that is
currently executing the instance method.

• The identifier super can be used to access instance methods (and variables) that have
been overridden (and shadowed) in the subclass.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 39

• The file containing a subclass definition must reside in the same directory as the
superclass file.

class MySub extends MyClass
{ // File: MySub.as

private var okay : Boolean;
public function MySub(n : Number, b : Boolean)
{

super(n);
okay = b;

}
public function compute() : Number
{

if (okay) return super.compute();
else return -1;

}
}
var mc : MyClass = new MyClass(7);
var ms : MySub = new MySub(12, true);
var mcs : MyClass = new MySub(-9, false);

mc.perform(4); calls superclass method // 4, 8, 12, ..., 28
ms. perform(9); calls superclass method // 9, 18, 27, ..., 108

mc.compute() calls superclass method // 49
ms.compute() calls subclass method // 144
mcs.compute() calls subclass method // -1

Upcasting and Downcasting
• Upcasting refers to the mechanism in which an object from a subclass is assigned to a

variable declared of the superclass type. No special operator is required since the
subclass object "is-an" object of the superclass type automatically.

• Downcasting refers to the assignment of a superclass variable to a subclass variable, and
it requires an explicit cast to the type of the subclass.

• A variable of a superclass type can be cast to a variable of a subclass type only if it refers
to an object of that same subclass type.

• If the object referred to by the superclass variable is not an object of the subclass, the
result of the downcast is the value null (not an exception).

• Upcasting and downcasting of object types also applies to parameter passing and to any
situation where an object of one type is impersonating another class type.

Upcasting: mc = ms;
Downcasting: ms = MySub(mcs);

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 40

Polymorphism Example
Define a collection of classes representing geometric solids and including a method for
computing their volumes.
The superclass provides a String instance variable for identification and a volume method
to be overriden.

class Solid
{ // File: Solid.as

private var kind : String;
public function getKind() : String
{ return kind; }
public function volume() : Number // This code is never executed
{ return 0.0; }

}

class Sphere extends Solid
{ // File: Sphere.as

private var radius : Number;
public function Sphere(r : Number)
{

radius = r;
kind = "Sphere";

}
public function volume() : Number
{ return 4.0/3.0*Math.PI*radius*radius*radius; }

}

class Cube extends Solid
{ // File: Cube.as

private var length : Number;
public function Cube(g : Number)
{

length = g;
kind = "Cube";

}
public function volume() : Number
{ return length*length*length; }

}

class Cone extends Solid
{ // File: Cone.as

private var radius : Number;
private var altitude : Number;

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 41

public function Cone(r : Number, a : Number)
{

radius = r;
altitude = a;
kind = "Cone";

}
public function volume() : Number
{ return Math.PI*radius*radius*altitude/3.0; }

}

To make use of Solid and its subclasses, create a Flash document with the following
ActionScript code at Keyframe 1. Its file must be in the same directory as Solid.as, Sphere.as,
Cube.as, and Cone.as. Save it before you try to test it.

var list : Array = new Array(6); // View as an array of Solid
list[0] = new Cube(10);
list[1] = new Cube(5);
list[2] = new Sphere(10);
list[3] = new Sphere(8);

list[4] = new Cone(3, 5);
list[5] = new Cone(8, 2);

for (var k:Number=0; k<list.length; k++)
{

trace(list[k].getKind() + " volume = " + list[k].volume());
}

Execution
Cube volume = 1000
Cube volume = 125
Sphere volume = 418.879020478639
Sphere volume = 268.082573106329
Cone volume = 47.1238898038469
Cone volume = 134.041286553164

Abstract Classes
• ActionScript does not allow abstract classes.
• Interfaces must be used instead.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 42

Interfaces
• An interface is a class-like mechanism that provides a specification of behavior (the

syntax) that classes must implement to make the behavior available. It contains only
public instance method headers (no bodies). Variables of any kind are not allowed.

• No objects can be instantiated directly from an interface. A class implements an
interface by giving complete definitions of all of the methods in the interface.

• Then a variable declared of the interface type can be made to refer to such an object that
implements the interface.

• Polymorphism can be performed with a group of classes that implement a common
interface.

interface Printable
{ // File: Printable.as

function printNum(n : Number) : Void;
}

class FirstImpl implements Printable
{ // File: FirstImpl.as

private var name : String;
public function FirstImpl(s : String)
{ name = s; }
public function printNum(n : Number) : Void
{

trace(name + " prints " + n);
}

}

class SecondImpl implements Printable
{ // File: SecondImpl.as

private var ID : Number;
public function SecondImpl(n : Number)
{ ID = n; }

public function printNum(n : Number) : Void
{

trace("Number" + ID + " prints " + n);
}

}

To make use of Printable and its implementations, create a Flash document with the
following ActionScript code at its first Keyframe. It file must be in the same directory as
Printable.as, FirstImpl.as, and SecondImpl.as, and must be saved before it is tested.

var fi : FirstImpl = new FirstImpl("Claude");
var si : SecondImpl = new SecondImpl(55);

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 43

var printer1 : Printable = fi;
var printer2 : Printable = si;

printer1.printNum(13);
printer2.printNum(-99);

Output
Claude prints 13
Number55 prints -99

Symbols as Classes
Movie Clip Symbols and Buttons Symbols can be viewed as classes that are instantiated
when they are placed on the stage.

Example
Create a green ball as a Movie Clip Symbol, called GreenBall.

This operation implies a class definition of the form:
class GreenBall extends MovieClip
{ }

Put an instance of GreenBall on the stage, calling it green.

We can provide properties (instance variables) and behavior (instance methods)
for the green instance using ActionScript in the Timeline.

green.dx = 8;
green.dy = 4;

green.move = function()
{

green._x = green._x + green.dx;
green._y = green._y + green.dy;

}

Control the animation using frame events attached to the main timeline Movie Clip,
which is referred to by the global variable _root.

_root.onLoad = function()
{

green.dx = 8;
green.dy = 4;

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 44

_root.onEnterFrame = function()
{

green.move();
green.checkBounds();
green.checkHit(); // dealt with later

}

The decision making for bouncing off of the edges of the stage is encapsulated
in an instance method checkBounds for the object named green.
Actually, the _root object is redundant, which onEnterFrame responds to the main
timeline MoveClip.

green.checkBounds = function() // Assumes registration point
{ // of the ball is at its center

if (green._x + green._width/2 >= Stage.width) // right edge
{

green._x = Stage.width - green._width/2;
green.dx = -green.dx;

}
else if (green._x - green._width/2 <= 0) // left edge
{

green._x = 0 + green._width/2;
green.dx = -green.dx;

}
if (green._y + green._height/2 >= Stage.height) // bottom edge
{

green._y = Stage.height - green._height/2;
green.dy = -green.dy;

}
else if (green._y - green._height/2 <= 0) // top edge
{

green._y = 0 + green._height/2;
green.dy = -green.dy;

}
}

Add Start and Stop buttons (Symbols) to the stage with instance names myStart
and myStop.
Place the following code on Keyframe 1 with the code that is already there.

myStop.onPress = function()
{

green.saveX = green.dx;
green.saveY = green.dy;
green.dx = green.dy = 0;

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 45

myStart.onPress = function()
{

green.dx = green.saveX;
green.dy = green.saveY;

}

We have added four instance variables (dx, dy, saveX, saveY) to the object named green,
which also has access to instance variables (_x, _y, _width, _height, among others) inherited
from its superclass MovieClip.

Add a blue Square Symbol instance to the stage. Make it 150 by 150 pixels.
Call its instance square.

Problem: We want the green ball to bounce off of the blue square.

Hit Test
Instance method in MovieClip:

hitTest : Object ➝ Boolean
When the MovieClip square and the object green overlap,

square.hitTest(green) returns true.
Add an instance method:

green.checkHit = function()
{

if (square.hitTest(green))
{

green.dx = - green.dx;
green.dy = - green.dy;

}
}

Problem: This behavior is not the way a ball bounces.
When the ball hits the left side or the right side of the square,
only the dx value should reverse.
When the ball hits the top side or the bottom side of the square,
only the dy value should reverse.

Solution: Test whether the ball is within |dx| distance of the left or right side of
the square and whether it is within |dy| distance of the top or bottom of the square.

The one-dimensional distance between two points is |x1 - x2|.

The new version of the checkHit instance methods follows.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 46

green.checkHit = function()
{ // Assumes registration points are at centers of symbols

if (square.hitTest(green))
{

if (Math.abs((green._x – green._width/2)
– (square._x + square._width/2)) <= Math.abs(green.dx))

{
green.dx = -green.dx; // right

}
else if(Math.abs((square._x – square._width/2)

– (green._x + green._width/2)) <= Math.abs(green.dx))
{

green.dx = -green.dx; // left
}
if (Math.abs((square._y – square._height/2)

– (green._y + green._height/2)) <= Math.abs(green.dy))
{

green.dy = -green.dy; // top
}
else if (Math.abs((green._y – green._height/2)

– (square._y + square._height/2)) <= Math.abs(green.dy))
{

green.dy = -green.dy; // bottom
}

}
}

Problem: We want to hear the green ball strike the blue square.

Adding Sound Objects
Sound is a predefined class in ActionScript.
Suppose we have a sound file, called bonk.wav, that should play whenever
the green ball hits the blue square.

• Import the sound file:
File ➜ Import ➜ Import to Library

• The sound can be previewed in the Library when selected.

• Set the linkage properties for the sound:
Select the sound in the Library.
Choose Linkage from the Options menu or the right-click menu.
Check Export for ActionScript in the Linkage Properties window.
This last step ensures that the sound is included in the SWF file even though
it is not on the stage.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 47

• Choose Properties from the Options menu or the right-click menu
to alter the compression technique.

• Create a Sound object in the ActionScript code.
snd = new Sound();

Use one object for each different sound.

• Attach the Library sound to the Sound object using the following code.
snd.attachSound("crash.wav");

The string parameter to this method is the name of the Identifier set in
the Linkage window, which is the file name by default. It can be altered.

• Play the sound using its start method.
snd.start();

Changes to GreenBall.fla

onLoad = function()
{

green.dx = 8;
green.dy = 4;
bonk = new Sound();
bonk.attachSound("bonk.wav");

}

green.checkHit = function()
{

if (square.hitTest(green))
{

bonk.start();
// Rest of the method is the same.

Sound Instance Methods and a Property

stop()

getVolume() // a number between 0 and 100

setVolume(n)

start(s) // start at the s second of the sound

position // number of milliseconds a sound has been playing

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 48

Example: MySounds.fla
Import the following sounds to the stage: crash.wav and Huntingdon.mp3.
At Keyframe 1 play the crash sound.
At Keyframe 10 (create it) make a Sound object for Huntingdon.mp3 and place
five buttons on the stage: start, stop, continu, louder, softer.
Enter the follow code at Keyframe 10.

snd = new Sound();
snd.attachSound("Huntingdon.mp3"); // Remember Export for ActionScript
snd.setVolume(50);
stop();

start.onRelease = function()
{

snd.stop();
snd.start();

}

stop.onRelease = function()
{

pos = snd.position/1000;
snd.stop();

}

continu.onRelease = function()
{ snd.start(pos); }

louder.onRelease = function()
{

level = snd.getVolume();
level = Math.min(100,level+5);
snd.setVolume(level);
trace(level);

}

softer.onRelease = function()
{

level = snd.getVolume();
level = Math.max(0,level-5);
snd.setVolume(level);
trace(level);

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 49

Using the Mouse
The MovieClip class contains a number of events that respond to frame events
and mouse events.
Here are some that are not shared by the Button class.

onLoad
onEnterFrame
onMouseDown
onMouseUp
onMouseMove

To use the mouse for drawing on the stage we use the following MovieClip methods.
clear() Removes all graphics creadted during runtime using

draw methods.
lineStyle(thickness : Number, Specifies line style for subsequent drawing

rgb : Number,
alpha : Number)

moveTo(x : Number, Moves current drawing position to (x, y)
y : Number)

lineTo(x : Number, Draws a line from the previous drawing
y : Number) position to (x, y) using the current line style.

Example: Drawing.fla
Increase the Frame rate to 24 to reduce flicker.
The MovieClip properties, xmouse and ymouse, hold the current position of the mouse.
Without an object specification, we get _root, the main timeline Movie Clip.
In a new Flash document, enter the following code at Keyframe 1.

onMouseDown = function()
{

lineStyle(4, 0x0000ff, 100);
moveTo(_xmouse, _ymouse);

}

onMouseUp = function()
{

lineStyle(0, 0x000000, 0);
}

onMouseMove = function()
{

lineTo(_xmouse, _ymouse);
}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 50

Erasing the Drawing
As a preview of key stroke handling, we alter the onMouseDown handler to erase
the current drawing if the mouse is clicked with the shift key depressed.

onMouseDown = function()
{

if (Key.isDown(Key.SHIFT))
{

clear();
}
else
{

lineStyle(4, 0x0000ff, 100);
moveTo(_xmouse, _ymouse);

}
}

Mouse Class
Two class methods in Mouse make the mouse cursor disappear and reappear.

Mouse.hide();
Mouse.show();

Example: NewCursor.fla
Draw a small graphic, say a three-pointed start, on the stage and convert it to a Movie Clip
Symbol.
Give the instance on the stage the name pointer.
Increase the Frame rate to 24.
Enter the following code at Keyframe 1.

Mouse.hide();
onEnterFrame = function()
{

pointer._x = _xmouse;
pointer._y = _ymouse;

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 51

Handling Key Strokes
ActionScript provides several ways to recognize key presses.

Events shared by MovieClip and Button Classes
onPress onDragOver
onRelease onDragOut
onReleaseOutSide onKeyDown
onRollOver onKeyUp

Example: MyEvents.fla
Place a blue rectangle MovieClip instance on the center of the stage and call it box.
To get the box object to recognize key presses, the focus needs to be set on the box.
Enter the following ActionScript code at KeyFrame 1.

box.useHandCursor = false; // otherwise cursor changes to a hand over box
box.focusEnabled = true;
Selection.setFocus(box);
box.onRollOver = function()
{ trace('RollOver'); }
box.onRollOut = function()
{ trace('RollOut'); }
box.onReleaseOutside = function()
{ trace('ReleaseOutSide'); }
box.onRelease = function()
{ trace('Release');

Selection.setFocus(box);
}
box.onDragOver = function()
{ trace('DragOver'); }
box.onDragOut = function()
{ trace('DragOut'); }
box.onPress = function()
{ trace('Press'); }
box.onKeyDown = function()
{ trace('KeyDown'); }
box.onKeyUp = function()
{ trace('KeyUp'); }

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 52

Key Class
The Key class contains several class methods.

Key.getAscii() Returns ASCII code of last key pressed.

Key.getCode() Returns key code value of last key pressed,
ignoring modifying keys.

Key.isDown(code : Number) Returns true if the key specified by the code
is pressed (now).

Key.addListener(kl : Object) Registers an object to receive onKeyDown and
onKeyUp notifications.

Example: KeyPresses.fla

onEnterFrame = function()
{

if (Key.isDown(65))
{

trace("Letter 'a' pressed");
}
else if (Key.isDown(Key.SPACE))
{

trace("Space pressed");
}
else if (Key.isDown(Key.UP))
{

trace("Up arrow pressed");
}

}

keyListener = new Object();
keyListener.onKeyDown = function()
{

trace("Key down");
}
keyListener.onKeyUp = function()
{

trace("Key up");
trace(" Ascii = " + Key.getAscii());
trace(" Code = " + Key.getCode());
trace(" " + String.fromCharCode(Key.getCode()));

}
Key.addListener(keyListener);

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 53

Since any object can serve as the key listener, we can write the last part of the code using
the _root object as the key listener.

_root.onKeyDown = function()
{

trace("Key down");
}
_root.onKeyUp = function()
{

trace("Key up");
trace(" Ascii = " + Key.getAscii());
trace(" Code = " + Key.getCode());
trace(" " + String.fromCharCode(Key.getCode()));

}
Key.addListener(_root);

The Key class has 18 predefined constants for special keys.

Key.BACKSPACE 8
Key.SPACE 32
Key.UP 38
Key.DOWN 40
Key.LEFT 37
Key.RIGHT 39
Key.SHIFT 16
Key.TAB 9
Key.ENTER 13
Key.CONTROL 17
Key.ESCAPE 27
Key.END 35
Key.CAPSLOCK 20
Key.DELETEKEY 46
Key.HOME 36
Key.INSERT 45
Key.PGDN 34
Key.PGUP 33

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 54

Example: Arrows.fla
Place an instance of a GreenBall Movie Clip Symbol on the stage and call it green.
In this example we want to move the ball left and right, up and down, under control
of the four arrow keys on the keyboard.
When the ball reaches the edge of the stage, have it disappear and then reappear on
the opposite edge of the stage.
Enter the following ActionScript code at KeyFrame 1.

onLoad = function()
{

green.dx = 5;
green.dy = 8;

}

onEnterFrame = function()
{

if (Key.isDown(Key.LEFT))
{

newx = green._x-green.dx;
if (newx <= 0)
{ newx = Stage.width+newx; }
green._x = newx;

}
if (Key.isDown(Key.RIGHT))
{

newx = green._x+green.dx;
if (newx >= Stage.width)
{ newx = newx-Stage.width; }
green._x = newx;

}
if (Key.isDown(Key.UP))
{

newy = green._y-green.dy;
if (newy <= 0)
{ newy = Stage.height+newy; }
green._y = newy;

}
if (Key.isDown(Key.DOWN))
{

newy = green._y+green.dy;
if (newy >= Stage.height)
{ newy = newy-Stage.height; }
green._y = newy;

}
}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 55

Array Class
Arrays in ActionScript are nonhomogenous since you can put values of any
type into them.
They are dynamic in the sense that they can grow at runtime.
There appears to be no way to type the elements of an array as a means of getting
strong type checking for array elements.

Array Creation
var a : Array = new Array(); // an empty array
b = new Array(4); // an array with 4 undefined values
c = [1, 2, 3, 4, 5]; // an array literal
d = ["abc", 2+2, Math.PI, 'xyz']; // arrays can be nonhomogeneous
e = new Array(["a", "b", "c"]);
f = [[1,2,3],[4,5,6]]; // a two dimensional array
g = new Array(['A','B'], ['Y','Z']); // a two dimensional array

Output (result of toString())
trace(a); none
trace(b); undefined,undefined,undefined,undefined
trace(c); 1,2,3,4,5
trace(d); abc,4,3.14159265358979,xyz
trace(e); a,b,c
trace(f); 1,2,3,4,5,6
trace(g); A,B,Y,Z

for (k=0; k<b.length; k++)
{

b[k] = (k+1)*(k+1);
 }
trace(b); 1,4,9,16
b[6] = -99;
trace(b.toString()); 1,4,9,16,undefined,undefined,-99

Regular Expressions
x* Zero or more copies of the item x.
x+ One or more copies of the item x.
x? One copy of x or none at all.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 56

In the following definitions, the regular expression modifiers apply to the
entire parameter.

Array Instance Methods

push(v : Object+) : Number Adds one or more elements to the end of this array
and returns the new length of the array.

pop() : Object Removes the last element from this array and
returns the value of that element.

unshift(v : Object+) : Number Adds one or more elements to the beginning of
this array and returns the new length of the array.

shift() : Object Removes the first element from this array and
returns the value of that element.

reverse() : Void Reverses this array in place.

slice(startindex : Number?,
endindex : Number?) : Array

Returns a new array consisting of a range of
elements from this array without modifying this
array; the returned array includes the startindex
element and all elements up to but not including
the endindex element. Negative index values are
measured from the end of the array.

toString() : String Returns a string containing all of the elements of
this array separated by commas.

concat(v : Object*) : Array Concatenates the elements specified by parameter
to the end of this array and returns it without
changing this array.

join(delimiter : String?) : String Returns a string containing all of the elements of
this array separated by the delimiter or by
commas if no delimiter.

splice(startindex : Number,
deleteCount : Number?,
v : Object?) : Array

Adds element to and removes elements from this
array by modifying the array; deleteCount is the
number of elements removed at the startindex
position; the elements specified by the third
parameter are inserted at this point; the return
value is an array of the elements removed; if the
deleteCount parameter is omitted, all elements
from startindex to the end are delete.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 57

Stack Behavior
Use push and pop.

Queue Behavior
Use push and shift.

Examples

h = c.concat();
i = c.concat(e,e);
trace(h); 1,2,3,4,5
trace(i); 1,2,3,4,5,a,b,c,a,b,c
trace(c); 1,2,3,4,5

trace(c.join("; ")); 1; 2; 3; 4; 5

trace(c.reverse()); 5,4,3,2,1
trace(c); 5,4,3,2,1

x = ["bat", "cat", "elk", "emu", "fox", "owl","rat", "yak"];
y = x.slice(1,4);
trace(y); cat,elk,emu
trace(x); bat,cat,elk,emu,fox,owl,rat,yak

z = x.splice(2, 3);
trace(x); bat,cat,owl,rat,yak
trace(z); elk,emu,fox
w = x.splice(3, 0, z);
trace(x); bat,cat,owl,elk,emu,fox,rat,yak
trace(w); none

The slice and splice operations did not always work correctly for me
 when applied to the array resulting from an application of concat.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 58

MovieClip Properties
These public instance variables in the MovieClip class are accessible to each MovieClip
object and to objects of a subclass of MovieClip.
The list contains only the most useful properties.

_width : Number

_height : Number

_x : Number

_y : Number

_xscale : Number (nonnegative)

_yscale : Number (nonnegative)

_visible : Boolean

_name : String

_rotation : Number

_alpha : Number (0..100)

_parent : MovieClip

_xmouse : Number (read-only)

_ymouse : Number (read-only)

Vector Motion
An object moving on the stage has speed and direction, which are represented by the
concept of a vector.
A vector can be viewed as an arrow whose angle gives the direction and whose length
represents the speed.

Problem: Translate a vector into the dx, dy values that are used to specify motion in Flash.

XY (Cartesian) Coordinate System
The origin (0,0) of the system is the upper left corner. The positive x axis moves from
left to right, and the positive y axis moves from top to bottom.
Angles are measured clockwise from the positive x direction.

Right 0°
Down 90°
Left 180°
Up 270°

But angles in Flash are computed clockwise from the North direction in the Transform
panel and with the _rotation property of MovieClip objects.

obj._rotation = 0 North
obj._rotation = 90 East
obj._rotation = 180 South
obj._rotation = 270 West

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 59

We need to convert a Flash angle into the XY-coordinate system.
Let flang be the Flash angle.
Let degrees be the mathematical angle in the XY-coordinate system.
Then

degrees = flang - 90;

Consider a vector in the XY-coordinate system.

The motion is from A to B.
Vector: angle = α

speed = length of vector = distance from A to B.

Translate to dx, dy
sin α = dy/speed
cos α = dx/speed

dx = speed • cos α
dy = speed • sin α

Problem: Math.sin and Math.cos in ActionScript expect angles to be in radians.

Conversion
180° is equivalent to π radians
degrees/180 = radians/ π

radians = π • degrees / 180

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 60

Suppose a MovieClip object has the following properties:
speed
direction (in degrees)
dx
dy

Suppose the speed and direction are known. We want to compute the dx and dy.

function turn(mc : MovieClip)
{

degrees = mc.direction - 90;
radians = Math.PI * degrees / 180; // convert to radians
mc.dx = mc.speed * Math.cos(radians);
mc.dy = mc.speed * Math.sin(radians);

}

Problem: We turn the object by altering the direction property, say +5 or -5.
If we want to display the direction, we want the value to be between 0° and 360°.
Each time we add or subtract 5, the result should be calculated modulo 360, which
is the positive remainder on dividing by 360.
Note: The sine and cosine functions don't care about the magnitude of the angle; they

work just as well with negative angles and angles above 360°.
Problem: The remainder operator (%) in ActionScript does not compute the modulo
function correctly.
Example: Divide by 4

n n%4 mod(n, 4)
5 1 1
4 0 0
3 3 3
2 2 2
1 1 1
0 0 0
-1 -1 3
-2 -2 2
-3 -3 1
-4 0 0
-5 -1 3

Solution: When the remainder is negative, add the divisor to it.
function mod(num, div)
 {

 r = num % div;
 return r<0 ? r+div : r;

 }

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 61

Example: TurningCar.fla
Create a small MovieClip object that looks like a car seen from above.
Place it on the stage pointing NorthEast with the instance name car.
When the car object reaches the edge of the stage, it continues on the opposite edge.
Control: Left arrow Rotate car 5° counterclockwise.

Right arrow Rotate car 5° clockwise.
Up arrow Increase speed by 1.
Down arrow Decrease speed by 1.

The car has a maximum speed of 15. Of course, the minimum speed is 0.
Enter the following ActionScript code at KeyFrame 1.

car.speed = 0;
car.direction = 45; // degrees
car.maxSpeed = 15;

onEnterFrame = function()
{

 checkKeys();
 turn(car);
 move(car);

}

function checkKeys()
{

if (Key.isDown(Key.UP))
{

car.speed = Math.min(car.speed+1, car.maxSpeed);
}
if (Key.isDown(Key.DOWN))
{

car.speed = Math.max(car.speed-1,0);
}
if (Key.isDown(Key.RIGHT))
{

car.direction = mod(car.direction+5, 360);
}
if (Key.isDown(Key.LEFT))
{

car.direction = mod(car.direction-5, 360);
}

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 62

function turn(mc : MovieClip)
{

degrees = mc.direction - 90;
radians = Math.PI * degrees / 180;
mc.dx = mc.speed * Math.cos(radians);
mc.dy = mc.speed * Math.sin(radians);

}

function move(mc : MovieClip)
{

mc._x = mc._x + mc.dx;
mc._y = mc._y + mc.dy;
mc._rotation = mc.direction;
if (mc._x > Stage.width)
{ mc._x = 0; }
if (mc._x < 0)
{ mc._x = Stage.width; }
if (mc._y > Stage.height)
{ mc._y = 0; }
 if (mc._y < 0)
{ mc._y = Stage.height; }

}

function mod(num, div)
{

r = num % div;
return r<0 ? r+div : r;

}

Classes, Objects, and Dynamic Properties
Put the following ActionScript code in a file named Box.as.

class Box
{ }

Put this code in a Flash document.
b = new Box();
b.size = 10; // illegal

We cannot add a property to a Box object dynamically in this case.

Rewrite the Box class as follows.
dynamic class Box
{ }

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 63

Put this code in a Flash document.
b = new Box();
b.size = 10; // legal now

When a class has the dynamic modifier, properties may be added to its objects
outside of its class definition.
Recommendation: Dynamic classes are considered poor OOP design, although this
usage is found in Flash code frequently. A better approach would be to use a subclass
of the class to add a property.

The MovieClip, Array, and Object classes are defined as dynamic.
Subclasses of dynamic classes are normally dynamic.
But subclasses of MovieClip and Object are not dynamic, by default.

Kinds of Variables in Classes
property An instance variable defined in the class and found in each

object of the class.
class property A class variable defined in the class and belonging to the

class itself.
dynamic property An instance variable defined outside of the class definition;

it belongs to only one object, the one it is defined for.

Visibility Modifiers
public and private
No modifier on a member of a class means that it is public.
ActionScript does not allow final as a modifier.

Viewing Properties
Change the Box class to read as follows.

dynamic class Box
{

var width : Number = 25;
var height : Number = 50;
var description : String = "red box";

}
Consider this ActionScript code in a Flash document.

b = new Box();
trace(b.width); // prints 25
trace(b.height): // prints 50

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 64

Alternate syntax
trace(b["width"]); // prints 25
fld = "height";
trace(b[fld]); // prints 50

Contrast Syntax
With the syntax b.width and b.height, the field (property) name must be static,
which means it is known to the compiler).
With the syntax b["width"] and b[fld], the field (property) name can be dynamic,
which means it may not be known until runtime.

Object Literals
ActionScript allows literal expressions that represent Object objects with dynamic
properties belong to this new object only.

var ob : Object = {x:33, y:44, color:"blue", visible:false};

Displaying the Properties

for (prop : String in ob)
{

trace("--");
trace("Property name: " + prop);
trace("Property value: " + ob[prop]);

}
trace("--");

Output

Property name: x
Property value: 33

Property name: y
Property value: 44

Property name: color
Property value: blue

Property name: visible
Property value: false

Note: The ob[prop] syntax works only with dynamic properties.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 65

Array Example

playOffs = new Array();
playOffs.push("Red Sox", "Indians", "Rockies", "Diamondbacks");
for (team in playOffs)
{

trace(playOffs[team]);
}

Create a MovieClip Instance Dynamically
Create a MovieClip Symbol called Ball.
In the Properties window (Option menu or right-click in the Library Panel), select

Export for ActionScript
Use the MovieClip instance method attachMovie on the _root object.

public attachMovie(symbolLinkage : String, // name of the class (symbol)
instanceName : String,
depth : Number,
initObject : Object?) : MovieClip

The depth parameter is an integer that describes the level at which the instance will be
placed. Each instance on the stage must lie on a unique level. Either maintain a counter
variable to ensure that different instances created dynamically lie on difference levels
or use the instance method getNextHighestDepth.
The initObject parameter can be used to initialize the instance coming into existence,
say by an anonymous object literal such as { _x : 100, _y : 150 }.

Removing a MovieClip
Global class method

removeMovieClip(instanceName);

MovieClip instance method
instanceName.removeMovieClip():

Returning to the example
Create an instance of Ball called theBall.

_root.attachMovie("Ball", "theBall", 10); or attachMovie("Ball", "theBall", 10);
Position the ball.

theBall._x = 200;
theBall._y = 130;

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 66

eval Function
This function can be used to build an identifier dynamically that refers to an instance.

eval(expr : String) : Object

If expr is a variable identifier or a property identifier (as a String), the value of the
variable or property is returned as the result.
If the item named in expr cannot be found, undefined is returned.
Note that the eval function only returns an R-value.
Suppose we have three MovieClip objects, box1, box2, and box3.
Rotate each to 45°.

for (k=1; k<=3; k++)
{

eval("box" + k)._rotation = 45;
}

Other methods can be used to create an L-value dynamically.
Examples

k = 5;
var5 = "first"; // these four commands have the same effect
_root["var" + k] = "first";
this["var" + k] = "first"; // assuming code in on main timeline
set("var" + k, "first");

Example: MakeBalls.fla
Create a MovieClip Symbol called Ball (a green disk).
Create a Button Symbol and place an instance of it on the stage with the label "Make a Ball"
and with instance name theButton.
Place a dynamic text field on the stage with instance name display.
Enter the following ActionScript code at KeyFrame 1.

k = 0;
theButton.onRelease = function()
{

k++;
_root.attachMovie("Ball", "ball"+k, 10*k);
currentBall = eval("ball"+k);
w = currentBall._width;
h = currentBall._height;
currentBall._x = Math.random()*(Stage.width-w)+w/2;
currentBall._y = Math.random()*(Stage.height-h)+h/2;
currentBall.index = k;

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 67

currentBall.onRelease = function()
{

display.text = "Last ball clicked: Index = " + this.index;
this.removeMovieClip();

}
}

Notes
• Each disk is positioned on the stage using the identifier currentBall. The random

calculations for _x and _y ensure that the disk lies entirely on the stage.
• The identifier index is a new property created dynamically for each instance.
• A MovieClip can act in the same way as a Button, responding to a click using the

onRelease event.
• When a MovieClip disk is clicked on, it disappears and its index value is reported

in the dynamic text field.

ActionScript Code for a Symbol
Create a MovieClip Symbol named Ball.
We can provide properties and behavior for Ball objects using a class definition
that specifies Ball as a subclass of MovieClip.
Enter the following ActionScript code into a file named Ball.as.

class Ball extends MovieClip
{

private var dx:Number,
dy:Number,
xspeed:Number,
yspeed:Number;

function Ball()
{

_x = Math.random()*(Stage.width-_width)+_width/2;
_y = Math.random()*(Stage.height-_height)+_height/2;
dx = xspeed=Math.random()*20-10; // -10 ≤ dx < 10
dy = yspeed=Math.random()*20-10; // -10 ≤ dy < 10

}
function onEnterFrame()
{

move();
checkBounds();

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 68

function move()
{

_x = _x+dx;
_y = _y+dy;

}
function stop()
{ dx = dy= 0; }

function start()
{

dx = xspeed;
dy = yspeed;

}
function checkBounds()
{

if (_x + _width/2 >= Stage.width)
{ dx = -dx; }
if (_x - _width/2 <= 0)
{ dx = -dx; }
if (_y + _height/2 >= Stage.height)
{ dy = -dy; }
if (_y - _height/2 <= 0)
{ dy = -dy; }

}
function onRelease()
{

if (Key.isDown(Key.SPACE))
{ removeMovieClip(this); }
else if (Key.isDown(Key.UP))
{ start(); }
else if (Key.isDown(Key.DOWN))
{ stop(); }

}
}

Using Ball.as
Create a Flash document ManyBall.fla with following code at KeyFrame 1.

for (k = 0; k< 50; k++)
{

attachMovie("Ball", "ball" +k, k + 10);
}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 69

Gravity
Gravity is a constant force acting to accelerate the downward velocity (dy) of an object
over time.
Since the positive direction of y is down, we simply need to add a positive constant
to the downward velocity dy in each frame, the measure of time in Flash.

Acceleration = Change in Velocity
Velocity = Change in Position

Relationships
position = velocity • time + initialPosition
velocity = acceleration • time + initialVelocity

Consider two points in time, t1 and t2.
p2 = v • t2 + initialPosition
p1 = v • t1 + initialPosition

Subtract
p2 - p1 = v • (t2 - t1)

Let t2 = t1 + 1.
p2 = p1 + v

This corresponds to the command _x = _x + dx.
v2 = a • t2 + initialVelocity
v1 = a • t1 + initialVelocity

Subtract
v2 - v1 = a • (t2 - t1)

Let t2 = t1 + 1.
v2 = v1 + a

This corresponds to the command dx = dx + a.
Note: Both velocity and acceleration may be functions of time and not just constants.

Example: Gravity.fla
Create a MovieClip Symbol Ball and place one instance of it on the stage with the
name ball.
Enter the following ActionScript code at KeyFrame 1.

ball.dx = 10;
ball.dy = 5;
gravity = 3;

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 70

onEnterFrame = function()
{

ball._x = ball._x + ball.dx;
ball._y = ball._y + ball.dy;

if (ball._x + ball._width/2 > Stage.width)
{

ball._x = Stage.width - ball._width/2;
ball.dx = -0.9*ball.dx;

}
if (ball._x - ball._width/2 < 0)
{

ball._x = 0 + ball._width / 2;
ball.dx = -0.9*ball.dx;

}
if (ball._y + ball._height/2 > Stage.height)
{

ball._y = Stage.height- ball._height/2;
ball.dy = -0.9*ball.dy;

}
if (ball._y - ball._height/2 < 0)
{

ball._y = 0 + ball._height/2;
ball.dy = -0.9*ball.dy ;

}
ball.dy = ball.dy + gravity;

}

Notes
• This program is similar to previous bouncing ball programs, but with two

modifications to make it more realistic.
• When the ball bounces off a surface, its reversed speed is only 90% of the impact

speed to model the fact that balls lose speed when they bounce.
• With each passing frame, the velocity in the y direction (dy) is modified by adding

the gravity constant to model the decreasing velocity when the ball is rising and
the increasing velocity when the ball is descending.

• The actual value of the gravity constant cannot be determined physically since we
are modeling the world in Flash. Try different values for the constant until the
simulation looks good.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 71

Example: GravityTrace.fla
Create a MovieClip Symbol in the shape of a cannon and place an instance of it in
the lower left corner of the stage with the instance name gun.
Create another MovieClip Symbol that is a small black disk and place an instance
of it behind the cannon with the instance name bullet.
Place two dynamic text fields near the bottom edge of the state with the variable
names (Var: field) bullet.direction and bullet.speed.

Enter the following ActionScript code at KeyFrame 1.

gun.direction = 0;
gun.charge = 0;
gravity = 0.5;
onEnterFrame = function()
{

checkKeys(); move(bullet);
}
function checkKeys()
{

if (Key.isDown(Key.LEFT))
{

clear();
gun._rotation = gun.direction = gun.direction - 2;

}
if (Key.isDown(Key.RIGHT))
{

clear();
gun._rotation = gun.direction = gun.direction + 2;

}
if (Key.isDown(Key.UP))
{

clear();
gun.charge = gun.charge + 5;

}
if (Key.isDown(Key.DOWN))
{

clear();
gun.charge = gun.charge - 5;

}
if (Key.isDown(Key.SPACE))
{

bullet._x = gun._x;
bullet._y = gun._y;

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 72

bullet.speed = gun.charge;
bullet.direction = gun.direction;
clear();
lineStyle(2,0x000000,100);
moveTo(gun._x, gun._y);
turn(bullet);

}
}

function turn(mc)
{

degrees = mc.direction -90;
radians = degrees / 180 * Math.PI;
mc.dx = mc.speed*Math.cos(radians);
mc.dy = mc.speed*Math.sin(radians);

}
function move(mc)
{

mc._x = mc._x + mc.dx;
mc._y = mc._y + mc.dy;
_root.lineTo(mc._x, mc._y);
if ((mc._x > Stage.width) || (mc._x < 0) || (mc._y > Stage.height))
{

mc._x = -100; //stop mc and move it off stage
mc._y = -100;
mc._speed = 0;
mc.dx = 0;
mc.dy = 0;
lineStyle(0,0x000000,0); //turn off line drawing

}
mc.dy = mc.dy + gravity;

}

Notes
• A line drawing traces the path of the cannon ball using the methods lineStyle,

moveTo, and lineTo.
• The line drawing that traces the cannon ball path is erased (clear) whenever a key

is recognized by the code.
• If the cannon passes through the left edge, the right edge, or the bottom of the stage,

it is moved to position (-100, -100), which is off the stage, and it is stopped.
• The top edge of the stage is no barrier at all. The cannon ball passed off the top

of the stage and then returns if it has not met one of the edges.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 73

Using Dynamically Created Objects and an Array
Example: CursorTrail.fla
Create a MovieClip Symbol called Cursor that is a small red disk with a black border.
Enter the following ActionScript code at KeyFrame 1.

onLoad = function()
{

for (var k=0; k<10; k++) // create 10 Cursor objects
{

attachMovie("Cursor", "cursor"+k, k);
}
trail = new Array(); // to hold mouse positions

}
onEnterFrame = function()
{

// mark the mouse location
cursorLoc = { x : _xmouse, y : _ymouse }; // an anonymous object
trail.push(cursorLoc);
if (trail.length > 10) trail.shift(); // keep only last 10 positions
for (var k=0; k<trail.length; k++) // change the positions of cursor followers
{

_root["cursor"+k]._x = trail[k].x;
_root["cursor"+k]._y = trail[k].y;
_root["cursor"+k]._alpha = (k+1)*10; // decreasing transparency

}
}

Global Function: setInterval
The setInterval function calls a method at periodic intervals while a Flash movie plays.
Two versions

setInterval(functionRef : Function, interval : Number) : Number
setInterval(objectRef : Object, methodName : String, interval : Number) : Number

interval time in milliseconds.
return value an identifying number that can be passed to the method clearInterval

to cancel the operation.
In the next example, a method in a class definition contains a nested method inside of
itself. This nesting of methods cannot be done in Java or other languages based on C.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 74

Example: TimeTracer.as
Create an ActionScript file containing the following code.
The method startTimeDisplay takes a reference to a dynamic text field as its parameter.
Note that new Date().toString() returns a string of the form:

Tue Nov 27 15:10:45 GMT-0600 2007
The displayTime method puts a new string of the form Tue Nov 27 15:10:45 into the
dynamic text field every second.

class TimeTracer
{

private var timerID : Number;
public function startTimeDisplay(disp) : Void
{

var begunAt : String = new Date().toString();
trace("Timer started at " + begunAt);
timerID = setInterval(displayTime, 1000);
function displayTime() : Void
{

var s : String = new Date().toString();
var n : Number = s.indexOf("GMT");
disp.text = s.substring(0, n);

}
}
public function stopTimeDisplay() : Void
{

clearInterval(timerID);
}

}

Using TimeTracer: TryTimeTracer.fla
Create a dynamic text field, centered on the stage, with the instance name timeField.
Use a large font for the field.
Enter the following code at KeyFrame 1:

var tt : TimeTracer = new TimeTracer();
tt.startTimeDisplay(timeField);

Enter the following code at KeyFrame 100:
tt.stopTimeDisplay();
stop();

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 75

Using TimeTracer for an Analogue Clock
Add two methods to TimeTracer.as.

public function getHour() : Number
{

return new Date().getHours(); // note names of Date methods
}
public function getMinute() : Number
{

return new Date().getMinutes();
}

Flash Document: Clock.fla
Draw a clock face on the stage. Create arrow shaped MovieClip Symbols for the minute
hand (minuteHand) and the hour hand (hourHand) with the rotation points at the base of
the arrows.
Enter the following ActionScript code at KeyFrame 1.

var tt : TimeTracer = new TimeTracer();
tt.startTimeDisplay(null);
onEnterFrame = function()
{

minute = tt.getMinute();
minuteHand._rotation = minute*6;
hourHand._rotation = (tt.getHour()%12)*30 + minute/2 ;

}

Using Frame Count for Timing: WordServer.fla
In this example, the words of a sentence are displayed on the screen one at a time with
a uniform delay.
Place a dynamic text field at the center of the stage using a large font, with the instance
name display.
Enter the following ActionScript code at KeyFrame 1.

onLoad = function()
{

sentence = "Imagination is more important than knowledge";
wordList = sentence.split(" "); // produces an array of strings
wordNum = 0;
frameDelay = 12;
frameCount = frameDelay; // prime for first word

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 76

onEnterFrame = function()
{

if (frameCount == frameDelay)
{

display.text = wordList[wordNum];
wordNum++;
if (wordNum >= wordList.length)
{

wordNum = 0;
}
frameCount = 0;

}
frameCount++;

}

With a frameDelay value of 12 and the Frame Rate set to 12 frames per second, the word
displayed changes every second.

Note that the variable wordNum cycles through the values 0, 1, 2, 3, 4, 5 repeatedly, and
the variable frameCount cycles through the values 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 repeatedly.
Both of these cycles can be calculated using the modulo operator, as shown below.

onLoad = function()
{

sentence = "Imagination is more important than knowledge";
wordList = sentence.split(" ");
wordNum = 0;
frameDelay = 12;
frameCount = 0;

}
onEnterFrame = function()
{

if (frameCount % frameDelay == 0)
{

display.text = wordList[wordNum];
wordNum = (wordNum+1) % wordList.length;

}
frameCount++;

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 77

Creating Movie Clips Dynamically
We have drawn on the main Timeline Movie Clip using the lineStyle, moveTo,
and lineTo methods.
Now we create a new Movie Clip on which to draw.

MovieClip Methods
createEmptyMovieClip(instanceName : String, depth : Number) : MovieClip

This method creates an empty MovieClip object as a child of an existing MovieClip,
the receiver of the method, giving it the name instanceName.
It returns the new MovieClip whose registration point is in its upper-left corner.

Drawing Methods
Some of these methods have been described earlier.

lineStyle(thickness : Number, rgb : Number, alpha : Number) : Void
moveTo(x : Number, y : Number) : Void
lineTo(x : Number, y : Number) : Void

curveTo(ctrlX : Number, ctrlY : Number, anchorX : Number, anchorY :Number) : Void
This last method draws a curve from the previous drawing position to the point
(anchorX, anchorY) using the point (ctrlX, ctrlY) to shape the curve.

beginFill(rgb : Number, alpha : Number?) : Void
This method established a fill color for a closed shape that is drawn subsequently.
Note that the figure automatically closes itself if we do not close it.

endFill() : Void
This method marks the end of the drawing of the shape to be filled.

Note: ActionScript has other fill methods, beginGradientFill and beginBitmapFill

Example: Fill.fla
Enter the following ActionScript code at KeyFrame 1.

createEmptyMovieClip("mc", 10);
mc.lineStyle(4, 0x000000, 100);
mc.beginFill(0xff6600);

mc.moveTo(50, 50);
mc.lineTo(150, 50);
mc.lineTo(150, 200);
mc.lineTo(50, 200);

mc.endFill();

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 78

with Command
The with command specifies an object in whose context a group of commands
is executed.
This context may apply to variables and methods in the group of commands.

with (obj : Object)
{

commands
}

Example: FillWith.fla
Enter the following ActionScript code at KeyFrame 1.

createEmptyMovieClip("mc", 10);
with (mc)
{

lineStyle(4, 0x000000, 100);
beginFill(0xff00cc);

moveTo(50, 50);
lineTo(150, 50);
lineTo(150, 200);
lineTo(50, 200);

endFill();
}

Example: Lines.fla
Enter the following ActionScript code at KeyFrame 1.

createEmptyMovieClip("lines", 10);
lines.moveTo(Stage.width/2, Stage.height/2);
lines.lineStyle(6, 0xffff00, 100);
onMouseDown = function()
{

lines.lineTo(_xmouse, _ymouse);
}
onEnterFrame = function() // moves the MovieClip object
{

if (Key.isDown(Key.SPACE))
{

lines._x = lines._x + 5;
lines._y = lines._y + 5;

}
}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 79

Example: Curves.fla
Enter the following ActionScript code at KeyFrame 1.

createEmptyMovieClip("curves", 10);
var frameCount = 0;
onEnterFrame = function()
{

color = (100000*frameCount) % 0x1000000; // 0x000000 to 0xffffff
with (curves)
{

lineStyle(2, color, 100);
moveTo(100, 200);
curveTo(_xmouse, _ymouse, 450, 200); // curve from (100,200) to (450,200)

}
frameCount++;

}
onMouseUp = function()
{

curves.clear();
}

Example: Snowflakes.fla
Set the background of the stage to a deep blue.
Enter the following ActionScript code at KeyFrame 1.

numSnowflakes = 50;
for (var k=0; k<numSnowflakes; k++)
{

mc = createSnowflake(k);
with (mc)
{

_x = Math.random()*Stage.width; // 0 to Stage.width
_y = Math.random()*Stage.height; // 0 to Stage.height
mc.speed = Math.random()*2 + 4; // 2 to 6
mc.drift = Math.random()*3 - 1.5; // -1.5 to 1.5
mc.rotate = Math.random()*18 - 9; // -9 to 9

}
}
onEnterFrame = function()
{

moveSnowflakes();
}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 80

function createSnowflake(n)
{

createEmptyMovieClip("snowflake"+n, n);
mc = this["snowflake"+n];
mc.lineStyle(2, 0xffffff, 50); // white, half transparency
numSpikes = Math.floor(Math.random()*5)+5; // 5..9
spikeLength = Math.random()*5+5; // 5 to 10

for (var k=0; k<numSpikes; k++)
{ // create each spike as line from center to point on circle

mc.moveTo(0,0);
spikeAngle = 2.0*Math.PI*k/numSpikes;
x = spikeLength*Math.cos(spikeAngle);
y = spikeLength*Math.sin(spikeAngle);
mc.lineTo(x,y);

}
return mc;

}
function moveSnowflakes()
{

for (var k=0; k<numSnowflakes; k++)
{

mc = this["snowflake"+k]; // mc = eval("snowflake"+k);
with (mc)
{

_x = _x + drift;
_y = _y + speed;
_rotation = _rotation + rotate;
if (_y > Stage.height) _y = 0; // bring back to top
if (_x < 0) _x = Stage.width; // one side to another
if (_x > Stage.width) _x = 0;

}
}

}

Observe that when the instance variables speed, drift, and rotate are first introduced in
the first with command, they must be fully qualified with the identifier mc to bring
them into existence.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 81

Duplicating a Movie Clip
The class MovieClip has an instance method that can be used to duplicate a MovieClip
object, the receiver of the method.

duplicateMovieClip(instanceName : String,
depth : Number, initObj : Object?) : MovieClip

Note: There are two global functions for duplicating a MovieClip object, which should
not be confused with this instance method.

Example: Duplicate.fla
Enter the following ActionScript code at KeyFrame 1.

createEmptyMovieClip("box", 0);
var w : Number = 400;
var h : Number = 20;
with (box)
{

lineStyle(4, 0x0000, 100);
beginFill(0x66ffff);

moveTo(50, 40);
lineTo(50+w, 40);
lineTo(50+w, 40+h);
lineTo(50, 40+h);
lineTo(50, 40);

endFill();
}
trace(box);

var spacer : Number = 5;
var duplicate : MovieClip;
for (var k:Number=1; k<=10; k++)
{

var newY : Number = k*(box._height + spacer);
duplicate = box.duplicateMovieClip("clip"+k, k, { _y : newY });
trace(duplicate);

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 82

Example: Particle.fla
Create a Movie Clip Symbol as a 80 by 80 pixel disk at the center of the stage
with a white to gray radial gradient.
Call the instance on the stage particle.
Enter the following ActionScript code at KeyFrame 1.

for (var k : Number = 1; k<=10; k++)
{

particle.duplicateMovieClip("particle"+k, k);
}

onEnterFrame = function()
{

xDist = _xmouse - Stage.width/2; // distances from center to mouse
yDist = _ymouse - Stage.height/2;
for (var k : Number = 1; k<=10; k++)
{

pt = _root["particle"+k];
// move particle k tenths of the distance from center to the mouse
pt._x = Stage.width/2 + xDist*k/10;
pt._y = Stage.height/2 + yDist*k/10;

}
}

Loading and Sending Data
A LoadVars object can be used to read data values from a text file, similar to a property list,
and can be used to send parameters to a server using GET and POST.

Loading Data
Create a text file composed of name-value pairs delimited by ampersands (&).
The data should be URL-encoded (spaces replaced by + and many symbols represented
by their hexadecimal values in the form %2B).

Example File: data
username=Ken&passwd=lalala&color=blue&message=Hello&

This file may be placed on the same computer as the flash document or may be place on a
web server.

Steps for Loading Data
1. Create a LoadVars object.

lv = new LoadVars();

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 83

2. Load the information.
lv.load("data"); // local file
lv.load("http://www.cs.uiowa.edu/~slonnegr/flash/data"); // web site

3. Notification of completed loading.
lv.onLoad = function(success)
{ trace("Load Complete: " + success); }

The Boolean parameter success will be true if the load was successful.

4. Display the values.
The names in the data file become instance variables in the LoadVars object lv.

trace(lv.username);

Example: LoadVars.fla
Place two buttons on the stage with the labels LOADVARS and SHOWVARS and
the instance names load and show.
Enter the following ActionScript code at KeyFrame 1.

var ready = false;
load.onRelease = function()
{

lv = new LoadVars();
lv.load("data"); // OR
// lv.load("http://www.cs.uiowa.edu/~slonnegr/flash/data");

lv.onLoad = function(success)
{

trace("Load Complete: " + success);
ready = success;

}
}
show.onRelease = function()
{

if (ready)
{

trace(lv.message); trace(lv.color);
trace(lv.passwd); trace(lv.username);

}
else trace("Variables not loaded yet.");

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 84

Output When Buttons Pressed in Correct Order
Load Complete: true
Hello
blue
lalala
Ken

Output When Buttons Pressed in Reverse Order
Variables not loaded yet.

The load is "successful" even if the data file has an incorrect file. It is unsuccessful only
if the file is missing.

Output When LOADVARS Button Pressed and File Does Not Exist
Load Complete: false
Error opening URL "file:///Cornfed/Users/slonnegr/Desktop/CurrentFlash/data"

Sending Data
Server programs expect data to be sent to them as name-value pairs separated by
ampersands.
For a GET request the parameter pairs go at the end of the URL.
For a POST request that parameters go in the body of the request.

Sending the Request

1. Create a LoadVars object.
sendVars = new LoadVars();

2. Store the pairs as instance variables in the new object.
sendVars.username = "Claude";
sendVars.age = 17;

3. Send the request.
sendVars.send(url, "_self", "GET");

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 85

Example: SendData.fla
Enter the following ActionScript code at KeyFrame 1.

sendVars = new LoadVars();
sendVars.username = "Claude";
sendVars.age = 17;
sendVars.color = "gray";

sendVars.send("http://r-lnx233.cs.uiowa.edu:8888", "_self", "GET");
OR

sendVars.send(
"http://webdev.divms.uiowa.edu/slonnegr-tomcat4/ShowParams",
"_self", "GET");

When the request is sent to a Java server program running at port 8888 on the computer
r-lnx233.cs.uiowa.edu, the result is the following web page.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 86

When the request is sent to a Java Servlet running on the computer webdev.divms.uiowa.edu,
the result is the following web page.

I could not get a POST request to work correctly.

Shared Objects
Flash has a mechanism that allows an executing Flash movie to store and/or retrieve
limited amounts of data on the user's computer similar to the way browser cookies
store data for web pages.
Some possible uses of shared objects:

• Store the user name and password on the local computer so it need not be typed
by the user each time it is requested.

• Store the high scores from the games played by the user on this machine.
• Store user preferences between sessions.
• Store local copies of data obtained from a web site so that web accesses can be

minimized.

The process begins with the creation of a StoredObject object using the class method
getLocal.

var so : SharedObject = SharedObject.getLocal("foobar");
or

var so : SharedObject = SharedObject.getLocal("foobar", "/");
In the first version, the information stored can be accessed only by the same executing
Flash movie.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 87

In the second version, the information stored can be accessed by all executing
Flash movies on a particular computer.
By specifying other path names, accessibility falls between these two extremes.

The information to be stored and retrieved is accessed through an instance variable data
belonging to the SharedObject object.

Example
Create a Flash document SharedObjectSave.fla with the following code at KeyFrame 1.

var so:SharedObject = SharedObject.getLocal("foobar","/");
so.data.nums = new Array(121, 143, 165, 187);
so.data.isHungry = false;
so.data.userName = "Claude";
so.data.ob = { x:33, y:55, z:77};
so.flush();

The flush command forces the values to be saved locally, but closing the swf file will have
the same effect.

Create another Flash document SharedObjectRecall.fla with the following code at
KeyFrame 1.

var so : SharedObject = SharedObject.getLocal("foobar","/");
trace(so.data.nums);
trace(so.data.isHungry);
trace(so.data.userName);
trace(so.data.ob.x);
trace(so.data.ob.y);
trace(so.data.ob.z);

Output
121,143,165,187
false
Claude
33
55
77

Observe that information is stored in the local file using name-value pairs similar
to attributes for the property data of the SharedObject object.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 88

All the information stored in a particular SharedObject can be removed using the clear
instance method.

so.clear();

Example: SharedObjectLogin.fla
Create two input text fields with the instance names myLogin and myPasswd and label
them appropriately.
Create four button with instance names saveButton, loadButton, clearButton, and
resetButton and with labels "Save", "Load", "Clear", and "Reset", respectively.
Enter the following ActionScript code at KeyFrame 1.

var mySO:SharedObject = SharedObject.getLocal("myCookie");
saveButton.onRelease = function()
{

mySO.data.myLoginData = myLogin.text;
mySO.data.myPassword = myPasswd.text;
mySO.flush();

}
loadButton.onRelease = function()
{

myLogin.text = mySO.data.myLoginData;
myPasswd.text = mySO.data.myPassword;

}
clearButton.onRelease = function()
{

mySO.clear();
}
resetButton.onRelease = function()
{

myLogin.text = "";
myPasswd.text = "";

}

When this movie is executed, we must click in each of the text fields before typing.
The problem of automatically moving the focus to the first text field and using the
tab key to move from field to field seems to have no easy solution.
Here is a solution using the left and right arrow keys to put the focus in one or the
other text field. It makes use of the Selection class.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 89

Enter the following ActionScript code above the previous code.

var listener : Object = new Object();
listener.onKeyDown = function()
{

if (Key.isDown(Key.LEFT))
{

Selection.setFocus(myLogin);
}
if (Key.isDown(Key.RIGHT))
{

 Selection.setFocus(myPasswd);
}

}
Key.addListener(listener);

Creating Text Fields Dynamically
The MovieClip class has an instance method that can be used to create a text field
dynamically.

createTextField(instanceName : String,
 depth : Number,
 x : Number, y : Number, // position of upper-left corner
 width : Number, height : Number) : TextField

A TextField object has a number of properties that can be altered to customize the text field.
Here are some of them.

Property Default Value
type "dynamic"

border false
background false

multiline false
embedFonts false

selectable true
wordWrap true

variable null
maxChars null

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 90

A text field created using the createTextField method receives a default TextFormat
object with the following settings (not default values for TextFormat).

Property Setting Comments
font "Times New Roman" "Times" on Mac OS
size 12

color 0x000000
bold false
italic false

underline false
url "" hyperlink for text in field

target "" _self, _blank
align "left" "center, "right", "justify"

leftMargin 0
rightMargin 0

indent 0
leading 0

blockIndent 0
bullet false

kerning false
display block

tabStops [] empty array

These values my be altered by creating a new TextFormat object, defining values for
some of the properties, and then attaching the TextFormat object to the TextField object.

createTextField("myTF", 99, 100, 50, 300, 40);
myTF.text = "Nobody goes there anymore. It’s too crowded.";

myFmt = new TextFormat();
myFmt.size = 24;
myFmt.color = 0x00ffff; // cyan
myFmt.bold = true;
myTF.setTextFormat(myFmt);

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 91

Example: FlyingText.fla
This Flash document creates and array of words that are placed into individual dynamic
text fields, which are created in MovieClip objects named word0, word1, word2, and so on.
The kth MovieClip object has an instance variable scale that ranges from -k*200 to 300 by
having 10 added as each frame is entered. When the scale value is between 10 and 300 the
word shows on the stage scaled by that value so that the word appears to be moving
toward the front. When scale reaches 300, the MovieClip object is made invisible.
Enter the following ActionScript code at KeyFrame 1.

words = "Multimedia,Web,Programming,with,Flash";
wordList = words.split(",");
createAllWords(wordList);

function createAllWords(wordList)
{

for (var k=0; k<wordList.length; k++)
{

mc = createWord(k, wordList[k]); // create movie clip with this word
mc._x = Math.random()*(Stage.width-300)+150;
mc._y = Math.random()*(Stage.height-100)+50;
mc._xscale = mc._yscale = 0;
mc.scale = 0-k*200; // set scale variable to a nonpositive amount

}
}

function createWord(n, word)
{

createEmptyMovieClip("word"+n, n);
mc = this["word"+n];
myFormat = new TextFormat();
myFormat.font = "Arial";
myFormat.color = 0x000000;
myFormat.size = 24;
myFormat.align = "center";
myFormat.bold = true;
mc.createTextField("myTextField", 1, -100, -20, 200, 40);
mc.myTextField.text = word;
mc.myTextField.embedFonts = true;
mc.myTextField.setTextFormat(myFormat);
return mc;

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 92

onEnterFrame = function()
{

moveWords();
}

function moveWords()
{

for (var k=0; k<wordList.length; k++)
{

mc = this["word"+k];
mc.scale = mc.scale + 10; // increase scale of this movie clip
if (mc.scale > 300)
{ // hide movie clip when scale is too big

mc._visible = false;
}
else if (mc.scale > 0)
{ // set scale of movie clip to scale when positive

mc._xscale = mc.scale;
mc._yscale = mc.scale;

}
}

}

Flash Built-in Components
Flash has three kind of components, pre-built and compiled Movie Clips, that we can
use in our documents.

Data Components
Playback Components
User Interface Components

Component Panel accessed using Window ➜ Components (ctrl+F7).
We concentrate on the User Interface Components only.

Accordion
Alert
Button
CheckBox
ComboBox
DataGrid
DateChooser
DateField

Label
List
Loader
Menu
MenuBar
NumericStepper
ProgressBar
RadioButton

ScrollPane
TextArea
TextInput
Tree
UIScrollBar
Window

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 93

Example: Form.fla
This example uses Flash Components to build a form similar to what can be done
with HTML form tags.
TextInput
Drag a TextInput Component onto the stage, select it, and give it the instance name
username.
Open the Properties Panel (ctrl+F3) and select its Parameters tab.

Option Default
editable true

password false
text none

Place a Static text field "Enter Name:" next to the TextInput Component as a label.
Repeat this process for a password field, except call the instance passwd and set the
password option to true.
Retrieving TextInput data:

trace(username.text);
trace(passwd.text);

CheckBox
Drag three CheckBox Components onto the stage, giving them instance names check1,
check2, and check3.
Open the Parameters tab of the Properties Panel.

Option Default
label CheckBox

labelPlacement right
selected false

Enter labels Apple, Banana, and Peach for the three CheckBox Components.
Retrieving the checked values:

fruit = new Array();
for (k=1; k<=3; k++)
{

ch = eval("check"+k);
if (ch.selected)
{

fruit.push(ch.label);
}

}
trace(fruit);

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 94

RadioButton
Drag three RadioButton Components onto the stage, giving them instance names
red, green, and blue.
Open the Parameters tab of the Properties Panel.

Option Default
data none

grouptName radioGroup
label RadioButton

labelPlacement right
selected false

Change the groupName for all three buttons to color.
Change the label values to Red, Green, and Blue.
Change the data values to 0xff0000, 0x00ff00, and 0x0000ff.
Retrieving the chosen RadioButton's data:

trace(color.selectedData);
if (red.selected)
{

trace(red.data);
 }

List
Drag a List Component onto the stage, giving it the instance name city.
Open the Parameters tab of the Properties Panel.

Option Default
data []

labels []
multipleSelection false

rowHeight 20
Change multipleSelection to true.
Double click on the labels value ([]) and enter these value (using the + button).

Berlin
Chicago
Dublin
London
New York
Paris
Rome
Vienna Click OK.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 95

Double click on the data value ([]) and enter these value (using the + button).
THF
ORD
DUB
LHR
NYC
PAR
ROM
VIE Click OK.

Retrieving the selected information:
cities = city.selectedItems; // an array
for (k=0; k<cities.length; k++)
{

trace(cities[k].label+":"+cities[k].data);
}

TextArea
Drag a TextArea Component onto the stage, giving it the instance name message.
Change its width to 200 and its height to 80.
Open the Parameters tab of the Properties Panel.

Option Default
editable true

html false
text none

wordWrap true
Change the value of text to "Message contents.".
Place a Static text field above the TextArea with the label "Please leave your message here.".
Retrieving TextArea data:

trace(message.text);

Button
Drag two Button Components onto the stage, giving them the instance names submit
and reset.
Open the Parameters tab of the Properties Panel.

Option Default
icon none
label Button

labelPlacement right
selected false
toggle false

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 96

Change the label value for the two buttons to Submit Query and Reset.
Responding to the Buttons:

submit.onRelease = function()
{

trace(username.text);
trace(passwd.text);
trace(color.selectedData);
if (red.selected)
{ trace(red.data); }
fruit = new Array();
for (k=1; k<=3; k++)
{

ch = eval("check"+k);
if (ch.selected)
{ fruit.push(ch.label); }

}
trace(fruit);
cities = city.selectedItems;
for (k=0; k<cities.length; k++)
{ trace(cities[k].label+":"+cities[k].data); }
trace(area.text);

}

reset.onRelease = function()
{

resetForm();
}

function resetForm()
{

username.text = "Claude";
passwd.text = "catcatcat";
blue.selected = true;
check1.selected = false;
check2.selected = false;
check3.selected = true;
area.text = " Message contents.";

Call the resetForm method when the Flash document is first loaded to initialize
the Components on the stage.

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 97

Adding Components
Several web sites have Flash Components (and other things) that can be downloaded,
sometimes at no cost.

Example
Open the web site called Flash Exchange: Select Help ➜ Flash Exchange.
Choose Flash under Exchange By Product.
Choose Freeware as the License type and click Filter.
Scroll down to an item called Dice and click Download.
Sign in to your Adobe account (or create one).
You will find a file DiceComp4.mxp that has been downloaded.
Install the new Component.

Select Help ➜ Manage Extensions....
Click the Install icon in the Extension Manager window.
Navigate to the file DiceConmp4.mxp and click Install or Open.

Example: Components.fla
This Flash document illustrates using several more of the Flash Components and
using the new Dice Component that we just installed.

ComboBox
Drag a ComboBox Component onto the stage, giving it the instance name myCombo.
Open the Parameters tab of the Properties Panel.

Option Default
data []

editable false
labels []

rowCount 5
The ComboBox may be populated the same way as the List Component.
As an alternative, both ComboBox and List can be populated dynamically.

myCombo.removeAll();
myCombo.addItem("Macromedia", "http://www.macromedia.com");
myCombo.addItem("Adobe", "http://www.adobe.com");
myCombo.addItem("Apple", "http://www.apple.com");
myCombo.addEventListener("change", doChange);
function doChange(evt)
{ getURL(evt.target.selectedItem.data);

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 98

}
DateField
Drag a DateField Component onto the stage, giving it the instance name date.
Open the Parameters tab of the Properties Panel.

Option Default
dayNames [S,M,T,W,T,F,S]

disabledDays []
firstDayOfWeek 0

monthNames [January,February,...,December]
showToday true

NumberStepper
Drag a NumberStepper Component onto the stage, giving it the instance name num.
Open the Parameters tab of the Properties Panel.

Option Default
maximum 10
minimum 0
stepSize 1

value 0
Change maximum to 100, minimum to 2, stepSize to 2, and value to 50.

Dice
Drag a Dice Component onto the stage, giving it the instance name die.
Open the Parameters tab of the Properties Panel.

Option Default
colArr []

cornerColor 0xA9A9A9
dotColor 0x333333
DiceNum 3
IsJumping true

Drag a Button Component onto the stage, giving it the instance name submit and
the label Submit. Enter the following ActionScript code to respond to the button.

submit.onRelease = function()
{

trace("ComboBox:" + myCombo.value);
trace("Date: " + date.selectedDate);
trace("Number: " + num.value);
trace("Die: " + die.DiceNum);

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 99

Sample Output

ComboBox:http://www.apple.com
Date: Fri Dec 21 00:00:00 GMT-0600 2007
Number: 96
Die: 3

Example: SendForm.fla
This Flash document produces the same form used in Form.fla, but when the submit
button is pressed, the data is collected into a LoadVars object and sent to a Java Servlet
that displays all the parameters and values in a web page.
Enter the following ActionScript code at KeyFrame 1.

submit.onRelease = function()
{

send = new LoadVars();

send.username = username.text;
send.passwd = passwd.text;
send.color = color.selectedData;

fruit = new Array();
for (k=1; k<=3; k++)
{

if (eval("check"+k).selected)
{

fruit.push(eval("check"+k).label);
}

}
send.fruit = fruit;

cities = city.selectedItems;
cityCodes = new Array();
for (k=0; k<cities.length; k++)
{

cityCodes.push(cities[k].data);
}
send.city = cityCodes;

send.message = area.text;

send.send("http://webdev.divms.uiowa.edu/slonnegr-tomcat4/ShowParams",
 "_self", "GET");

}

Flash 8 Lecture Outline Copyright 2008 by Ken Slonneger Page 100

The snapshot below shows the web created by submitting the form.

