
Tutorial on C Language
Programming

Teodor Rus

rus@cs.uiowa.edu

The University of Iowa, Department of Computer Science

Introduction to System Software – p.1/64



Tutorial on C programming

C program structure:

Data structure

Control structure

Program structure

Introduction to System Software – p.2/64



Data structures

Predefined data types:
integer (int), small integers (short), large integers
(long)
real numbers (float), large real numbers (double)
character data (char)

User defined data types using type constructors array,
record, pointer, file

Introduction to System Software – p.3/64



Declarations

A data object of a defined type T is declared using the
construct of the form T data where T is a type expression
and data is the data object name

Example:

int x declares x an object of type integer

short x declares x an object of type small integer

long x declares x an object of type large integer

float x declares x an object of type real

double x declares x an object of type large real

char x declares x an object of type character

Introduction to System Software – p.4/64



Definitions

An object of a user defined type T is constructed using
one of the type constructors struct, [], *, FILE that takes
as arguments objects of already defined types.

A new user defined type T is constructed using the
meta-constructor typedef and a type or a type
constructor

Introduction to System Software – p.5/64



Record type definition

A record type is defined using the struct constructor
following the template:

struct TypeName
{
component1;
component2;
component3;
}

Components are object declarations of the form T
ObjName;

Note: TypeName is an abstraction

Introduction to System Software – p.6/64



Record object declaration

An object of type TypeName is obtained by the
declaration

TypeName MyRecord

One can put together the definition and the declaration
getting:

struct TypeName
{
component1;
component2;
component3;
} MyRecord;

Introduction to System Software – p.7/64



Example record

Example of a record type definition and declaration is:

struct Data
{
int Day;
int Month;
int Year;
} MyData, *MyPT, MyArray[Max];

Note: type expressions are obtained by combining the
type constructors struct, *, [], in a well defined manner

Introduction to System Software – p.8/64



Reference to record components

MyData.Year, MyData.Month, MyData.Day are
references at the components of the data object
MyData

MyPT− > Y ear, MyPT− > Month, MyPT− > Day are
pointer reference to the same components.

Note, we need to use MyPT = &MyData before this
reference make sense; i.e.,
MyPT− > Y ear ≡ (∗MyPT ).Y ear.

Introduction to System Software – p.9/64



Memory representation of records

Consider the following definition and declarations:
struct example

{

int x;

int *y;

} Obj, *PtObj;

Introduction to System Software – p.10/64



Memory representation

Memory representation of Obj is in Figure 1

integer address
integer

Figure 1: Record memory representation

Introduction to System Software – p.11/64



Memory representation of PtObj

This is shown in Figure 2

integer address
integer

?

integer

Figure 2: Pointer to record memory representation

Introduction to System Software – p.12/64



Facts about records

To give few important facts about records, assume that
PtObj = & Obj has been executed. Then we have:

Obj.x is the integer x; PtObj− > x is the integer x

Obj.y is the (integer) address y; Obj− > y is the address y;

+ + PtObj− > x increments x not PtObj; (+ + Pt)− > x increments
PtObj before accessing x; (PtObj + +)− > x increments PtObj after
accessing x

∗PtObj− > y fetches whatever y points to (an integer);
∗PtObj− > y + + increments y after accessing whatever it points to
(this is an address operation); (∗PtObj− > y) + + increments
whatever y points to (this is an integer operation);

Introduction to System Software – p.13/64



Array data type

A unidimensional array of n objects of type T is defined
by

T UniName[n]

Note, this is both a definition and a declaration

A bidimensional array of m × n objects of type T is
defined by

T BidimName[m][n]

The element i of the array UniName is referenced by
ArrayName[i]. Note, 0 <= i < n

Examples: int x[20], struct example MyArray[100][100]

Introduction to System Software – p.14/64



Array memory representation

The indices of the elements of an unidimensional array
of size n are 0, 1, . . ., n-1
The elements of a bidimensional array
BidimName[m][n] are stored in memory on a row-major,
i.e., they are:
BidimName[0][0], BidimName[0][1], ... BidimName[0][n-1]

BidimName[1][0], BidimName[1][1], ... BidimName[1][n-1]

BidimName[2][0], BidimName[2][1], ... BidimName[2][n-1]

...

BidimName[m-1][0], BidimName[m-1][1], ... BidimName[m-1][n-1]

Introduction to System Software – p.15/64



Union data type

Unions are records with variable fields like in Pascal

Example:

union UniName
{
int ival;
float fval;
char *pval;
} uval, *p;

The variable uval may have as value an integer, a real,
or a pointer to a character.

Only one of the components is the value hold by the
uval

Introduction to System Software – p.16/64



Reference to union components

The elements of a union are referenced in the same
way as elements of a record (struct) are referenced

The memory representation of variable uval will be
large enough to accommodate any of the values that
are used in its definition

It is the programmer’s task to provide a discriminant that
will show what component of a union is in the variable
uval at a given time.

Introduction to System Software – p.17/64



Example of a union usage

The symbol table entry of a symbol table used by a
compiler:
struct SymTabEntry

{
char *name;
int flags;
int stype;
union

{
int ival;
float fval;
char *pval;
}sval;

} SymTab[MaxSymb], *PtSymTab[MaxSymb];

Introduction to System Software – p.18/64



Reference to union components

SymTab[i].Object and PtSymTab[i]− > Object, where
Object ∈ {∗name, flags, stype, sval}

are references to symbol table element components.

Introduction to System Software – p.19/64



Pointer data type

Every object has an address (name) and a value

An object of type pointer has as its value the address of
an object of a given type

An object of type pointer is defined by the construct

T *PtName;

where * show that PtNamed is a pointer and T shows
the type of object address it may hold

Introduction to System Software – p.20/64



Example pointers

int x, z; /* x and z are variables of type integer */
int *y, *w; /* y and w are variables of type pointer to
integer */
char v, *p; /* p is a variable of type pointer to character */

Address of an object x of type T is obtained by the
operator &, i.e., is &x

y = &x is a valid assignment while y = x is not

Introduction to System Software – p.21/64



Pointer references

direct by name, indirect by *name

The name of a variable of type pointer references the
address of the object it holds. Hence, w = y is valid but
w = p is invalid

Dereferencing of a variable of type pointer leads us to
the value hold in the object whose address is hold by
the pointer. Hence, (*y) is the integer whose address is
in y

Operation on a variable of type pointer (such as y) are
address type operations

Operations on the value of the objects whose
addresses are hold by pointers (such as (*y)) are data
type operations

Introduction to System Software – p.22/64



File data type

A file is a potentially infinite stream of objects
(characters, integers, reals, strings, arrays, etc)

A file is described by descriptor that shows:
type of the objects it contains
order relation among its components
access method used to file components

In C-language a file is specified by a name and a
file-descriptor

File name is user defined
File descriptor is obtained from the system using the
declaration FILE *fp;

Introduction to System Software – p.23/64



Operations with file

The main operations on a file area: open, doio, close

File open links the file abstraction defined in the
program with the physical media where the file objects
are stored. In C this is done by

fp = fopen(name,mode), where mode is "w", "r" or "rw"

File close removes the links established by open.

I/O operations: printf, fprintf store objects in the file, and
scanf and fscanf access objects in a file

printf, fprintf, scanf, fscanf have a formate that can be
learn by inspecting the man page of these functions

Introduction to System Software – p.24/64



User defined types

Programmers may define their own types using typedef
construct

The usage pattern is

typedef TypeDefinition TypeName

where TypeDefinition is the type expression defining the
new type and TypeName is the name of the new type

Objects of type TypeName are then declared as usual

TypeName can also be used as component of various
type expressions using constructors struct, [], *, and
FILE.

Introduction to System Software – p.25/64



Examples

typedef int LENGTH; /* LENGTH is a new type */
LENGTH len, maxlen, *L[]; /* variable of type LENGTH */

typedef char *string; /* string is synonymous to char * */ string p,
lineptr[L]; /* These are variable of type string */

typedef struct node

{

char *value;

int count;

struct node *Left;

struct node *Right;

} TreeRoot, *TreePTR;

TreeRoot a; /* a is a variable of type TreeRoot */
TreePTR b; /* b is a variable of type TreeRoot * */

Introduction to System Software – p.26/64



Control Flow Structures

Introduction to System Software – p.27/64



C language computation units

Assignment statements

Block statements: {statement1; ... ;statement}

Control statements: branching and looping statements

Function calls;

Introduction to System Software – p.28/64



Assignment statement

Syntax: identifier = expression;

Semantics: evaluate expression to val and then
assign val as the value of identifier

Note:

Type of val should be the same as the type of
identifier

Peculiarities: id++ is equivalent to id = id + 1 and
id- - is equivalent to id = id - 1

C expressions are arithmetic or logic; but assignment
statements are also expressions.

Introduction to System Software – p.29/64



Branching statements

if-statements

if-else statement

switch-statement

break-statement

continue-statement

unconditional jump statement

Introduction to System Software – p.30/64



If-statement

Syntax: if (expr) statement; where expr is
boolean

Semantic: evaluate expression expr to val; if val is true
execute statement, otherwise execute next statement
of the program

Introduction to System Software – p.31/64



If-else statement

Syntax: if (expr) statement1; else
statement2;

Semantics: evaluate expression expr to val; if val is
true execute statement1 otherwise execute
statement2; in any case control flows to the next
statement of the program

Introduction to System Software – p.32/64



Switch statement

Syntax:

switch (expr) /* expr is a boolean expression */
{
case C1: {statement0;break}
case C2: {statement1;break}
...
default: {DefaultStatement;break}
}

Semantic: evaluate expr to val; if val is equal to one of
the case constants C1, C2, . . ., the associated
statement is executed; otherwise DefaultStatement is
executed. Note, default clause is optional; if not there
and val is not equal with any case constant, no action
take place

Introduction to System Software – p.33/64



Break statement

Syntax: break;

Semantic: terminates the execution of a loop or a switch

Introduction to System Software – p.34/64



Continue statement

Syntax: continue;

Semantic: terminates the current iteration of a loop

Introduction to System Software – p.35/64



Unconditional jump statement

Syntax: goto Label; where Label:Statement;
belongs to the program

Semantic: forces control to go to the Statement;

Introduction to System Software – p.36/64



Looping statements

while-statement

do-while statement

for-statement

Introduction to System Software – p.37/64



While statement

Syntax: while (expr) Statement; where expr is
boolean

Semantic: evaluate expr to val; if val is true
Statement is execute and while statement is repeated;
if val is false control flows to the next instruction of the
program

Note: true boolean values are any integer different from zero;

false boolean value is the integer zero.

Introduction to System Software – p.38/64



Do-while statement

Syntax: do Statement; while (expr);

Semantic: equivalent to

Statement;
while (Expr) Statement;

Note: while statement executes zero or more iterations of the

loop; do-while statement executes one or more iterations of

the loop.

Introduction to System Software – p.39/64



For statement

Syntax: for(expr1; expr2; expr3) Statement;

Semantic: equivalent to

expr1;
while (expr2)

{
Statement;
expr3;
}

Note: any of the expressions expr1, expr2, expr3 may
be omitted; if expr3 is omitted it is interpreted as true,
hence various sorts of infinite loops can be performed

Introduction to System Software – p.40/64



Block statement

Syntax:

{

Declaration list;

Statement list;

}

Declaration list:

Declaration;

Declaration list Declaration;

Statement list:

Statement;

Statement list Statement;

Semantics: statements in Statement list are executed in
sequence in the environment provided by Declaration
list

Introduction to System Software – p.41/64



Function definition

Syntax:

type name (formal parameter list)
{
Declaration list;
Statement list;
return result
}

Semantic: a function definition specifies the
computation defined by the Statement list in the
environment defined by formal parameter list and
Declaration list and return a result of type type

Introduction to System Software – p.42/64



Example

/* power: raises the value of variable base to /*

/* the power values of variable n, n >= 0 */

int power (int base, int n)

{

int i, p;

p = 1;

for (i = 1; i <= n; i++)

p = p * base;

return p;

}

Note: comments in C are enclosed in /* ... */ Use comments outside of func-

tion definition; formate function body such that the text indentation allows

reader to understand it.
Introduction to System Software – p.43/64



Function declaration

Syntax: type name (type1, type2, ...) where
type is the function type (i.e., the type of result
returned by the function) and type1, type2, ...
are the types of the formal parameters

Semantics: declare name as the name of a function
whose arguments are of types type1, type2, ...
and whose result if of type type

Note: since a function declaration is a declaration it must be

provided in the declaration list of the statement that uses it.

Introduction to System Software – p.44/64



Function call

Syntax: identifier = name (actual
parameters);

identifier must have the same type as the type
specified in the definition and the declaration of name
Actual parameters must expressions whose values
are of the types that type1, type2, ...
specified in the definition and the declaration of name

Semantic: execute computation encapsulated in the
definition of function name() in the environment
provided by actual parameters and return the result.

Example: int x; int power(int, int);...; x =
power(2,3); ...

Introduction to System Software – p.45/64



Parameter passing

Actual parameters are passed by value, except arrays, which

are passed by reference.

Introduction to System Software – p.46/64



Remember

Arrays are transmitted by reference, i.e., the address of
the array variable is transmitted.

To operate on the local elements of a function using
them as parameters to another function pointers need
to be transmitted at function call

Initialization of the pointers is required upon function
call.

Note that pointers are typed i.d., int *x, char *x, struct
name *x are different pointers.

Introduction to System Software – p.47/64



Function memory representation

A function is represented in memory by two components:

Execution code, i.e., memory image of executable
statements

Activation record

Introduction to System Software – p.48/64



Activation record

Activation record is a data structure constgructed by the
compiler and contains:

Function return value;

Static link: a pointer to the activation record of the function that
contains the definition of the function. In C this is nill.

Dynamic link: a pointer to the activation record of the function that
contains the call of the function

Stack extension value

Return address

List of locations for actual parameters

Local variables of the function

Introduction to System Software – p.49/64



Structure of a function in memory

Figure 3 shows the structure of a function in memory:

Global variables Executable code Activation record
r

?

r

?

Figure 3: Function memory representation

Introduction to System Software – p.50/64



Structure of a C language program

A C program is composed of four componentgs:
Macro definitions (optional)
Global declarations (optional)
Main function (mandatory)

Other functions components of the program (optional)

Introduction to System Software – p.51/64



Note

A C program has four components: macro definitions,
global declarations, main() function, and other
functions. Only main() function is mandatory.

A C language program is executed by the operating
system by calling its functions main().

A C language program is implicitly declared to the
system by the presence of the unique names, main()

Introduction to System Software – p.52/64



Macro definition component

Syntax: sequence of macro-operations of the form:

#define name value

#include "filename"

#include <filename>

Semantics:
#define name value allows programmer to use
name in the program while compiler replaces it with
value which can be any string of characters.
#include "filename" allows the programmer to
develop a program on various separate files.
#include <filename> allows the programmer to
make use of files contained in various libraries of the
system

Introduction to System Software – p.53/64



Global declarations

Syntax: declarations of variables that occur outside of
the function components of the program.

Semantic: all global variables are accessible to all
function components of the program

Introduction to System Software – p.54/64



Main function of the program

Syntax:

main (int argc, char *argv[])
{
Declaration list;
Statement list;

}

Note: since a function may have no arguments
main() { Body } is also valid.

Introduction to System Software – p.55/64



Program execution

A program is executed by the system calling the
function main() as consequence of a command given by
the programmer. This command has the form
%name arg1 arg2,...

argc is an integer variable where the number of the
arguments used in the execution command is stored

argv[] is an array of pointers to strings where the
arguments arg1, arg2, ... of the execution command are
stored.

Introduction to System Software – p.56/64



Other function components

Syntax: any function definition

Semantic: function components of a program may be
called by the main() or among themselves. However, in
order for main() or any other function to call a function
f() the following must be done:

f() must have a definition accessible to main() and to
other functions that intend to call it
f() must be declared in main() and in the functions
which intend to call it

Introduction to System Software – p.57/64



Example program

#include <stndio.h>

main ()

{

int C;

C = gethchar();

while (C != EOF)

{

putchar(C);

C = getchar();

}

}

This program copies the standard input to the standard out-

put

Introduction to System Software – p.58/64



Bonus point assignment

Rewrite th program such that it will copy a file f1 into another

file f2; files f1 and f2 should be given in the command line.

Introduction to System Software – p.59/64



Program memory representation

C compiler maps a C program into three segments called
data, text and stack as seen in Figure 4

Data Text Stack

Memory image
�

�
�

�
�

�� ?

H
H

H
H

H
Hj

Figure 4: Memory image of a C program

Introduction to System Software – p.60/64



Data segment

Contains all global data of the program

Data segment is constructed by the compiler

Introduction to System Software – p.61/64



Text segment

Contains all executable code of the program

Each function component of the Text segment has
access to the global data in the Data segment and to
the local data in the activation record of that function.

Introduction to System Software – p.62/64



Stack segment

Stack segment is dynamically generated by program
execution

When a function is called its activation record is pushed
on the stack segment

When a function return its activation record is popped
out from the stack segment

Introduction to System Software – p.63/64



Development of a C program

Use an editor to generate the file that contains the
program. Example, execute %vi mylms.c

Compile the C program in the file mylms.c using the
command % cc [Options] mylms.c

If mylms.c contains a C program syntactically correct
the result of the compilation is an executable file called
a.out.

If you want to give the name mylms (or any other name)
to the executable use option -o mylms in cc command

Test the program on the test data; use dbx to help this

Read the documentation for vi, cc, dbx using manual
page

Introduction to System Software – p.64/64


	Tutorial on C programming
	Data structures
	Declarations
	Definitions
	Record type definition
	Record object declaration
	Example record
	Reference to record components
	Memory representation of records
	Memory representation
	Memory representation of PtObj
	Facts about records
	Array data type
	Array memory representation
	Union data type
	Reference to union components
	Example of a union usage
	Reference to union components
	Pointer data type
	Example pointers
	Pointer references
	File data type
	Operations with file
	User defined types
	Examples
	Control Flow Structures
	C language computation units
	Assignment statement
	Branching statements
	If-statement
	If-else statement
	Switch statement
	Break statement
	Continue statement
	Unconditional jump statement
	Looping statements
	While statement
	Do-while statement
	For statement
	Block statement
	Function definition
	Example
	Function declaration
	Function call
	Parameter passing
	Remember
	Function memory representation
	Activation record
	Structure of a function in memory
	Structure of a C language program
	Note
	Macro definition component
	Global declarations
	Main function of the program
	Program execution
	Other function components
	Example program
	Bonus point assignment
	Program memory representation
	Data segment
	Text segment
	Stack segment
	Development of a C program

