An Interactive SMT Tactic In
Coq using Abductive
Reasoning

Haniel Barbosa, Chantal Keller, Andrew Reynolds,

Arjun Viswanathan, Cesare Tinelli, Clark Barrett

Expressiveness

Proof Assistants ‘

&

N

Soundness Automation

Expressiveness

Proof Assistants ‘

Mechanized proofs

Strong guarantees

Trusted computing base

Limited automation |
Soundness Automation

Expressiveness

SMT Solvers ‘

° P<vYrYi
, CVGCS,

E SN

Soundness Automation

Expressiveness

SMT Solvers ‘

° Automated proofs /CVC5/
. Vulnerable to bugs

. Large code base

. High automation

Soundness Automation

Can we do better?

Proof Assistants:
Mechanized proofs
Strong guarantees
Trusted computing base

Limited automation

SMT Solvers:
Automated proofs
Vulnerable to bugs
Large code base

High automation

Expressiveness
A

/CVCS;

Soundness Automation

Expressiveness

SMTCoq

Soundness Automation

Expressiveness

SMTCoq

e Certified checker

P

 Automate subgoals
e Uncompromised trusted computing base

Soundness Automation

Expressiveness

SMTCoqg

* Certified checker
 Automate subgoals

e Uncompromised trusted computing base
Goal forall (xy: Z) (f: Z — Z),

X =7y + 1 — f y = £ (X L 1) Soundness Automation
Proof.
intros. rewrite H. rewrite Z.add_simpl_r.
reflexivity.

Qed.

Expressiveness

SMTCoqg

* Certified checker
 Automate subgoals

e Uncompromised trusted computing base

Goal forall (xy: Z) (f: Z — Z),
X =Y + 1 = f y = f (X . 1) Soundness Automation
Proof. smt. Qed.

Expressiveness

SMTCoqg

* Certified checker
 Automate subgoals

e Uncompromised trusted computing base

Goal forall (xy:2Z) (f: Z — Z),
£ y = £ (X o 1) Soundness Automation
Proof. smt.
(* Failure! Counter-example:
x — 0
y — 1
f — fun x = if x = -1 then -2 else 2 x)

Expressiveness

SMTCoq [

Soundness Automation

Expressiveness

SMTCoq |

* Certified checker for SMT Proofs |
* Implemented in Coq + SMTCoq
* Proven correct in Coq

)
Soundness Automation

SMTCoq

e Solvers: zChaff, veriT, cvch

SMTCoq

e Solvers: zChaff, veriT, cvch
e Theories: EUF, LIA, BV, AX

SMTCoq

* Solvers: zChaff, veriT, cvch
e Theories: EUF, LIA, BV, AX

Goal forall (ab: bool) (x y: Z),
(ifb a
(ifbb (2%x + 1 =7 2xy + 1) (2%x + 1 =7 2xy))
(ifb b (2xx =7 2xy + 1) (2%x =7 2x%y)))
—
((a —— b) && (b —— a) && (x =77y)).
Proof. smt. Qed.

Goal forall (xy:2Z), x=y+1—xxx=(y+ 1) % x.
Proof. smt.

Goal forall (xy:2Z), x=y+1—=>xxx=(y+1) * x.

Proof. smt.

(* Solver error: A non-linear fact was asserted
to arithmetic in a linear logic. *)

Goal forall (xy:2Z), x=y+1—=xxx=(y+1) % x.
Proof. smt.
(* Solver error: A non-linear fact was asserted

to arithmetic in a linear logic. *)

Definition mul’ := Z.mul.
Notation "x *’ y" := (mul’ x y).

Goal forall (xy:2Z), x=y4+1—=xxx=(y+ 1) % x.

Proof. smt.

(* Solver error: A non-linear fact was asserted
to arithmetic in a linear logic. *)

Definition mul’ := Z.mul.

Notation "x *’ y" := (mul’ x y).
Goal forall (xy:Z), x=y+1—=x+xx=(y+ 1) % x.
Proof. smt. Qed.

Goal forall (xy:2Z), x=y4+1—xxx=(y+ 1) *x.

Proof. smt.

(* Solver error: A non-linear fact was asserted
to arithmetic in a linear logic. *)

Definition mul’ := Z.mul.

Notation "x *’ y" := (mul’ xy).

Goal forall (xy:2Z), x=y4+1—=xxx=(y+ 1) % x.
Proof. smt. Qed.

Goal forall (xyz: Z), x=y+1—=>yxz=2zx% (x—1).
Proof. smt.

Goal forall (xy:2Z), x=y+1—xxx=(y+ 1) *x.

Proof. smt.

(¥ Solver error: A non-linear fact was asserted
to arithmetic in a linear logic. *)

Definition mul’ := Z.mul.

Notation "x *’ y" := (mul’ xy).

Goal forall (xy:Z), x=y+1—=x%xx=(y+ 1)« x.
Proof. smt. Qed.

Goal forall (xyz:Z), x=y+1—>oyxz=z% (x—1).
Proof. smt.
(* Failure! Counter-example:
x 0, y—-1, z =1,
mul’ — fun x y = if x = 1 then if y = -1 then -2
else 2 else 2 *)

The abduce Tactic

* Present abducts that entail the goal
e Uses abductive reasoning by cvc5

The abduce Tactic

* Present abducts that entail the goal
e Uses abductive reasoning by cvc5

Goal forall (xyz:Z), x=y+1—>yxz=z% (x— 1).
Proof. (* smt. Failure! *) abduce 3.

The abduce Tactic

* Present abducts that entail the goal

e Uses abductive reasoning by cvc5

Goal forall (xyz:Z), x=y+1—oy*xz=zx% (x—1).
Proof. (* smt. Failure! *) abduce 3.
(* cvch returned SAT.
The solver cannot prove the goal, but one
of the following hypotheses would make it provable:
y = 2
-1 +x =2z
(mul’ z y) = (mul’ y z) *)

The abduce Tactic

* Present abducts that entail the goal
e Uses abductive reasoning by cvc5

Goal forall (xyz:Z), x=y+1—>yxz=z% (x— 1).
Proof. (* smt. Failure! abduce 3. *)

assert ((mul’ z y) = (mul’ y z)).

{ apply Z.mul_comm. } smt.
Qed.

Abduction

* Find 4 such that

- Hy,..., H,

=1 G

'Hl,...,Hn,A TG

Abduction

* Find 4 such that

e Hy,... H, 7 G

'Hl,...,Hn,A TG

« Hi N--- N H,, N A is T-satisfiable

Abduction

* Find 4 such that

e Hy,... H, 7 G

'Hl,...,Hn,A TG

« Hi N--- N H,, N A is T-satisfiable

= A is generated by grammar R

Abduction in cvc5 via SyGuS

/ 1

H ICVC__S_’ ________________________ SMT
: No | Solver
I 3
! HANAEG?

G |
:
I
I

R » Enumerator A

Yes

Abduction in cvch via SyGuS

/
g |LCVCS, p=rumy
— : (p) A A(p) = G(p) No | Solver | Yes
: HAAEGY
G : No
—_— | [~ s s s s - - ===
11 :
| Vp € P, p falsifies | | Yes
R — HAAEG?
» Enumerator » Evaluator

abduce Tactic

®_ Goal H G. HEr &7 ‘ ,’CVCS,’

Proof. smt. Qed.l Certificate ¢ valid

abduce Tactic

®_ Goal H = G. 1 .}:T < = ,’CVCS,’
Proof. smt. Qed.l Certificate ¢ valid
®_ Goal H = G. H Er G = ,’CVCS,’

Proof. smt. (xFail!*x)l|. Counter-example invalid

abduce Tactic

N Goal H = G.

Proof. smt. (Qed.L

. Goal H = G.

Proof. smt. (xFaillx*)|,

S Goal H = G.

Proof. abduce.

H G? I 1
= cvces,
Certificate ¢ valid
H G? I 1
= 'cvces,
Counter-example invalid
H G I 1
= cvces,
Abduct A

invalid

abduce Tactic

N Goal H = G.

Proof. smt. (Qed.L

. Goal H = G.

Proof. smt. (xFaillx*)|,

®_ Goal H = G.

Proof. abduce.

smt. (ed.

H G? I 1
- /CVCS5,
Certificate ¢ valid
H G? I 1
= 'cvces,
Counter-example invalid
H G I 1
= cves,
Abduct A , ,
invalid

assert A.{ prf A }.

Evaluation

* On Zorder Coq library

(Goals smt Returns abduce Timeouts
Successes cex Successes

29 33 26 13 13

Evaluation

* On Zorder Coq library
e Successor (Z.succ) and predecessor (Z.pred) and functions.

(zoals smt Returns abduce Timeouts
Successes cex Successes

29 33 26 13 13

Evaluation

CVC4 returned sat. Here is the model:

L
—+

= 0
=0
.succ := fun => 0

Evaluation

Lemma Zle gt succ nm : n<=m -> Z.succ m > n. CVC4 returned sat. Here is the model:
Proof. smt.

n 0
m 0
Z.succ := fun => 0

cvcS returned SAT.
Lemma Z]-E_gt_Eucc nm:n<=m->Z.succm>n. The solver cannot prove the goal, but one
Proof. abduce 3. of the following hypotheses would make it provable:
(Z.succ m) =1 + m
(Z.succm) =n + 1
n+ 1<= Z.succm

Evaluation

CVC4 returned sat. Here is the model:

L
—+

n 0
m:= 0
Z.succ := fun => 0

cvcS returned SAT.
— The solver cannot prove the goal, but one
abduce 3. of the following hypotheses would make it provable:

(Z.succ m) =1 + m
(Z.succm) =n + 1
n+ 1 <=|Z.succ m

Future Directions

Future Directions

 Evaluation inside larger proofs

Future Directions

 Evaluation inside larger proofs

e Control abducts by controlling SyGuS grammar

Future Directions

 Evaluation inside larger proofs
e Control abducts by controlling SyGuS grammar

* Automatically prove entailed abducts

Acknowledgements

e https://smtcoq.github.io/

* Scalable Algorithms for Abduction via Enumerative Syntax-Guided
Synthesis. IJCAR 2020. Andrew Reynolds, Haniel Barbosa, Daniel
Larraz, and Cesare Tinelli

* Images borrowed from slides presented by Alain Mebsout at CAV
2017 — “SMTCoq: A plug-in for integrating SMT solvers into Coq"

https://smtcoq.github.io/

Backup Slides

SMTCoqg

Coq Legend:
goal p
Certified
r Trusted!
. _ f Untrusted
Reification SMT solver ~
Proof
witness
\ 4
[Preprocessor]
1Certiﬁcate

[Coq checker + Soundess]

B e L
N e A e ————————

SMTCoq

Coq

SMTCoqg

Coq Legend:
goal . .
Certified)
r Trusted! J
. Untrusted

[Reification]—»[SMT solver 1

Proof .
witness

[Riiclloccss ol]

i
i
I
g
lCertiﬁ cate i
g
1

[Coq checker + Soundess]

e e

SMTCoq

	Slide 1: An Interactive SMT Tactic in Coq using Abductive Reasoning
	Slide 2: Proof Assistants
	Slide 3: Proof Assistants
	Slide 4: SMT Solvers
	Slide 5: SMT Solvers
	Slide 6: Can we do better?
	Slide 7: SMTCoq
	Slide 8: SMTCoq
	Slide 9: SMTCoq
	Slide 10: SMTCoq
	Slide 11: SMTCoq
	Slide 12: SMTCoq
	Slide 13: SMTCoq
	Slide 14: SMTCoq
	Slide 15: SMTCoq
	Slide 16: SMTCoq
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: The abduce Tactic
	Slide 24: The abduce Tactic
	Slide 25: The abduce Tactic
	Slide 26: The abduce Tactic
	Slide 27: Abduction
	Slide 28: Abduction
	Slide 29: Abduction
	Slide 30: Abduction in cvc5 via SyGuS
	Slide 31: Abduction in cvc5 via SyGuS
	Slide 32: abduce Tactic
	Slide 33: abduce Tactic
	Slide 34: abduce Tactic
	Slide 35: abduce Tactic
	Slide 36: Evaluation
	Slide 37: Evaluation
	Slide 38: Evaluation
	Slide 39: Evaluation
	Slide 40: Evaluation
	Slide 41: Future Directions
	Slide 42: Future Directions
	Slide 43: Future Directions
	Slide 44: Future Directions
	Slide 45: Acknowledgements
	Slide 46: Backup Slides
	Slide 47: SMTCoq
	Slide 48: SMTCoq

