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1 Introduction

SMTCoq [6] is a skeptical cooperation between the Coq proof assistant, and (SAT and) SMT
solvers [2], implemented as a Coq plugin. This integration is useful for the ITP (Coq) since it
allows proof goals in Coq to be automatically discharged by an SMT solver. However, unlike Coq’s
small, verifiable kernel, SMT solvers have tens of thousands of lines of code and are more prone
to bugs. Since an SMT solver’s code base is much harder to verify, many SMT solvers produce
proofs of their results in addition to a claim of (un)satisfiability of a set of formulas. For satisfiable
formulas, a proof is simply a satisfying model which is easy to specify and check (for quantifier-free
formulas). For unsatisfiable formulas, however, SMT solvers need to show that the input formulas
are inconsistent. They do this by reducing the formulas to a trivial unsatisfiable formula ⊥, or the
empty clause ⊥. A proof producing SMT solver is integrated with Coq by checking the proof inside
Coq for a particular representation of SMT formulas in Coq. The checker is proven correct, lifting
up the formulas to Booleans goals in Coq via a process called computational reflection (described
in Report 2).

An added complication in this integration of SMT solvers with Coq is the incompatibility of their
logics. Propositions in Coq have the Prop type which implements a constructive or intuitionistic
logic. SMT solvers, on the other hand, implement a classical logic. This incompatibility is overcome
in SMTCoq by using SMT solvers to prove Boolean goals in Coq (of type Bool) that are classical,
and additionally, supporting a fragment of propositions that don’t violate the laws of constructive
logic.

The first half of this report discusses the proof production systems of SMT solvers. The second
half explores the difference between the logics of SMT solvers and Coq, and SMTCoq’s efforts to
prove formulas in Coq that SMT solvers can help with, while being logically consistent.

2 Preliminaries

Many-sorted first-order logic (MSFOL) extends first-order logic with types (or sorts). We present
the syntax of MSFOL in this section and the semantics are presented in [2]. Syntactically, the
components of MSFOL are sorts σ, terms t, and formulas φ. Sorts are atomic entities that represent
types. Function types — (σ1, . . . , σn) → σ — and relation types — (σ1, . . . , σm) are defined over
sorts, and are types of functions and predicates. Terms t and formulas φ are specified as:

t := xσ | f (σ1,...,σn)→σ(t1, . . . , tn)

φ := ⊥ | ¬φ | φ1 ∧ φ2 | ∀xσ.φ | t1 = t2 | P σ1,...,σm(t1, . . . , tm)

Terms are either sorted variables, or applications of sorted function symbols to terms. Formulas are
constants or logical connectives applied to other formulas, quantified formulas, equality over terms,
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or predicates symbols applied to terms. Connectives >, ∨, ⇒, ⇔, and the existential quantifier ∃
can be specified using the connectives and quantifiers mentioned above.

An atomic formula is one of ⊥, t1 = t2, P
σ1,...,σm and a literal is an atomic formula or it’s

negation. A clause is a disjunction of literals. All formulas can be converted to conjunction normal
form (CNF) which is a conjunction of clauses. For ease of notation, a formula in CNF is also
represented as a set of clauses within curly braces. ⊥, the symbol representing false, is overloaded
to also represent the empty clause, which is trivially unsatisfiable (unlike the empty set, or the
empty conjunction which is trivially satisfiable).

Informally, a formula is satisfiable if there exists a satisfying model — an assignment of well-
sorted values to its variables such that the interpretation of the formula is >; it is unsatisfiable
if no such model exists; it is valid if, for all models its interpretation is >. This interpretation is
recursively defined in Barrett et al. [2]. We use the notation var 7→ val to signify the assigment
of value val to variable var, and group assignments in curly braces. For example, a 7→ > assigns
Boolean value > to a. |= stands for logical entailment and |=T stands for entailment in theory T .
A formula is entailed from nothing, if it is valid. For example, a ∧ b |= a, x > 3 |=LIA x > 0, and
|=LIA x > 3 ⇒ x > 0 are all logically sound entailments — the first one propositionally, and the
last two in the theory of linear integer arithmetic.

Declarative rules of the form

P1 . . . Pn
C

rule name

specify that if the premises P1, . . . , Pn hold, then the conclusion C holds. The resolution rule,
which is used heavily in DPLL(T) proofs, simplifies two clauses to a new clause as follows:

φ1 ∨ · · · ∨ φn ∨ χ ¬χ ∨ ψ1 ∨ · · · ∨ ψm
φ1 ∨ · · · ∨ φn ∨ ψ1 ∨ · · · ∨ ψm

Res

The following is an instance of the resolution rule.

a ∨ ¬b b ∨ c
a ∨ c

Given that two clauses hold, and a pivot, which is a literal that occurs with opposite polarities in
each clause (b in the above example), the resolution rule concludes that the combination of the two
clauses without either occurrence of the pivot holds.

3 DPLL(T) Proofs

The typical SMT solver composes a SAT solver with multiple theory solvers in an abstraction-
refinement cycle, where the SAT engine tries to find a satisfying model of the propositional ab-
straction of a given set of constraints, and the theory solvers find a refutation of the refinement of
the model, if one exists. This cycle is guided by the DPLL(T) algorithm, which is an extension of
the DPLL [7] (Davis-Putnam-Logemann-Loveland) algorithm that adds theory-level reasoning.

An SMT solver converts its input constraints into conjunction normal form (CNF), which is a
conjunction of clauses. The DPLL(T) algorithm then tries to find a satisfying assignment for these
clauses, and otherwise, by exhaustion concludes their unsatisfiability. The steps taken to conclude
the unsatisfiability can be translated into a chain of resolutions of the input clauses to conclude
the empty clause ⊥ from them, which is the most basic form of unsatisfiability.
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A proof of unsatisfiability is a tree that derives, from the input formulas and theory lemmas at
the leaves, the empty clause ⊥ at the root. The input formulas are converted to CNF via CNF
conversion rules that are part of the proof tree. We omit the CNF conversion phase and start with
formulas that are already in CNF. Thus, proof trees as shown in this report have input clauses and
theory lemmas at the leaves, and ⊥ at the root, where clauses are reduced in the tree using the
resolution rule. Theory lemmas are the theory solvers’ means of refining the SAT solver’s model for
the input. A theory lemma, produced by the corresponding theory solver, is a clause that is valid
in a theory. The theory solvers use theory-specific rules to prove these lemmas. A theory lemma
in the proof tree is supported by a satellite proof of the lemma provided by the theory solver.

In what follows, we explain the DPLL(T) algorithm and the extraction of a resolution proof
from an execution of it on an unsatisfiable input.

3.1 The DPLL(T) Algorithm

DPLL(T) was originally presented in Nieuwenhuis et al. [8], and reiterated in Katz et al. [5] as
a transition system. We briefly present the transition system here. Katz et al. also present the
proof-production system of the CVC4 [3] SMT solver for quantifier-free logics, that we follow in
this report. While other SMT solvers’ proofs might vary in specifics from CVC4’s, the general idea
of a resolution-based proof is still common across solvers.

As previously mentioned, the DPLL(T) algorithm can be understood as trying to satisfy the in-
put constraints at the propositional level, with refinements of models from theory solvers. Checking
whether a formula is unsatisfiable at the propositional level involves incrementally assigning literals
deterministically to satisfy clauses (propagation), and when that isn’t an option, by guessing an as-
signment. When a guess goes down a path that results in unsatisfiability, the algorithm backtracks
and checks whether the formula is still unsatisfiable when the guess is undone (and prevented from
being repeated).

We now formalize the DPLL(T) algorithm as a state transition systems that operates on a set
of transition rules. The state of the system is either fail or 〈M,F,C〉 where M is a sequence that
represents the current context, that is, the current assignment of literals in the formula; a literal
in M is preceded by a • if the literal was a decision, that is, it was guessed. For some variable x,
the assignment x 7→ > is added to the context by appending x to M , and its complement is added
by appending ¬x. F is a set of clauses that is equisatisfiable with the input formula. The initial
formula F0 may be transformed by the algorithm but the transformation is always equisatisfiable
with the initial input. C represents the conflict clause, a clause from F that is falsified by the current
assignment (or an equisatisfiable transformation of a clause from F ) — it is either a singleton set
with the conflict clause, or the empty set representing no conflict. ≺M is an ordering on the literals
in M — l1, . . . , ln ≺M l if l1, . . . , ln occur before l in M . If M = M0 •M1 • . . . •Mn, such that no
• occurs in the Mi’s, then each Mi is a decision level, M [i] denotes M0 • . . . •Mi, and and lev is a
function that maps a literal in M to its decision level. LitF represents the set of literals occurring
in F .

The initial state of the system is 〈(), F0, ∅〉. The final state is one of:

� fail, when F0 is unsatisfiable.

� 〈M,F, ∅〉 where F0 is satisfiable, F is a transformation of F0 by the algorithm that is equi-
satisfiable with F , and M |= F .
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l1 ∨ · · · ∨ ln ∨ l ∈ F ¬l1, . . . ,¬ln ∈M l,¬l /∈M
M := Ml

Prop

l ∈ LitF l,¬l /∈M
M := M • l Dec

C = φ l1 ∨ . . . ∨ ln ∈ F ¬l1, . . . ,¬ln ∈M
C := {l1 ∨ · · · ∨ ln}

Confl

C = {¬l ∨D} l1 ∨ · · · ∨ ln ∨ l ∈ F ¬l1, . . . ,¬ln ≺M l

C := {l1 ∨ · · · ∨ ln ∨D}
Expl

C = {l1 ∨ · · · ∨ ln ∨ l} lev ¬l1, . . . , lev ¬ln ≤ i < lev ¬l
C := φ M := M [i]l

Backj

C 6= φ

F := F ∪ C Learn

C 6= φ • /∈M
fail

Fail

Figure 1: Transition rules at Propositional level

The transition system goes from the initial state to one of the possible final states by a non-
deterministic application of the transition rules presented in Figure 1 and Figure 2. In practice,
they are applied using a particular strategy for efficiency. A rule is applicable when all its premises
hold, and it is applied to make the conclusion true.

The propositional rules from Figure 1 model the behavior of the SAT solver. Propagations
(Prop) force assignments of Boolean values to literals that are propositionally entailed. For instance,
if the input formula is ¬a∧(a∨b), then the assignment a 7→ ⊥ is required to satisfy the first conjunct,
¬a. Now, b 7→ > is the only way to satisfy the second conjunct, (a∨b). Both of these assignments are
logically entailed propagations, given the goal of satisfying the formula. Sometimes a deterministic
choice might not be entailed, instead, an assignment must be guessed using the decide rule (Dec).
For example, to satisfy (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨ ¬a), a formula with no possible propagations,
one of the literals must be non-deterministically assigned. For instance, the guess a 7→ > forces
propagations b 7→ > and c 7→ ⊥. Propogations and/or decisions could lead to a model in which the
input formula is not satisfied. The conflict rule (Confl) recognizes this. In the previous example,
the decision a 7→ > led via propagations to the assignment {a 7→ >, b 7→ >, c 7→ ⊥}, which falsifies
the second conjunct of the formula and satisfies the others. The Confl rule recognizes this clause
(¬b ∨ c) to be the conflict clause. Once a conflict is encountered, where no previous decisions were
made, then the conflict was entailed, and the unsatisfiability of the input formula can be concluded
via the Fail rule. If, there are previous decisions at the time of conflict, then the backjump rule
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l ∈ LitF |=i l1 ∨ · · · ∨ ln ∨ l ¬l1, . . . ,¬ln ∈M l,¬l /∈M
M := Ml

Propi

C = φ |=i l1 ∨ · · · ∨ ln ¬l1, . . . ,¬ln ∈M
C := {l1 ∨ · · · ∨ ln}

Confli

C = {¬l ∨D} |=i l1 ∨ · · · ∨ ln ∨ l ¬ l1, . . . ,¬ ln ≺M l

C := {l1 ∨ · · · ∨ ln ∨D}
Expli

Figure 2: Transition rules at Theory level

(Backj ) uses the conflict clause to undo one or more decisions and add a propagated literal to the
context. As a special case of this, the newly propagated literal is the complement of a previously
assigned (and undone) decision. To do this, it might need the explain rule (Expl) to modify the
conflict clause using resolution. Since the conflict clause is initially a clause in the input, and it is
only modified by resolving it with other input clauses, it is always entailed by the input. At any
point, a modified conflict clause may be learned (Learn) by adding it to the set of clauses in the
input formula. The restriction in the Backj rule that requires a literal in the conflict clause to be
at least one decision level above the rest of the clause, forces the transition system to apply the
Expl rule so that the algorithm is able to backtrack further than chronological backtracking (where
the most recent decision is undone), to reach the source of the conflict. In our example, since there
is only one decision so far, the algorithm backjumps to the assignment of a and flips it to a 7→ ⊥.
The propagations b 7→ > and c 7→ ⊥ resulted from the assignment a 7→ >, and these are undone
by the backjump. After flipping our initial decision, we have a 7→ ⊥ which satisfies the first and
third clauses of the formula (¬a∨ b)∧ (¬b∨ c)∧ (¬c∨¬a). Since there are no further propagations,
the decision b 7→ ⊥ can be made to satisfy the second clause, and the entire formula. The theory-
level rules from Figure 2 model the behavior of an abstract theory solver. The Propi , Confli , and
Expli rules work exactly like their propositional variants, except that they can use theory lemmas,
that are valid clauses in a theory produced by the theory solver. Additionally, there is a Learni
theory-level rule that is not presented here for simplicity.

The transition system is refutationally sound : if an execution starting with 〈φ, F, φ〉 ends with
fail, then F is unsatisfiable in T . Under suitable restrictions on the theory T involved, it is also
complete: for every exhausted execution (an execution in which no rule other than LearnT applies)
starting with 〈φ, F, φ〉, and ending with 〈M,F0, φ〉, M is a satisfying model of F0 (equisatisfiable
with F ) in T .

Example 3.1 Consider the following CNF formula:

F : {f(g(z)) = h(y)∨x 6= y, f(g(z)) 6= h(y)∨x 6= y, x = y∨f(m) = f(n), f(m) = x, f(n) = y}

Each term contains additional information in the theory of equality over uninterpreted functions
(EUF) where the only predicate is equality, and all functions are uninterpreted. However, this
additional information isn’t available to the SAT solver at the propositional level. We consider the
following abstraction of the theory literals in F , for simplicity of representation.
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M F C Rule Step

A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E Prop (D) 1
D A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E Prop (E) 2
DE A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E Dec (A) 3
DE •A A ∨ ¬B, ¬A ∨ ¬B, B ∨ C,D, E Prop (¬A ∨ ¬B) 4
DE •A¬B A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E Prop (B ∨ C) 5
DE •A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C,D, E ConflEUF (¬C∨ 6

¬D ∨ ¬E ∨B)
DE •A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C,D, E ¬C ∨ ¬D ∨ ¬E ∨B Expl (D) 7
DE •A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C,D, E ¬C ∨ ¬E ∨B Expl (E) 8
DE •A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E ¬C ∨B Expl (B ∨ C) 9
DE •A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C,D, E B Expl (¬A ∨ ¬B) 10
DE •A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E ¬A Learn (¬A) 11
DE •A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E, ¬A ¬A Backj (¬A) 12
DE¬A A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E, ¬A Prop (A ∨ ¬B) 13
DE¬A¬B A ∨ ¬B, ¬A ∨ ¬B, B ∨ C,D, E, ¬A Prop (B ∨ C) 14
DE¬A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E, ¬A ConflEUF (¬C∨ 15

¬D ∨ ¬E ∨B)
DE¬A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C,D, E, ¬A ¬C ∨ ¬D ∨ ¬E ∨B Expl (D) 16
DE¬A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C,D, E, ¬A ¬C ∨ ¬E ∨B Expl (E) 17
DE¬A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E, ¬A ¬C ∨B Expl (B ∨ C) 18
DE¬A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E, ¬A B Expl (A ∨ ¬B) 19
DE¬A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E, ¬A A Expl (¬A) 20
DE¬A¬B C A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E, ¬A ⊥ Fail 21

Figure 3: Execution of the DPLL(T) algorithm on F

F : {A ∨ ¬B, ¬A ∨ ¬B, B ∨ C, D, E}

A abstracts f(g(z)) = h(y), ¬A abstracts, f(g(z)) 6= h(y), and so on.
An execution of the DPLL(T) algorithm from the previous section on F , from initial to final

state is presented in Figure 3. The first and only decision is made in step 3 when A 7→ > is assigned.
In step 6, the current assignment is found to be conflicting with theory lemma ¬C ∨¬D∨¬E ∨B,
but since this conflict came in a context where a decision was made, the decision is reversed in step
12, after the conflict clause is simplified and learned. In step 15, when the same lemma is found
to be conflicting with the new context, we can conclude that the input is unsatisfiable using the
Fail rule, since we tried both choices of assignment for A. This is what the solver would typically
do. However, the empty clause ⊥ is trivially unsatisfiable and in some given context where x 7→ >
for some x, an acceptable proof of unsatisfiability is to to derive from the context that x 7→ ⊥
holds. Such a state where some x and ¬x holds logically reduces to ⊥ (x and ¬x resolve to ⊥).
Thus, given a set of formulas, a more uniform proof of unsatisfiability of the set is to derive ⊥ from
it. This is why, in proof mode, the SMT solver, only applies the final Fail rule after reducing the
conflict clause to ⊥ using explanations. This is done from step 15 to 21. �
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Refutation tree of F :

Proof of ¬A Proof of A
20⊥

where Proof of ¬A:

P
¬C ∨ ¬D ∨ ¬E ∨B D

7¬C ∨ ¬E ∨B E
8¬C ∨B B ∨ C

9
B ¬A ∨ ¬B

10¬A
and Proof of A:

P
¬C ∨ ¬D ∨ ¬E ∨B D

16¬C ∨ ¬E ∨B E
17¬C ∨B B ∨ C

18
B A ∨ ¬B

19
A

Figure 4: Proof tree for example in Figure 3. P is the proof of the theory lemma from the theory
solver.

3.2 DPLL(T) Proofs

Given an execution of the DPLL(T) algorithm that ends in the fail state, the solver proves that
the input formula F is unsatisfiable by building a refutation tree of F — a tree with the input
clauses and theory lemmas at the leaves, that lead, through the application of the resolution rule,
to the empty clause ⊥ at the root. A resolution proof can be extracted from a DPLL(T) execution
by following the applications of the Confl and Expl rules. Notice, that the Expl rule modifies the
current conflict clause by resolving it with an input clause, and it is precisely these resolutions that
guide the creation of the proof tree.

Example 3.2 Figure 4 shows the proof tree of the unsatisfiability of F from Example 3.1. The
nodes of the tree contain the clause being used. Every reduction of (a pair of) nodes to a child
node is an application of the resolution rule. The label of the resolution of two nodes in the tree
shows the step number of the application of the Expl from Figure 3. The left subtree is a proof of
¬A, which is learned in steps 1 to 11, and the right subtree is the proof of A which is concluded
from steps 12 to 20. Step 21 performs the final resolution of A and ¬A to derive ⊥. P is the proof
of the theory lemma that is expanded in the next subsection. �

Finally, the theory lemmas used in the proof appear at the leaf of the tree, and need to be
justified by proofs of the lemmas from the theory solver. This is explained in the next subsection.

3.3 Theory Lemma Proofs

Theory lemmas at the leaves are justified by satellite proofs from the theory solver that produce
them. They prove the lemma by contradiction — they derive the formula ⊥ from the negation of
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f(m) = x
Symm

x = f(m) f(m) = f(n)
Trans

x = f(n) f(n) = y
Transx = y x 6= y

Contra⊥

Lemma
f(m) 6= f(n) ∨ f(m) 6= x ∨ f(n) 6= y ∨ x = y

Figure 5: EUF Proof from Figure 4

clause C, and the Lemma rule derives C from this. A negation of a clause is a conjunction of each
of the clause’s disjuncts, separately negated. The premise of the Lemma rule is a subproof of ⊥
from the complements of the disjuncts of the theory lemma, and from this it concludes the lemma.

Example 3.3 The only theory lemma used in our example is

L : ¬C ∨ ¬D ∨ ¬E ∨B
or, L : f(m) 6= f(n) ∨ f(m) 6= x ∨ f(n) 6= y ∨ x = y

equivalently, L : f(m) = f(n)⇒ f(m) = x⇒ f(n) = y ⇒ x = y

Taking its negation gives:

¬L : C ∧D ∧ E ∧ ¬B
or, ¬L : f(m) = f(n) ∧ f(m) = x ∧ f(n) = y ∧ x 6= y

Finally, the proof tree from the theory solver of L, or P from Figure 4 is shown in Figure 5. It
derives ⊥ at the root of a tree that contains the conjuncts of ¬L as leaves — C,D,E,¬B. It applies
the Lemma to this subproof to derive L. The application of the Lemma rule is the unlabeled rule
application from P to L in Figure 4, so P is technically the proof tree in the box. The proof uses
the transitivity and symmetry of equality in addition to the rule that specifies the contradiction
between an equality and its negation. �

4 Classical vs Constructive Logic in Coq

Coq is a proof assistant based on the Calculus of Inductive Constructions (CIC) [9], which is
an extension of the dependent type theory — the Calculus of Constructions (CoC) [4] — with
inductive types. Coq’s type systems implements an infinite hierarchy of types, where all objects,
including types, are terms that have types. “Higher-order” types (types of types) are distinguished
from “first-order” types (types of terms that are not types), by referring to them as kinds. At
the bottom of the type hierarchy, Coq has (1) regular first-order types such as Bool representing
Booleans and Nat representing natural numbers, that are defined inductively and are themselves
instances of the Set kind, and (2) propositions or properties in Coq that have kind Prop. The
rest of the hierarchy looks like this: Prop and Set have kind Type1 and Typei has kind Typei+1.
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The implementation of propositions as a kind in Coq is its means of enforcing the Curry-Howard
correspondence between proofs and terms (or programs), and between propositions and types. As
a consequence, propositions having the Prop kind in Coq, are only provable, if a (proof) term
inhabiting the proposition can be constructed. Thus, a Prop P can be proved in Coq only if
a proof term having type P can be constructed. This term can be constructed within a proof
script in the Coq user-interface. Given a lemma, Coq provides a goal and a proof context, which
contains the terms available to prove the goal. Initially, the goal is the entire proposition being
proven, and the context is empty, and the user can manipulate the goal to break it down and
move over its constituents into the context using Coq functions called tactics. Coq implements a
constructive logic via its Prop type. Constructive or intuitionistic logic is a branch of mathematical
logic studying arguments concerning constructive objects.

Example 4.1 The following Coq code proves the formula a⇒ a ∨ b, for any Props a and b.

Theorem orIntroL : forall (a b: Prop), a -> a \/ b.

Proof.

intros a b Ha.

left. apply Ha.

Qed.

The formula asserts that given a proof of the proposition a, we have a proof of the disjunction of a
and b. The universal quantifier (forall) is a binder that introduces arbitrary propositions a and b

into the lemma. The proof script between Proof and Qed constructs a proof term of type forall

(a b: Prop), a -> a \/ b. The first line of the script introduces the propositions a and b and
the proof Ha of a into the proof context (using the intros tactic). The only way to prove a
disjunction is to prove one of the disjuncts. This is a crucial detail that distinguishes constructive
logic from classical logic, as we will see later in the section. The second line of the proof script
proves the left disjunct by using the proof of a from the context. �

Classical logic extends constructive logic with the law of the excluded middle that states that for
arbitrary proposition a, a∨¬a holds. This can also be stated as the double negation elimination law
or as proving a proposition by contradiction. As such, some statements that are true in classical logic
might not have a proof in constructive logic. The law of the excluded middle itself is a convenient
example. forall (a : Prop), a ∨ ∼a is not provable in Coq, because, as mentioned before,
the only way to prove a propositional disjunction is to prove that one of the disjuncts holds and
unlike orIntroL, there is no way to prove either of the disjuncts here.

An SMT solver can prove classical formulas that include both a⇒ a∨b and a∨¬a for arbitrary
Booleans a and b. As such, Prop is not an ideal candidate to embed SMT formulas into, since with
such an embedding, SMT solvers would be able to prove propositions in Coq that are incompatible
with Coq’s constructive logic. In addition to the Prop type, Coq has a Boolean (bool) type in its
standard library [1], that defines Booleans as an inductive type with two nullary constructors true
and false. This Boolean type in Coq effectively implements a classical logic. Any Boolean value
can be inspected, pattern matched on, and evaluated to either true or false. Terms of type bool

cannot, by themselves, be stated as theorems in Coq, since they don’t have the Prop type (they
are not propositions). To state that a Boolean term B holds for arbitrary values of its variables,
the term is equated to true and its variables are universally quantified.

F : Q, B = true
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where Q represents the universal quantification of the variables in B. Since equality is a proposition,
and quantified propositions are themselves propositions, F represents an embedding of a Boolean
term into a proposition, which can now be used as a Coq goal. We call such goals that embed a
Boolean term into a proposition Boolean goals.

Example 4.2 The law of excluded middle is stated in Coq as a Boolean goal and proved as follows.

Theorem LEMBool : forall a : bool, a || (negb a) = true.

Proof.

intros a. destruct a.

+ simpl. reflexivity.

+ simpl. reflexivity.

Qed.

orb is the disjunction operator over Booleans and has infix notation ||, and negb is the negation
operator over Booleans. destruct a performs a case analysis on a, and since a is a Boolean that
can only be either true or false, the two lines beginning with + replace the a in the context with
exactly those values. When a is true, the goal reduces to true || not true = true and when it
is false, it reduces to false || not false = true. Both of these are simplified to true = true

using the tactic simpl and then by the reflexivity of =, both equalities are provable. Notice that,
neither a proof of a, nor a proof of ¬a was constructed here. Arguments were made in terms of
every possible value a could take, and the conjecture was proven in each case. Such a proof, as we
saw above, is impossible in constructive logic. �

4.1 The Role of SMTCoq

SMTCoq is a plugin that adds automation to Coq by dispatching goals to SMT solvers. Since SMT
solvers implement a classical logic, SMTCoq uses SMT solver proofs to prove classical formulas
expressed in Coq as Booleans goals.

Example 4.3 The LEMBool lemma from above would be a simple goal that could be dispatched
to an SMT solver using SMTCoq’s smt tactic:

Theorem LEMBool' : forall a : bool, a || (negb a) = true.

Proof.

smt.

Qed.

�

SMTCoq embeds SMT formulas in Coq as Boolean goals in what is called a shallow embedding,
which uses types in Coq that correspond to SMT formulas, to embed SMT formulas in Coq. As
such, SMT formula semantics are already defined in Coq. A proof of a formula from an SMT solver
is translated to the proof of a Boolean goal in Coq via a deep embedding. SMTCoq defines

� the deep embedding of SMT formulas in Coq as the form type,

� an interpretation of forms with respect to Bools,
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� a checker for proofs of (unsatisfiability of the negation) the deep embedding of formulas
coming from the SMT solver, and,

� a proof of correctness of the checker, also called the reflection lemma, that reflects a proof of
the deep embedding of a formula from the SMT solver (successfully checked by the checker)
to the proof of a Boolean goal in Coq (the shallow embedding of formulas).

This process is described in further detail in Report 2. Figure 6 and Figure 7 reproduce parts of
the figure from Report 2 illustrating this process, although they do it in the context of explaining
SMTCoq’s Prop to Bool conversion, which is discussed in the next subsection.

4.2 Theories and Prop Predicates

SMTCoq integrates both SAT and SMT solvers with Coq. If it were reasoning about purely Boolean
goals such as LEMBool above, it wouldn’t need SMT solvers at all. It could do that with just SAT,
or propositional satisfiability, solvers. SMT, or satisfiability modulo theories, solvers provide the
ability to reason in theories such as finite- and infinite-precision integers and arrays. Using its
SMT solver integration, SMTCoq is able to prove more expressive Boolean goals over the theories
of uninterpreted functions, linear integer arithmetic, arrays, and bit-vectors. Recall that atomic
formulas are applications of predicate symbols to terms. Earlier in the section, we looked at logical
connectives being represented classically (as connectives over the Bool type) or constructively (as
Prop connectives).

Similarly, in this section, we will refer to predicate symbols that construct Props as Prop

predicate symbols, and those that construct Bools as Bool (or Boolean) predicate symbols, in
Coq. A Prop predicate is a proposition in Coq, parameterized by values (of any type, but we will
focus on the types in the theories supported by SMTCoq.). A Bool predicate is a Boolean term,
parameterized by values. To state that a Bool term holds, it’s free variables must be quantified
and the term equated to true, as demonstrated in the previous section for connectives.

Example 4.4 Consider the following examples of Bool predicates over integers and bit-vectors.

Theorem Z_congBool : forall (a b : Z) (f : Z -> Z),

implb (Z.eqb a b) (Z.eqb (f a) (f b)) = true.

Proof.

smt.

Qed.

Theorem BV_ulteZeroBool : forall (b : bitvector 4),

(bv_ult #b|0|0|0|0| b) || (bv_eq b #b|0|0|0|0|) = true.

Proof.

smt.

Qed.

Z congBool proves the congruence rule over integer to integer functions and BV ulteZeroBool

proves that all 4-bit integers (bit-vectors of length 4) in their unsigned interpretation are greater
than or equal to 0. The operator implb is the implication operator over Boolean terms, Z.eqb is
the Boolean equality predicate symbol over integers in Coq, and bv ult and bv eq are respectively
the Boolean less than (over unsigned integers) and equality predicate symbols for bit-vectors. �
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Step 1: Coq tactic invokes SMTCoq to prove theorem:
Theorem F : P.
Proof.

smt.

↓

Step 2: Assuming that P has predicate symbols P1 . . . Pn, Coq presents the goal:

Goal : P (P1, . . . , Pn)

↓

Step 3: The smt tactic calls the prop2bool tactic which tries to convert all Prop predicates
to their Boolean counterparts. If prop2bool, fails, so does smt. If it succeeds, the goal is now
(assuming predicate symbol Pi corresponds to Boolean predicate symbol Bi):

Goal : P (B1, . . . , Bn) = true

Quantifiers are also faithfully converted — the Boolean variables in the converted goal are
bound as the propositional variables were in the original goal.

↓

Step 4-8: SMTCoq proves the Bool goal using the SMT solver as shown in Fig. 7.

Figure 6: SMTCoq’s journey in proving example Boolean formula F

SMTCoq is able to prove formulas over some Prop predicates if they are reducible to their
corresponding Bool predicates. Such a reduction is specified using lemmas of equivalence between
the two. SMTCoq defines the prop2bool tactic that converts a Prop predicate symbol to its
corresponding bool counterpart, by applying the equivalence lemma, if one is available. The
prop2bool tactic only succeeds on a goal if it is able to recursively convert all the predicate
symbols in the goal. When a user asks SMTCoq to prove a goal consisting of Prop predicate
symbols, the smt tactic first calls the prop2bool tactic to convert all Prop predicate symbols to
their corresponding bool predicate symbols. The smt tactic then uses the SMT solver to prove the
resulting Boolean goal (using the checker and the reflection lemma). If it is successful, the theorem
can be closed. This process is described by adding the steps in Figure 6 to the ones in Figure 7,
already presented in Report 2.

Example 4.5 Conveniently, the prop2bool tactic is successful with the predicate symbols used in
Example 4.4. So, SMTCoq can prove their corresponding Prop theorems:

Theorem Z_congProp : forall (a b : Z) (f : Z -> Z), a = b ->

f a = f b.

Proof.

12



Step 4: SMTCoq extracts Boolean term B from the goal and creates a deep embedding f of B.

B: P (B1, . . . , Bn)

↓

Step 5: SMT solver proves unsatisfiability of ¬B (the SMT encoding of ¬B) and returns proof
t.

↓

Step 4: Call to SMTCoq’s checker checks that t proves unsatisfiability of ¬f:

c := checker f t = true

↓

Step 5: Reflection principle reflects deep embedding to shallow embedding I(f) via call to
checker from Step 4:

checker correct f t (refl equal c true)

↓

Step 6: Proof of F is completed in Coq:
Theorem F : P.
Proof.

smt.

Qed.

Figure 7: SMTCoq’s journey in proving example Boolean formula F
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smt.

Qed.

Theorem BV_ulteZeroProp : forall (b : bitvector 4),

bv_ultP #b|0|0|0|0| b \/ b = #b|0|0|0|0|.

Proof.

smt.

Qed.

�

Depending on the predicate symbol, some of the equivalence lemmas between the Prop and
bool versions are either in Coq’s libraries, or proved in SMTCoq’s libraries.

Example 4.6 SMTCoq’s bitvector library proves the following lemma of equivalence between the
Bool and Prop version of the unsigned less than predicate over bit-vectors. This equivalence lemma
is used by SMTCoq’s prop2bool tactic when a user uses the Prop version of this predicate symbol
in a query to SMTCoq, as in BV ulteZeroProp from Example 4.5.

Theorem bv_ult_B2P : forall n (a b : bitvector n),

bv_ult a b = true <-> bv_ultP a b.

An example of an equivalence proved in a Coq library is that of the integer less than predicate.

Lemma ltb_lt (n m : Z) : (n <? m) = true <-> n < m.

�
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thesis, École Polytechnique, Palaiseau, France, 2013.

14



[7] D. Loveland, A. Sabharwal, and B. Selman. DPLL: The Core of Modern Satisfiability Solvers,
pages 315–335. Springer International Publishing, Cham, 2016.

[8] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From
an abstract davis–putnam–logemann–loveland procedure to dpll(T ). J. ACM, 53(6):937–977,
2006.

[9] C. Paulin-Mohring. Introduction to the Calculus of Inductive Constructions. In B. W. Pa-
leo and D. Delahaye, editors, All about Proofs, Proofs for All, volume 55 of Studies in Logic
(Mathematical logic and foundations). College Publications, Jan. 2015.

15


	Introduction
	Preliminaries
	DPLL(T) Proofs
	The DPLL(T) Algorithm
	DPLL(T) Proofs
	Theory Lemma Proofs

	Classical vs Constructive Logic in Coq
	The Role of SMTCoq
	Theories and Prop Predicates


