
Attack-Defense Tree Based Security Analysis and Optimal Defense Synthesis for
System Design

Abstract
Attack-Defense Trees (ADTrees) are widely used in the secu-
rity analysis of software systems. In this paper, we introduce
a novel approach to analyze system architecture models via
ADTrees and to synthesize an optimal cost defense solution
using MaxSMT. We generate an ADTree from the system
architecture model with its possible attacks, possible and im-
plemented defenses. We analyze these ADTrees to see if
they satisfy their cyber-requirements. We then translate the
ADTree into a set of logical formulas, that encapsulate both
the logical structure of the tree, and the constraints on the
cost of implementing the corresponding defenses, such that
a minimization query to the MaxSMT solver returns a set of
defenses that mitigate all possible attacks with minimal cost.

1 Introduction

Software security has attracted worldwide attention as society
has grown increasingly dependent on computer-based sys-
tems. To address the security concerns of systems, many risk
analysis techniques have been introduced over the years in
order to identify potential system failure and mitigate risks
before the system is fielded. Attack trees [10] are a prominent
methodology to visually depict the security vulnerabilities
of a system. They have been used in the analysis of threats
against systems in the fields of defense and aerospace. Attack
trees capture attacks in a tree structure, where the root node
represents the attacker’s goal and child nodes refine the goal
with details involved in achieving the goal. Attack-defense
trees (ADTrees) [8] extend attack trees with the notion of
defenses against attacks, with the objective of reducing the
consequences of attacks. In an ADTree, defense and attack
nodes are distinguished node types, and in addition to refine-
ments of nodes via children of the same type of node, child
nodes can be counter-measures of the opposite kind of parent
node. Such trees are able to capture both the attacker and the
defenses of a system in an adversarial model, and as such,
can be used to analyze the sufficiency of attack mitigation

techniques of the system.

Implementing different defenses requires various amount
of effort, time, and money. A challenging problem is to select
a set of defenses that is able to mitigate all threats while in-
curring minimal cost of implementation. In this work, we use
MaxSMT solvers to synthesize a set of optimal-cost defenses
that mitigate all possible attacks on a system. A prototype was
implemented in a tool called VERDICT — in conjunction
with the model-based architectural analysis (MBAA) compo-
nent, model-based architectural synthesis (MBAS) calculates
a set of defenses for all known attacks at minimal cost. We
make the following contributions in this paper.

• We describe an algorithm that converts an AADL system
architecture model to an attack-defense tree.

• We describe an evaluation of these ADTrees in terms of
a set of cyber-requirements.

• We encode the ADTree along with the costs of imple-
menting defenses as a MaxSMT problem so that the
solver can find a least-cost defense solution that satisfies
all requirements.

• We present the analysis and synthesis features in the
VERDICT toolchain which provides an implementation
of the above functionalities.

Section 2 presents our specifications of attacks, defenses, and
attack-defense trees. Section 3 presents a translation of AADL
models to ADTrees and our method of analyzing whether an
ADTree satisfies its requirements. Section 4 describes the in-
teraction with the SMT solver in determining a minimum-cost
set of defenses for the system. Section 5 is a presentation of
our implementation in the VERDICT toolchain along with an
evaluation on a model of a delivery drone system. Section 6
discusses some related work and Section 7 discusses direc-
tions our work can move in the future along with a summary.

1

Severity Level Acceptable Level
of Risk

DAL Score Objective
(W/Inde-
pendence)

Catastrophic 1×10−9 A 9 66 (25)
Hazardous 1×10−7 B 7 65 (14)

Major 1×10−5 C 5 57 (2)
Minor 1×10−3 D 3 28 (2)

No Effect 1 E 0 0 (0)

Table 1: Mapping between the severity of consequence, ac-
ceptable level of risk, design assurance level (DAL), DAL
score (Score) and development objectives (with indepen-
dence).

Appendix A argues the soundness of our interaction with the
SMT solver.

2 Preliminaries

In this section, we formalize our problem and solution space.
We consider attacks from the MITRE Common Attack Pattern
Enumeration and Classification (CAPEC) library that targets
embedded systems and defenses (controls) from the National
Institute of Standards and Technology’s (NIST’s) 800-53 se-
curity standard. A toy drone example is used through the
paper to illustrate various features.

2.1 Attack and Defense Specification

This work is based on two standards drafted by the Radio
Technical Commission for Aeronautics (RTCA) — DO-326A,
the Airworthiness Security Process Specification and DO-
356A, the Airworthiness Security Methods and Considera-
tions — both providing guidance against threats to aircraft
systems. The standards specify the acceptable level of risk
corresponding to the level of severity of successful attacks.
The severity of successful attacks is categorized into 5 levels
based on their effects on the aircraft, crew, and passengers:
Catastrophic, Hazardous, Major, Minor, and No Effect. These
levels, along with the corresponding levels of risk acceptable
in the system, are presented in the first two columns of Table 1.
We represent by L the set of severity levels, and by ρ the set
of acceptable risk levels. The top-level event of an ADTree
represents the attacker’s goal, which is measured in terms
of confidentiality (C), integrity (I) and availability (A) of the
outports of the system. The attacker’s goal is to sabotage the
system by compromising its components. Attacks on compo-
nents are ultimately propagated to the outports of the system
through internal connections. The system fails if the CIAs of
its outports are compromised. To mitigate attacks, the system
designer has to implement defenses in components with vari-
ous degrees of rigor, which can prevent failure of the system.
The previously mentioned standards map the rigor of defense

implementation, called design assurance levels (DALs), to
a security consideration score or DAL score — columns 3
and 4 of Table 1. DAL A is the highest rigor defense and E
is the lowest. DALs originated in DO-178 and were reused
in DO-254. These standards were developed to ensure that
software and complex hardware were developed with enough
rigor and could be proved to be absent of bugs with poten-
tially severe consequences. To bring the system within an
acceptable risk level of attacks, and to prevent the system
from failing with the associated severity level, its develop-
ers need to implement the component to the respective DAL
score and meet appropriate development objectives from the
fifth column. For example, if the failure of software can have
a Catastrophic consequence, one must show compliance to 66
objectives as part of the software development process, 25 of
which need to be performed by independent developers. The
implementation of defenses incurs efforts and cost, which
increase with the DAL score, and the goal of this work is
to synthesize a set of defenses that mitigate all attacks at an
optimal (minimal) cost.

We will use CIA to denote the set consisting of the prop-
erties confidentiality (C), integrity (I) and availability (A)
(CIA = {C,I,A}), and δ, the set of possible DAL scores
(δ = {0,3,5,7,9}).

2.2 Attack-Defense Trees

ADTrees are rooted, labeled, finite trees that represent scenar-
ios of security attacks against a system, and the countermea-
sures taken against these attacks. The nodes of an ADTree are
either attack nodes — represented as red circles — or defense
nodes — represented as green rectangles, and the nodes are
labeled either with attack or defense goals, or with logical
gates that connect these goals. A node’s children represent
either refinements (represented by straight line edges) of the
same node type or countermeasures (dotted line edges) of the
opposite node type. Refinements can either be conjunctive,
(denoted in diagrams with an arc below the parent node) in
which case, all the refinements’ goals must be achieved for
the parent’s goal to be achieved; or disjunctive, where at least
one of the refined goals must be achieved for the parent’s goal
to be achieved. Non-refined nodes (leaves) are called basic
actions. The root of an ADTree represents the attacker’s goal,
which can be refined down to a logical formula over the basic
actions (leaves) by expanding on the refinements performed
by nodes (conjunctions and disjunctions).

Example 2.1. Consider the following model that abstracts a
simple drone. The model is represented using an architecture
diagram in Figure 1. A remote control allows the user to direct
the drone. The drone consists of a controller that implements
its logic, and a propeller that helps the drone move. As a secu-
rity measure, the drone consists of a backup controller which

2

Figure 1: The component diagram for the toy drone model

implements a much simpler logic than the main controller.
The user of the remote may invoke the single functionality of
the backup which brings the drone back to the location of the
remote.

A wireless connection connects the remote to the controller
and to the backup, both of which have a wired connection to
the propeller. Figure 2a shows the ADTree that models the
attacks and defenses of the drone system, supposing that we
care about the integrity of the drone’s propeller, that is, we
want the propeller to move as instructed by the remote, and
return back safely to the owner if that isn’t feasible. Consider
the following attacks:

1. Physical Theft Attack (CAPEC–507) on the remote.

2. A combination of a Software Integrity Attack (CAPEC–
184) on the controller, and an Identity Spoofing Attack
(CAPEC–151) on the backup controller.

Either Physical Access Control or System Access Control of
the remote can defend against Physical Theft, but CAPEC–
390 (Bypassing Physical Security) is a dependent attack that
becomes applicable once Physical Access Control is imple-
mented, and can only be defended against by implementing
System Access Control. Three defenses — Remote Attesta-
tion, Memory Protection, and Secure Boot — are necessary
for the controller to mitigate CAPEC-184 and Heterogeneity
alone implemented on the backup controller can protect it
against the identity spoofing attack.

In Figure 2b, we label the nodes, attacks, and defenses,
and also use the notation from our ADTree definition (Defini-
tion 2.1). We also give label R for the remote sub-system, C
for the controller, and B for the backup controller. All defenses
are implemented to DAL-score 5. �

We use an inductive definition of ADTree from [9].

Definition 2.1. An ADTree T is generated by the following

(a) ADTree of drone system

(b) ADTree of drone system - labeled

Figure 2: Example drone system

3

grammar.

T → T A | T D

T A→ bA(s,a) | ORA(T A, . . .T A) | ANDA(T A, . . .T A)

| CA(T A,T D)

T D→ bD(s,d,δ) | ORD(T D, . . .T D) | ANDD(T D, . . .T D)

| CD(T D,T A)

Superscripts A and D represent attack and defense entities
respectively. T represents terms or trees, OR encapsulates dis-
junctive refinements of a node, AND represents conjunctive
refinements of a node, and C encapsulates the action of a node
and its countermeasure. b represents basic actions — for at-
tack nodes, they are parameterized by a component and an
attack, and for defense nodes, they are parameterized by a
component, a defense, and implemented DAL-score. We de-
fine attack trees and defense trees as follows. An attack tree,
denoted T A, is an ADTree with root of type A and a defense
tree, denoted T D, is a tree with root of type D. We define a
function root that returns the root node of an ADTree. �

Defenses are implemented to a particular DAL-score, and
the defense nodes (that are basic actions) are parameterized
by this DAL-score, along with the component that they defend
and the defense itself. DAL-scores can only take values from
column 4 of Table 1.

Although our definition allows for any kind of ADTree, in
practice, we consider the root node of our ADTrees to always
represents an attack. This suits our goal of using ADTrees to
analyze the attacker’s actions.

An interesting feature of our ADTrees is that we allow
repetition of defense and attack nodes. That is, multiple bA

and bD nodes in our trees can have the same label ((s,a) or
(s,d,δ)). The only restriction we place is that when two bA or
bD nodes have the same label, their child-node structure must
be identical.

3 ADTree Analysis

In this section, we describe how our tool uses ADTrees to
analyze a system architecture modeled using AADL (Archi-
tecture Analysis and Design Language) [5], which provides a
framework and language for early analyses of a system’s ar-
chitecture with respect to performance-critical properties. Our
tool builds an ADTree from an AADL model, a specification
of possible attacks, possible defenses, implemented defenses,
and cyber-requirements to satisfy. This tree is evaluated in
terms of the likelihood of success of an arbitrary attacker,
given a set of defenses.

3.1 Defense Models

Within VERDICT, the analysis of the AADL model receives
information primarily from the Security Threat Evaluation
and Mitigation (STEM) component. STEM identifies possible
attacks, possible defenses and defenses implemented in the
components of the system. STEM provides this data in the
form of a defense model M with two types of relations: an
implemented defense model MI and an applicable defense
model MA.

A defense model M is a relation containing tuples that re-
late components of a system to defense–DAL-score pairs, and
attack–CIA pairs. Each tuple signifies possibly the applicabil-
ity of an attack to a component, and either the applicability
or implementation of a set of defenses to the same compo-
nent to respective DAL-scores. We distinguish 3 types of
defense models, and define 2 of them as follows. The third,
the synthesized defense model, is defined later.

1. An implemented defense model MI represents defenses
currently implemented in the system.

(s,a,γ,∆) ∈MI iff in component s, γ attack a

is applicable, and for each
(d,δ) ∈ ∆,defense d is
implemented to DAL-score δ

where s ∈ S,a ∈ A,γ ∈CIA,d ∈ D,δ ∈ DAL.
2. An applicable defense model MA represents defenses

applicable in the system.

(s,a,γ,∆) ∈MA iff in component s, γ attack a

is applicable, and for each
(d,δ) ∈ ∆,defense d is
applicable to DAL-score δ

In the defense models that it provides, STEM guarantees that
basic action nodes with the same labels have the same sub-
trees, as required by our mechanism in section 2.2.

Example 3.1. Consider the ADTree from Example 2.1 in
terms of the following cyber requirement:

q : (dout : I) with Major (1×10−5)

severity level

While the tree from Figure 2 models the applicable defense
model, we show two different implementations of defenses in
Figure 3.

The applicable defense model MA (Figure 2) consists of

4

(a) ADTree representing MI

(b) ADTree representing M′I

Figure 3: ADTree representing defense implementations of
the drone system

the following tuples

(Remote, CAPEC–507, I,

{(d1,5)}) ∈MA

(Remote, CAPEC–507, I,

{(d2,5)}) ∈MA

(Backup, CAPEC–151, I,

{(d3,5)}) ∈MA

(Controller, CAPEC–184, I,

{(d4,5),(d5,5),(d6,5)}) ∈MA

Figure 3a shows the ADTree from implementation MI.

(Remote, CAPEC–507, I,

{(d2,7)}) ∈MI

(Controller, CAPEC–184, I,

{(d4,9),(d5,7),(d6,5)}) ∈MI

3.2 ADTree Construction

The ADTree construction algorithm ADTree operates on the
following parameters:

1. mod, the AADL model of a system, that specifies ports
P, connections C, components S, and cyber-relations R
between ports of the system, where cyber relations are
internal to a component and specify how the CIA vulner-
abilities of inports propagate to the CIA vulnerabilities
of outports.

2. Q, the set of cyber requirements, where each cyber-
requirement q is a logical formula over (p,γ) atoms,
p ∈ P,γ ∈ CIA, with a corresponding level of severity
l ∈ L.

3. M, a defense model.

and returns the following output:

• ADTree T corresponding to the requirements in Q on
the AADL model mod considering attacks and defenses
in M

The mutually recursive functions ADTree_port and
ADTree_const from Figure 4 assist in constructing an
ADTree. The notation loc 7→ node indicates that the node
node is created at the location loc in the tree. An ADtree
for a single (p, γ) atom from requirement q is constructed
through the call ADTree_port(p, γ,M, root(new_tree)). The
function recursively scans through the ports within the archi-
tecture of the system, modeled in mod, while constructing
the ADTree. It calls ADTree_const when it encounters a

5

constituent which is either a component, a connection, or
a cyber-relation. ADTree_const calls DTree from Figure 5
which constructs a defense tree from a subset of the defense
model under consideration. Once an ADTree is constructed,
CrushTree, also from Figure 5, removes redundant nodes
from the tree.

ADTree(mod, Q, M) constructs an ADTree as follows:

1. For each requirement, q, for each (p, γ) ∈ q, call
ADTree_port(p, γ, M, root(new_tree)).

2. Combine each tree from the previous step using logical
attack nodes ANDA and ORA to create the ADTree corre-
sponding to q.

3. Combined the trees from each requirement using an ORA

node, and set the level of severity of the root of the tree
as the maximum of each of the trees combined from the
individual requirements.

4. Call CrushTree on the resultant tree.

Notice that our ADTree construction algorithm constructs
ADTrees without CD nodes. This is a restriction of our im-
plementation. However, we consider CD nodes in the rest of
the paper, for completeness of our approach in evaluating
and encoding ADTrees as MaxSMT queries for synthesizing
optimal cost solutions.

Example 3.2. Figure 1 shows the architecture diagram for
the drone model, which specifies most of the AADL model of
the drone system. They are completely specified as follows.

• Ports P: din and dout, rin and rout, cin and cout, bin
and bout,and pin1, pin2 and pout, — the inports and out-
ports of the drone system, the remote sub-system, the
controller, the backup controller, and the propeller, re-
spectively.

• Connections C: c1 between din and rin, c2 between
rout and cin, c3 between rout and bin, c4 between
cout and pin1, c5 between bout and pin2, and c6 be-
tween pout and dout.

• Components S: remote, controller, backup and
propeller.

• Cyber-relations R that connect the Integrity of the out-
port of each sub-system to the Integrity of all in-ports:
pin1 : I∧pin2 : I→ pout : I, rin : I→ rout : I, cin : I→
cout : I.

Using the following as inputs,

1. the specification of the model from above,
2. the cyber-requirements Q consisting of the single re-

quirement q : (dout : I) with Major severity level
3. either the applicable defense model from Example 2.1

or one of the implemented defense models from Exam-
ple 3.1

Input: p ∈ P, γ ∈CIA, M, Tree Location loc
Output: ADTree T
Algorithm ADTree_port(p, γ, M,
loc)
loc 7→ ORA (node*)
for all incoming constituents const to p do

Add child ADTree_const(const, γ, M,
root(new_tree)) to node*

end for

Input: const ∈ S∪C∪R, γ ∈ CIA, M, Tree Location
loc
Output: ADTree T
Algorithm ADTree_const(const, γ, M,
loc)

if const is a component or a connection with inport
pin and outport pout then
loc 7→ ORA (node*)
for all a ∈ A | (const,a,_,_) ∈M do

for all (const,a,γ,)∈M do
(const,a,γ,_) ∈ Da
D← CrushTree (DTree(Da))
if D is empty then

Add bA(const,a) as child of node*
else

Add CA(bA(const,a),D) as child of node*
end if

end for
Add an additional child to node* and set it as
loc
ADTree_port(pin, γ, M, loc)

end for
else if const is a relation F → pout : γ then
loc 7→ ORA (node*)
for all atom pin : γ ∈ F do
ADTree_port(pin, γ, M, root(new_tree))

end for
Connect all the new ADTrees using attack nodes
that correspond to the logical connectives in F

end if

Figure 4: Mutually recursive functions ADTree_port and
ADTree_const are used to construct an ADTree

6

Input: Set of tuples D
Output: Defense tree T D

Algorithm DTree(D)
Create an ORD (node*)
for all (const, a, γ, ∆) ∈ D do

Create an ANDD node (node#)
for all (d,δ) ∈ ∆ do

Add bD(const,d,δ) as a child of node#
end for
Add node# as child of node*

end for
Return the tree under node*

Input: ADTree T
Output: ADtree T ′

Algorithm CrushTree(T)
Scan T top-down, and

1. If an ORA/ORD node has a single child, replace the
node by its child

2. If an ORA/ORD has no child, remove the ORA/ORD

node

Figure 5: DTree is used to construct a defense tree from
defenses, and CrushTree crushes an ADTree by removing
unnecessary nodes

ADTree constructs either the ADTree from Figure 2b, Fig-
ure 3a, or Figure 3b, depending on the input defense model.�

3.3 ADTree Evaluation

An ADTree represents the goal of the attacker, and an eval-
uation of the tree specifies the likelihood of success of the
attacker in achieving this goal. We call the evaluation of the
tree its measure, and calculate it using the recursive function
M.

M(T) := match T with
| bA(s,a)→ 1

| bD(s,d,δ)→ 1e−δ

| ORA(T1, . . . ,Tn)→ max(M(T1), . . . ,M(Tn))

| ORD(T1, . . . ,Tn)→ min(M(T1), . . . ,M(Tn))

| ANDA(T1, . . . ,Tn)→ min(M(T1), . . . ,M(Tn))

| ANDD(T1, . . . ,Tn)→ max(M(T1), . . . ,M(Tn))

| CA(bA(s,a),T D)→ min(M(bA(s,a)),M(T D))

| CD(bD(s,d,δ),T A)→ max(M(bD(s,d,δ)),M(T A))

Basic attack nodes are always assigned a value of 1 for likeli-
hood of a successful attack. Assigning a number to the level

of attack is quite difficult and would hold true for only a short
period of time, and not for the lifetime of a system. Accord-
ing to [7], the issue with deciding the likelihood of various
attacks is that “the risk values may be different for different
researchers according to the information available and level
of analysis. Hence, more emphasis should be put on coun-
termeasures for threats which receive high priority.” Thus,
we chose to assume a worst-case likelihood for attacks (from
the point of view of defendeing the system) and give more
fine-grained scores for defenses.

3.3.1 Satisfaction

A cyber-requirement q specifies the severity level l of a CIA
of an outport of the system.

A defense model M corresponding to AADL model mod
satisfies q,

M ` q,

if M(Tq)≤ ρ where Tq = ADTree(mod,q,M) and ρ is the ac-
ceptable level of risk corresponding to l from Table 1. In this
case, we also say that Tq satisfies q, or Tq ` q. Intuitively, im-
plementing the defenses from M in mod results in an ADTree
whose attacks are mitigated. Satisfaction of a requirement
by a model (resp. ADTree) is naturally extended to a set of
requirements.

M ` Q if ∀q ∈ Q, M ` q

A tree constructed from MA satisfies its requirements, by
definition, while one constructed from MI may or may not.

Example 3.3. The following are the evaluations of the
ADTrees from our applicable and implemented defense mod-
els.

ADTree(mod,q,MA) = 1×10−5

ADTree(mod,q,MI) = 1×10−7

ADTree(mod,q,M′I) = 1

Thus, MA and MI satisfy q while M′I doesn’t. The following

7

presents the evaluation of some of the nodes from MA.

M(N15) = M(bD(R,d2,5)) = 1×10−5

M(N11) = M(CA(bA(R,390),N15))

= min(1,1×10−5) = 1×10−5

M(N7) = M(CD(bD(R,d1,5),N11)) =

max(1×10−5,N11) = 1×10−5

M(N4) = M(ORD(N7,N8))

= min(1×10−5,1×10−5) = 1×10−5

M(N3) = M(ANDA(N5,N6))

= min(1×10−5,1×10−5) = 1×10−5

M(N1) = M(ORA(N2,N3))

= max(1×10−5,1×10−5) = 1×10−5

An evaluation using the applicable defense model is always
within the level of severity corresponding to the requirement.
The evaluation of M′I shows that the implementation does
not succeed in stopping the attacker because the bypassing
physical security attack isn’t defended at all, and neither of
CAPEC–184 and CAPEC–51 are defended sufficiently. MI,
on the other hand, is able to satisfy the requirement. �

4 ADTree Synthesis

While the goal of analysis is to construct an ADTree from an
AADL model and determine whether the cyber-requirements
are satisfied (alternatively, whether the attacks corresponding
to the ADTree are mitigated), synthesis constructs an optimal
set of defenses based on a cost model for these defenses and
(possibly) on the currently implemented defenses.

We define the concepts of synthesized defense models, and
cost models.

• Synthesized Defense Model
A synthesized defense model MS is the set of optimal
defenses to implement, output by synthesis.

if (s,a,γ,∆) ∈MS, then for each (d,δ) ∈ ∆,

the implementation of
defense d to DAL-score δ

in s is part of the optimal
solution to mitigate
γ attack a

• Cost Model
The cost model C associates a cost with each component–
defense–DAL-score triple from the tuples in a defense
model. Given defense d, sub-component s, and DAL-
score δ, the cost of implementing d in s to δ is the non-
negative real number represented by C(s,d,δ).

C : S×D×DAL→ R≥0

We define the cost model of a defense model M as fol-
lows.

C(M) = ∀(s,a,γ,∆) ∈M, ∑
(d,δ)∈∆

C(s,d,δ)

The only restriction we place on cost models is that costs
must be monotonically increasing with respect to the
DAL-scores, that is, δi > δ j→ C(s,d,δi)≥ C(s,d,δ j),
for any s ∈ S, d ∈ D, and δi,δ j ∈ DAL. This reflects the
expectation that higher DALs are more expensive to
implement (or at least, not cheaper).

The synthesis problem seeks an optimal solution with respect
to C. The cost may represent financial cost, time required
for implementation, or perhaps some compound or abstract
definition of cost. For simplicity, one might consider a cost
model that assigns the DAL-score as the cost of a component–
defense–DAL-score triple, C(s,d,δ) = δ (for arbitrary s, d,
and δ).

Example 4.1. Recollect the requirement q for our example
drone system:

q : (dout : I) with Major (1×10−5) severity level

As we informally stated in Example 3.3, one implementa-
tion of the defenses doesn’t satisfy q, another does, and the
applicable defenses also satisfy q, by definition.

MA ` q

MI ` q

M′I 6` q

Now, we define a cost model C for the drone system.

C(s,d,δ) =

2δ, for (Remote,d1,δ)

2δ, for (Remote,d2,δ)

4δ, for (Backup,d3,δ)

2δ, for (Controller,d4,δ)

2δ, for (Controller,d5,δ)

3δ, for (Controller,d6,δ)

δ, otherwise

�

4.1 Synthesis Problem Statement

The goal of synthesis is to construct a set of defenses to
mitigate all attacks with the least cost. We distinguish 3 cases
to synthesize solutions for.

8

1. Ignore implemented defenses. In this case, the job of
synthesis is to synthesize a defense model MS from
scratch such that MS ` Q and C(MS) is minimal. This
case finds a globally minimal solution, in the sense that
every other solution which mitigates the attack-defense
tree must have a cost greater than or equal to the cost of
C(MS). It resembles the early design phase of a system,
when defenses have not yet been implemented.

2. Use implemented defenses. There are two possible cases
to consider here.

(a) MI `Q. In other words, all possible attacks are mit-
igated and the requirements in Q are satisfied by
the implemented defenses in MI. In this case, syn-
thesis tries to optimize the implemented defenses.
MS is an optimization of MI using any combina-
tion of:

i. eliminating unnecessary defenses — remov-
ing tuples from MI

ii. downgrading current defenses — re-
placing (s,a,γ,{(d,δi),∆R}) in MI with
(s,a,γ,{(d,δ j),∆R}) such that δ j < δi

This case resembles a situation where successful
defenses have already been implemented, but can
be downgraded or removed to save costs. Here, we
restrict addition of new defenses to save costs.

(b) MI 6` Q. In other words, the requirements in Q are
not satisfied by the implemented defenses in MI.
In this case, synthesis corrects the implemented
defenses with the least amount of change possible.
MS is a modification of MI using some combina-
tion of:

i. implementing new defenses — adding triples
to MI

ii. upgrading current defenses — replac-
ing (s,a,γ,{(d,δi),∆R}) in MI with
(s,a,γ,{(d,δ j),∆R}) such that δ j > δi

A real-life application of this situation is one where
defenses have been implemented, unsuccessfully,
and need to be improved to mitigate attacks, at
minimal additional cost. The already implemented
defenses are considered sunk costs that cannot be
recovered and thus are not downgraded or removed.

4.2 MaxSMT Encoding for Synthesis

The problem of optimizing the defense costs is stated as a
MaxSMT problem and sent to Z3’s MaxSMT solver [3]. The
input to the MaxSMT solver is an SMT-LIB [2] script (with
some extensions for the optimization commands) that include
(i) declarations of variables, (ii) assertions of formulas, and,
(iii) an expression over the variables to optimize, given the
constraints asserted. Our MaxSMT encoding depends on the
case we are encoding from Subsection 4.1.

In all 3 cases, we do the following. For each component–
defense pair (s,d) ((s,_,_,{(d,_),_}) ∈MA), we declare a
variable vs,d which stands for the real number representing the
synthesized cost of implementing defense d in component s to
a particular DAL δ (for each (s,_,_,{(d,δ),_}) that we care
about, we add a constraint on vs,d , as we will show). Since we
allow repeated labels, notice that during the creation of these
vs,d variables, multiple nodes in the tree might necessitate
the creation of the same variable. Some mechanism, such as
a hash table, would have to check that variable declarations
aren’t repeated in the SMT script. Constraints, however, can
be repeated.

For each variable vs,d , we assert that the cost is non-
negative. Then, we encode the ADTree(mod,Q,MA) as an
assertion, where mod is the AADL model of the system, Q
is the set of requirements, and MA is the applicable defense
model. Since MA satisfies Q, this assertion sets a baseline
on the synthesized model. The following function F converts
an ADtree to a quantifier-free first-order formula, which is
asserted.

F(T) := match T with
| ORA(T1, . . . ,Tn)→ F(T1)∧ . . .∧F(Tn)

| ORD(T1, . . . ,Tn)→ F(T1)∨ . . .∨F(Tn)

| ANDA(T1, . . . ,Tn)→ F(T1)∨ . . .∨F(Tn)

| ANDD(T1, . . . ,Tn)→ F(T1)∧ . . .∧F(Tn)

| CA(bA(s,a),T D)→ F(bA(s,a))∨F(T D)

| CD(bD(s,d,δ),T A)→ F(bD(s,d,δ))∧F(T A)

| bA(s,a)→⊥
| bD(s,d,δ)→ vs,d ≥ C(s,d,δ)

ORA nodes are translated to conjunctions and ANDA nodes to
disjunctions because the ADTree is concerned with the suc-
cess of the attacker while the MaxSMT encoding is concerned
with the success of defending any possible attack. If an at-
tacker needs a conjunction (ANDA) of attacks to succeed, it
suffices from the defender’s point of view to stop at least one
of the attacks successfully, and hence the disjunction in the
MaxSMT encoding. The reasoning for using conjunctions
for ORA nodes is similar. Finally, we need to minimize the
cost, which is done by using the minimize command in the
SMT-LIB script:

minimize
s∈S,d∈D

∑ vs,d

The variables declarations, assertions and the optimization
command are common in all cases. Additions to the assertions
are unique to each case of the problem statement and we
consider each of the 3 cases (all assertions must be added
before the optimization command in the script).

9

4.2.1 Case 1

Since we ignore implemented defenses, the constraint from
MA – (F(ADTree(mod,Q,A,MA))) suffices to restrict the
synthesized solution to one that mitigates all attacks. Addi-
tionally, the optimization command assures a global optimum.

4.2.2 Case 2(a)

Since the implemented defenses satisfy the requirements, we
assert constraints from MI — for each (s,_,_,{(d,δ),_}) ∈
MI, assert vs,d ≤ C(s,d,δ). We also restrict implementation
of new defenses — for each (s,a,γ{(d,δ),∆R}) ∈MA such
that there exists no (s,_,_,{(d,_),_}) ∈MI, assert vs,d = 0.
Given the lower bounds from MA, and the upper bounds
from MI, the MaxSMT solver finds the minimal cost solution,
without adding any new defenses.

4.2.3 Case 2(b)

Since the implemented defenses do not satisfy the re-
quirements and the cost of implementing them is consid-
ered sunk, we assert them as lower bounds — for each
(s,_,_,{(d,δ),_})∈MI, assert vs,d ≥C(s,d,δ). For defenses
that don’t work, the constraints from MA supersede the lower
bound specified by the constraints from MI.

The MaxSMT encoding for each case is summarized in
Figure 6.

4.3 SMT Model Evaluation

All our calls to the MaxSMT solver are expected to be satisfi-
able. A solution where all possible defenses are implemented
to the highest possible DAL would trivially satisfy the prob-
lem (while being unnecessarily expensive):

∀(s,a,γ,d,δ) ∈MA,
(s,a,γ,d,9) ∈MS

The response from the solver varies in its optimization of de-
fense cost. The variables vs,d in our SMT encoding model the
cost of implementing defense d in component s to some DAL-
score. Thus, when the SMT solver returns an optimal solution
as a model, it returns an optimal cost for each component-
defense pair. We need to build MS from this for which we
need the DAL-score for each component-defense pair. We
define the inverse cost function C−1 that given a component-
defense-cost triple, returns the DAL-score to implement the
defense to in the component. Since a component–defense
pair could have the same cost for multiple DAL-scores (the
monotonicity requirement does not prevent this), the inverse
isn’t over an injective function. We break ties by preferring
higher DAL-scores, given equal costs.

Case 1:

For each s ∈ S,d ∈ D, declare-var vs,d

For each vs,d , assert vs,d ≥ 0
assert F(ADTree(mod,Q,A,MA))

minimize
s∈S,d∈D

∑ vs,d

Case 2(a):

For each s ∈ S,d ∈ D, declare-var vs,d

For each vs,d , assert vs,d ≥ 0
assert F(ADTree(mod,Q,A,MA))

For each (s,d,δ) ∈MI, assert vs,d ≤ C(s,d,δ)
For each (s,d,δ) 6∈MI,assert vs,d = 0

minimize
s∈S,d∈D

∑ vs,d

Case 2(b):

For each s ∈ S,d ∈ D, declare-var vs,d

For each vs,d , assert vs,d ≥ 0
assert F(ADTree(mod,Q,A,MA))

For each (s,d,δ) ∈MI, assert vs,d ≥ C(s,d,δ)

minimize
s∈S,d∈D

∑ vs,d

Figure 6: A summary of the MaxSMT encoding of the defense
optimization problem

10

C−1(c,s,d) = max{δi | C(s,d,δi) = c}

Thus, as a minimal cost solution, for each component s and
defense d, the SMT solver returns a cost as the real value of
vs,d . MS is then constructed as follows.

∀vs,d ,∀a ∈ A, such that (s,a,γ,{(d,δ),∆R}) ∈MA,
(s,a,γ,{(d,C−1(vs,d ,s,d))}) ∈MS

This is the minimal cost defense model synthesized by the
MaxSMT solver.

Example 4.2. We construct synthesized defense models from
the satisfiable solution returned by the SMT solver for the toy
drone system using the cost model in Example 4.1 as follows.

• Case 1 Without any additional restrictions, the SMT
solver returns values 0, 10, 20, 0, 0 and 0 respectively,
for rd1, rd2, bd3, cd4, cd5 and cd6, which are its recom-
mended costs for the defenses. Applying the cost inverse
function, we have the following DALs to implement the
components to.

C−1(0,R,d1) = 0

C−1(10,R,d2) = 5

C−1(20,B,d3) = 5

C−1(0,C,d4) = 0

C−1(0,C,d5) = 0

C−1(0,C,d6) = 0

This is an optimal cost solution unrestricted by any im-
plementation constraints. The total cost is 30.

• Case 2(a) The SMT solver returns cost 0 for rd1 and bd3,
cost 10 for rd2, cd4, and cd5, and 15 for cd6. Applying
the cost inverse function, we have that d1 and d2 are to
be implemented to DAL 0 and 5 in the remote, d3 to Dal
0 in the backup controller, and d4, d5, and d6 all to DAL
5 in the main controller. Here, since the implemented
defenses already satisfy the requirement, new ones aren’t
added, and instead, synthesis suggests reductions. The
global optimal solution would choose d3 over d4, d5 and
d6, but since the latter are already implemented, synthesis
only suggests DAL reductions where applicable (to d4
and d5). The total cost of the synthesized solution is 45,
which is cheaper than the implementation which costs
61.

• Case 2(b) The SMT solver returns costs 10, 10, 20, 6, 0
and 0 for rd1, rd2, bd3, cd4, cd5, and cd6 which trans-
late to DALs 5, 5, 5, 3, 0 and 0, respectively. Since the
unsatisfactory defenses have already been implemented,
their cost is considered a sunk cost (16 here). The SMT
solver specifies what defenses need to be added to satisfy
the requirements — d2 and d3 in this case. The total cost
of the synthesized solution is 46.

Figure 7: A notional architecture diagram for the delivery
drone model

Notice that the same defense can be applicable to a compo-
nent to defend 2 different attacks. For example, system access
control defends against both CAPEC–507 and CAPEC–390.
Because our encoding doesn’t take into account attacks (and
it doesn’t need to), once synthesis suggests to implement such
a defense, we add all possible occurrences of it to MS. While
this redundance is necessary for soundness of the formalism,
it can be ignored during implementation. In fact, it isn’t nec-
essary to map synthesized defenses to attacks they mitigate at
all, we do it in the formalism just to be able to make synthe-
sized solutions comparable with applicable and implemented
solutions. �

5 Evaluation

A prototype of ADTree-based security analysis and synthesis
was implemented in the VERDICT toolchain, which is an
AADL plugin for the OSATE tool [1]. We perform an evalua-
tion on a high-fidelity architecture model of a delivery drone
to demonstrate the capabilities of the tool. The VERDICT
tool and the AADL model is publicly available.1 The deliv-
ery drone is part of a delivery mission that delivers packages
in neighborhoods. The mission consists of a delivery truck,
an operator, multiple drones and packages to deliver. When
the truck arrives at a neighborhood, a drone is launched to
deliver packages to nearby homes. The drone navigates to the
delivery site using GPS. Upon arriving at a site, it captures a
picture of the site to ensure it is free of obstacles and is safe
to release the package. For a high-valued package, it needs
to confirm with the operator in the truck via radio before
dropping off the package.

A notional architecture for the delivery drone is shown in
Figure 7. The model consists of 11 inter-connected compo-
nents and is annotated with meta-level properties, defenses
properties, cyber relations and cyber requirements. Meta-level
properties are properties like component type and pedigree,
that come built-in with the AADL properties. Given this sys-
tem, the STEM component of the VERDICT toolchain iden-

1The delivery drone AADL model is available at https://github.com/
baoluomeng/USENIX_paper/tree/master/DeliveryDrone

11

https://github.com/baoluomeng/USENIX_paper/tree/master/DeliveryDrone
https://github.com/baoluomeng/USENIX_paper/tree/master/DeliveryDrone

Figure 8: A cyber requirement example

(a) Synthesis solution for Case 1 (partial result is shown)

(b) Synthesis solution for Case 2

(c) Synthesis solution for Case 3 (partial result is shown)

Figure 9: Synthesis solutions for the delivery drone model

tifies possible CAPEC attacks and NIST 800-53 defenses.
These attacks and defenses are fed to the synthesis tool for
further processing. The defense property is a numerical DAL-
score from δ, and represents the rigor (DAL) of implemented
defense in each component of the system, which is used to
construct the MI. Cyber relations and requirements are de-
clared in a language annex for AADL – VERDICT. Two cyber
requirements are specified to ensure a successful mission that
delivers a package to the intended location. One of them,
shown in Figure 8, states that the drone shall be resilient to
maliciously commanded improper delivery of a package. The
satisfaction of this requirements depends on the integrity of
the output "delivery_status", which is used as a starting point
from which the system architecture is traced, to build the
ADTree for analysis. Further, the consequence of successful
attack is Hazardous, requiring corresponding defenses to be
implemented to DAL-score 7.

To demonstrate the optimal defense synthesis capabilities,
we invoke the Synthesis tool on the model for the three cases
using the default cost model, one where the cost for each
defense-DAL pair is just the DAL score.

• Case 1 The implemented defenses are ignored, and a

global optimal solution is returned. Synthesis suggest a
list of defenses with minimal costs to be implemented
to DAL 7 so that all cyber requirements can be satisfied.
A partial solution is shown in Figure 9a, due to space
restrictions. The total cost for the implementation is 385
unit.

• Case 2 Implemented defenses are taken into consider-
ation by Synthesis, and these don’t satisfy the require-
ments.(This corresponds to Case 2(b) from our prob-
lem statement). Synthesis suggests implementing two
defenses for the "deliveryItemMechanism" component:
Supply Chain Security and Tamper Protection, both to
DAL 7, which would allow for the requirements to be
satisfied. These would mitigate CAPEC-439 (Manipula-
tion During Distribution), which can be mitigated using
the above mentioned defenses. Synthesis’s solution is
shown in Figure 9b.

• Case 3 Once the suggested defenses in case 2 are im-
plemented in the model, they would be considered by
Synthesis sufficient to satisfy all cyber requirements. In
this case, Synthesis does "merit assignment" which is
to suggest downgrades/removals of defenses (Case 2(a)
from our problem statement) to save costs. Figure 9c
shows the output from Synthesis which suggests removal
of multiple defenses.

6 Related Work

In our ADTrees, we use nodes with repeated labels — that
is, there can exist multiple nodes in our tree that have the
same label. Bossuat et al. [4] extend ADTrees to AD-DAGs
to deal with repeated labels. In our work, by guaranteeing that
these nodes will have the same child-structure, we are able to
maintain the ADTree formalism, and also maintain soundness
by handling repetitions during our SMT-encoding.

Fila et al. [6] and Kordy et al. [9] find an optimized set of
defenses to mitigate an attack defense tree using integer linear
programming. We use an SMT-based optimization approach,
and also build our trees from AADL models of the system.
Additionally, we are able to incorporate implementations of
defenses that may or may not satisfy the requirements spec-
ified by the ADTree and suggest solutions based on these
variations (cases 2(a) and 2(b) from Section 4.1).

We use the formalism of attack-defense trees introduced
by Kordy et al. [8] to specify our ADTrees.

7 Conclusion and Future Work

We propose a security analysis technique for system architec-
ture designs via Attack-Defense Trees, and a novel technique

12

to synthesize optimal cost defenses for the components of a
model. We translate the AADL model of a system into an
ADTree, and encode this ADTree along with the cost of im-
plementing its defenses into a MaxSMT query, such that a
satisfying model of the SMT query is a minimum-cost defense
for the system, that mitigates all applicable attacks.

We utilize advancements in the ADTree literature, and
SMT technology, in building our formalism of the process
of converting an AADL model to an ADTree and then to an
optimization query to a MaxSMT solver. We provide an im-
plementation of our technique as the Synthesis functionality
in the VERDICT tool chain.

One potential extension to our formalism and our tool is
to allow a single defense to defend attacks over multiple
components and connections – extensibility of defenses.

Acknowledgement & Disclaimer

Distribution Statement “A” (Approved for Public Release, Dis-
tribution Unlimited). This research was developed with fund-
ing from the Defense Advanced Research Projects Agency
(DARPA). The views, opinions and/or findings expressed are
those of the author and should not be interpreted as represent-
ing the official views or policies of the Department of Defense
or the U.S. Government.

References

[1] The OSATE Tool. https://osate.org/about-osate.html,
2021.

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The
Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2016.

[3] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein.
νz - an optimizing smt solver. In Christel Baier and
Cesare Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 194–199,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[4] Angèle Bossuat and Barbara Kordy. Evil Twins: Han-
dling Repetitions in Attack–Defense Trees: A Survival
Guide. In Peng Liu, Sjouke Mauw, , and Ketil Stolen,
editors, Graphical Models for Security, volume LNCS,
pages 17–37, Santa Barbara, United States, August 2017.
Springer.

[5] Peter H. Feiler, Bruce Lewis, Steve Vestal, and Ed Col-
bert. An overview of the sae architecture analysis & de-
sign language (aadl) standard: A basis for model-based
architecture-driven embedded systems engineering. In

Pierre Dissaux, Mamoun Filali-Amine, Pierre Michel,
and François Vernadat, editors, Architecture Description
Languages, pages 3–15, Boston, MA, 2005. Springer
US.

[6] Barbara Fila and Wojciech Wideł. Exploiting at-
tack–defense trees to find an optimal set of counter-
measures. In 2020 IEEE 33rd Computer Security Foun-
dations Symposium (CSF), pages 395–410, 2020.

[7] Ahmad Y Javaid, Weiqing Sun, Vijay K Devabhaktuni,
and Mansoor Alam. Cyber security threat analysis and
modeling of an unmanned aerial vehicle system. In
2012 IEEE Conference on Technologies for Homeland
Security (HST), pages 585–590. IEEE, 2012.

[8] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and
Patrick Schweitzer. Foundations of attack–defense
trees. In Pierpaolo Degano, Sandro Etalle, and Joshua
Guttman, editors, Formal Aspects of Security and Trust,
pages 80–95, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[9] Barbara Kordy and Wojciech Widel. How well can i
secure my system? In IFM, 2017.

[10] Sjouke Mauw and Martijn Oostdijk. Foundations
of attack trees. In Dong Ho Won and Seungjoo
Kim, editors, Information Security and Cryptology -
ICISC 2005, pages 186–198, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

13

A Translation Soundness

Here, we argue about the soundness of the SMT encoding
from Section 4.2. An attack-defense tree models the applica-
ble attacks on the components and connections of a system,
and the applicable/implemented defenses that mitigate these
attacks. We encode one or more ADTrees as a set of con-
straints that we send to a MaxSMT solver. The solver may
return one of 3 possible results:

1. sat - the problem instance is satisfiable. There exists a
minimum cost solution which we can construct from the
satisfiable model from the solver.

2. unsat - the problem instance is unsatisfiable. There
exists no solution, given the constraints presented to the
solver. The constraints are contradictory. We argue that
our encoding never produces such a result, subject to
certain assumptions.

3. unknown - the solver isn’t able to give a conclusive re-
sponse. When the solver fails, our method fails as well.

The following theorems relates the notion of satisfiability
defined in Section 4 to the satisfiability of a formula, and argue
about the soundness of our encoding. As a matter of notation,
notice that an ADTree satisfies one or more requirements, so
an ADTree is said to be satisfying if it mitigates its attacks
and unsatisfying otherwise. A formula is satisfiable if there
exists a satisfying model for its variables, and unsatisfiable if
there doesn’t exist any.

Theorem 1. An unsatisfying tree — one that doesn’t mitigate
the attacks specified by the requirements — is translated to
an unsatisfiable set of formulas.

Proof. An ADTree can be made unsatisfying by two possible
sources.

1. Undefended attack nodes
2. Attack nodes defended via insufficient defense nodes

(DAL-score not high enough)

Case 1 For ADTree T with undefended attack nodes, F(T)
is unsatisfiable, and the proof is by induction on F . The most
important case is the base case of bA nodes. A lone bA node
(one that isn’t encapsulated in a CA or CD node) is an unde-
fended attack node, which F translates to ⊥, an unsatisfiable
formula. The bD node is always satisfying (explained later in
the proof) and the other node combinators simply combine
translations of child nodes using conjunctions and disjunc-
tions.

Case 2 ADTrees defended via insufficient defense nodes
will be converted to satisfiable formulas using F . This is

because F models a constraint on the cost of implementing
the defense, not its ability to mitigate an attack. A bD node is
translated to an inequality between a Real-valued variable
and its cost - a Real number. Independently, it is satisfiable,
and can only be made unsatisfiable when considered along
with a contradictory inequality/equality. However, the only
kind of inequalities F adds are ≥ inequalities between a
variable on the LHS and a constant on the RHS. Any two
inequalities v≥ x and v≥ y over a variable v and constants x
and y are satisfiable, since the satisfying model will contain a
value for v which is greater than or equal to the maximum of
x and y, and this value will also be greater than or equal to
the other constant.

The conversion of an unsatisfying ADTree to a satisfi-
able query is a source of unsoundness. To prevent this from
happening, our encoding only calls F on ADTrees built from
applicable defenses — and these are satisfiable by definition.

The non-negativity constraints don’t introduce unsound-
ness — since each of the vs,d variables represent the cost
of implementing defense d in component s, we expect these
values to be non-negative.

The constraints added by Case 2(a) of our problem state-
ment (4.1) take a currently, satisfying ADTree, and specify
upper bounds on the costs of the defenses in the ADTree. If
vs,d is currently some value x, vs,d ≤ x introduces no unsound-
ness, since this constraint still allows for vs,d = x. Additionally,
constraints are added restricting currently unimplemented
defenses from being implemented. Since the current imple-
mentation is already satisfying in this case, not allowing new
defenses doesn’t introduce unsatisfiability.

The constraints added by Case 2(b) also don’t introduce
any unsoundness, since constraints of the form vs,d ≥ x don’t
add unsoundness (same argument as for independent bD nodes
above).

Therefore, the SMT encoding translates an unsatisfying
ADTrees to unsatisfiable formulas.

Theorem 2. A satisfying ADTree is translated to a satisfiable
set of formulas, and the satisfying SMT model translates to a
cheapest (satisfying) defense implementation.

Proof. This reduces to proving that our encoding only en-
codes the necessary and sufficient conditions of the ADTree
as a logical constraint. We argue this for F incuctively.

• Independently, an attack node bA is unsatisfying. It is
translated to ⊥ which is an unsatisfiable formula.

• Independently, a defense node bD is satisfying. It is trans-
lated to to an inequality constraint vs,d ≥ x for some
constant x, and this constraint is satisfiable, because

14

our translation only introduces constraints of the form
vs,d ≥ x which can’t contradict each other.

• A defense node with a countermeasure attack tree is
satisfying if the defense node is satying, and the counter-
measure attack tree is also satisfying. CD nodes are there-
fore encoded as conjunctions of their respective child
nodes.

• An attack node with a countermeasure defense tree is
translated to a disjunction of the translations of the attack
node and the defense tree. The attack node is translated
to ⊥, so the satisfiability of F(CD) is reduced to the sat-
isfiability of the translation of its defense tree child.

• Within a defense tree, an ANDD indicates that all child
defense trees have to be implemented to defend against
the attack in question, and ORD indicates that at least one
of the child defense trees have to be implemented. As a
consequence, ANDD nodes are translated to conjunctions,
and ORD nodes to disjunctions.

• For ANDA and ORA nodes, the translations are reversed.
An ANDA node indicates that the attacker needs all the
child attack trees to succeed for the parent to succeed.
From the point of view of the defender (which is how an
ADTree is analyzed), it suffices to defend at least one of
the child attacks. Thus, an ANDA node is translated to a
disjunction. For similar reasons, an ORA node is translated
to a conjunction.

F is applied to an ADTree constructed from the applicable
defense model. The applicable defense model consists of
the minimal DAL necessary for a defense to mitigate its
respective attack. Thus, the defense nodes in the ADTree
consist of the minimal DAL necessary for a particular
defense to work. F asserts the cost of implementing this
defense–DAL-score pair as a lower bound for the defense
in its corresponding component. Therefore, the constraints
from F are necessary and sufficient. Given the minimization
command to the MaxSMT solver, it will find a least cost
model.

Case 2(a) adds upper bounds from currently satisfy-
ing implementations, so it still allows for a minimal cost
model, with the restriction that new defenses may not be
added.

Similarly, Case 2(b) adds lower bounds for already
implemented defenses since we consider them a sunk cost,
and minimizes given this restriction.

We have argued that the problem instance is soundly trans-
lated to MaxSMT, and that we can trust its result. We finish
by arguing that our cost-inverse function soundly extracts the
correct defense implementations for a minimal cost solution.
This follows from the fact that our cost model is monotoni-
cally increasing, and that the cost-inverse function breaks the

only possible ties from the costs by preferring higher DAL-
scores when the cost of implementing a defense to a higher
DAL-score is the same as that of implementing it to a lower
DAL score (Section 4.3).

15

	Introduction
	Preliminaries
	Attack and Defense Specification
	Attack-Defense Trees

	ADTree Analysis
	Defense Models
	ADTree Construction
	ADTree Evaluation
	Satisfaction

	ADTree Synthesis
	Synthesis Problem Statement
	MaxSMT Encoding for Synthesis
	Case 1
	Case 2(a)
	Case 2(b)

	SMT Model Evaluation

	Evaluation
	Related Work
	Conclusion and Future Work
	Translation Soundness

