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1 Introduction

In this report, we will compare two historic interactive theorem provers - LCF
(Logic for Computable Functions) and Automath. Both proof assistants are
driven by a small kernel, and reduce proof checking to type checking but their
type systems vary significantly. The Curry-Howard Isomorphism is central to
the Automath type system, whereas type checking in LCF is reduced to type
checking in its implementation language of abstract data type instances. We
take a look at the fundamentals of these theorem provers and how these have
manifested in modern proof assistants that have been inspired by these two
systems.

2 De Bruijn’s Automath

N. G. de Bruijn introduced the Automath language in 1968 [9, 8] as a means
to formalize mathematics in computers so that it can be mechanically checked.
This led to the Automath project that, among other things, produced a proof-
checker for the Automath language [7, 20].

Inspired by colleague A. Heyting, De Bruijn realized that in a typed lan-
guage, logical propositions can also be considered types of their corresponding
proofs, which constitute terms of the respective types. This crucial insight
allowed logic to be done in a typed language. This correspondence between
propositions and types, and proofs and terms was discovered independently
by H. B. Curry and W. Howard and is thus termed as the Curry-Howard(-de
Bruijn) Isomorphism.

2.1 The Curry-Howard Isomorphism

The Curry-Howard Isomorphism encapsulates the correspondence between proofs
and terms (programs) and between propositions and types. In doing so, it
equates the notion of proving to computing. Additionally, it reduces proof-
checking to type-checking. Initially, Haskell Curry noticed the correspondence
between minimal implication logic and a simple λ− calculus, which was extended
by William Howard [16].
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Minimal implication logic is a subset of propositional logic with only impli-
cation and its introduction and elimination rules. It can be characterized by
the following natural deduction rules:

∆ ` A (ax)
∆ ∪ {A} ` B
∆ ` A→ B

(→ -in) ∆ ` A→ B ∆ ` A
∆ ` B (→ -el)

Here, ∆ is a set of implicational formulas and A and B range over implica-
tional formulas.

Untyped λ−calculus gives a basic mechanism for dealing with functions,
making it the foundation of functional programming. The syntax of terms in
untyped λ− calculus is as follows:

Λ := ν | (λν.Λ) | (Λ Λ)

where ν represents a variable, λ is used to denote function abstraction, and two
juxtaposed terms represent the application of the first one to the second. Given
a context Γ that gives types to free variables, the rules for deriving types of
λ-terms are as follows:

x : A ∈ Γ
Γ ` x : A

(var)
Γ, x : A `M : B

Γ ` λx.M : A→ B
(abs) Γ `M : A→ B Γ ` N : A

Γ `M N : B
(app)

Curry noticed an isomorphism between these 2 systems of rules. Howard ex-
tended this to predicate logic and to Heyting arithmetic. The Curry-Howard
isomorphism for the systems of natural deduction for minimal implication logic
and the typing rules of untyped lambda calculus terms consists of two mappings,
one of which can be stated as:

If Σ is a derivation in natural deduction with conclusion ∆ ` A, then ∆̄ ` Σ̄ : A,

where Σ̄ is a λ−term, and ∆̄ is a context such that for each B ∈ ∆, there exists
some x such that x : B ∈ ∆̄. There is also a reverse mapping that completes
the isomorphism:

If ∆̄ ` Σ̄ : A, is a typable term, then there exists a natural deduction derivation
Σ with conclusion ∆ ` A.

2.2 Automath to Coq

The Curry-Howard Isomorphism is prevalent in Automath and subsequent theo-
rem provers that were motivated by Automath. Some of these include Agda [22],
Coq [6], and the Lean theorem prover [10]. One of the most popular of this lin-
eage of Automath-style theorem provers is Coq. In Coq, a theorem is a formula
which is proven using functions called tactics. To prove a conjecture in Coq, it
suffices to (and is necessary to) provide to Coq, a term whose type is the propo-
sition being proved. In most cases, this is done using tactics that continuously
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modify the proof term. Initially, the entire term is a ”hole” to be filled, that
has the goal’s type, and tactics break this down into smaller and smaller holes,
until all of them are filled.

In addition to Automath, de Bruijn’s contribution to the interactive theorem
proving world includes an answer to the question ‘Why is a mechanical proof,
more dependable than a written one?’. A proof assistant satisfies the “de Bruijn
criterion” [5] if it generates proof terms that can be checked independently from
the system by a simple program that a skeptical user could write him/herself.

By reducing the proof checker of Coq to a type checker for propositions,
the Curry-Howard isomorphism helps Coq fulfill the de Bruijn criterion. Type
checkers are small and straightforward programs that are - in principal - easier
to check externally. While this was likely more true for a simpler system like
Automath than it is for a modern one like Coq (which has a much more com-
plicated type system), it remains true that type-checkers are relatively simple
in the space of all programs, which contributes to the widespread acceptance of
properties proved in Coq.

Over the years, Coq has been enhanced with complicated tactics and even
tactic languages. The soundness of these tactics doesn’t affect the soundness
of the Coq proof system, because it is only concerned with the well-typedness
of the proof term corresponding to a proposition, not with how the term was
constructed. A buggy tactic, by definition, would construct an ill-typed proof
term, which wouldn’t pass through the Coq type-checker.

To demonstrate how Coq utilizes the Curry-Howard Isomorphism, consider
the following example, motivated by Chapter 9 of the Logical Foundations
book [25].

Logical conjunction in Coq is defined as a proposition (Prop in Coq) that
can be constructed only using the two conjuncts. It is defined as an inductive
type with only one constructor:

Inductive and (P Q : Prop) : Prop :=

| conj : P -> Q -> and P Q.

Noting that ∧ is the infix notation for conjunction, a proof of P ∧ Q -> Q

would involve using tactics that extract the evidence of Q from that of P ∧ Q.
Specifically:

Theorem ex : forall P Q, P /\ Q -> Q.

Proof.

intros P Q HPQ.

destruct HPQ as [HP HQ].

apply HQ.

Qed.

The proof script between Proof. and Qed. consists of tactics that complete the
proof. The intros tactic localizes the variables P and Q and evidence HPQ for P ∧
Q. The propositions-as-types correspondence is on display here with ex having
type forall P Q, P ∧ Q -> Q and HPQ having type P ∧ Q. The destruct
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tactic separates the proof of the conjunction into proofs of its conjuncts, and the
apply tactic plugs the right conjunct into the hole representing the goal. Finally,
the Qed command calls Coq’s type-checker to verify that the term constructed
by the tactics has the type of the lemma trying to be proved.

To see the proof term that has forall P Q, P ∧ Q -> Q as its type, con-
sider the following equivalent definition of ex.

Definition ex : forall P Q, P /\ Q -> P :=

fun P Q HPQ =>

match HPQ with

| conj HP HQ => HQ

end.

This definition defines a function that behaves exactly like the tactics do - given
the evidence for P ∧ Q, it destructs this evidence by pattern matching on all
things a conjunction can be. From our definition above, we know that it can
only be a combination of the proofs of its conjuncts. From the only case of the
match, it returns the right proof term. This function definition defines the exact
proof term that is constructed using the tactics above, thus demonstrating the
proofs-as-terms correspondence.

3 Milner’s LCF

Dana Scott developed a logic for reasoning about computable functions at Stan-
ford, and Robin Milner who visited Stanford and worked with Scott, later built
the Edinburgh LCF (Logic for Computable Functions) system [13]. The LCF
system provided a functional programming language ML, designed to imple-
ment the LCF logic and write proofs in it. ML abbreviates meta language,
to distinguish itself from the object language it is encoding, that is, the proof
calculus. The features of ML include a polymorphic type system, functions as
first-class objects that can be passed around like terms, and abstract datatypes
- data structures that restrict access to the internal via a fixed set of functions.

For Edinburgh LCF, Milner had the idea of recording proof results, and not
entire proofs, once a proof had been checked. This avoided a lot of redundancy
and saved space. He implemented this using an ML abstract datatype theorem

for defining theorems in LCF. The predefined values of this ADT were instances
of axioms and its operations were inference rules. Since this theorem type was
the only way to create new theorems in the LCF system, type-checking would
ensure that the only way to create theorems was via their axioms and inference
rules. Since the type-checker guaranteed that only valid theorems could be
created, once an instance of a theorem had been created by the type-checker,
LCF didn’t have to remember how it was created, just that it was created
soundly.

Milner also introduced the concepts of tactics and tacticals, and imported
the concept of backward proofs to proof assistants. While it was common for
proofs to be constructed forward - from the axioms to the goal to be proved,
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a backward approach breaks down the goals into simpler (sub-)goals and even-
tually to something resembling the axioms. A tactic is a function that helps
in this reduction, and tacticals can combine tactics to perform tasks such as
repetitions and branching. Tactics and tacticals add some automation to proof
procedures, but they lie outside the trusted proof kernel. A tactic is a function
operating on values of type theorem and a tactical is a combination of such
functions. The functions will only have the intended effect on the value, if they
are sound transformations, as deemed by the type-checker.

For example, consider the Modus Ponens rule, also represented as the im-
plication elimination rule in the previous section:

Γ ` p→ q Γ ` p
Γ ` q MP

This is a rule with two premises and a conclusion. In the LCF system, this is an
ML function with type theorem → theorem → theorem. It takes two objects
of type theorem and returns a theorem object.

3.1 The HOL Family

LCF moved to Cambridge [23] from Edinburgh through Milner’s collaborators.
The HOL (Higher-Order Logic) [12] theorem prover was created for hardware
verification, but its support for higher-order logic made it and its descendants
relevant for various applications. The first stable version of HOL - HOL88 -
was written in Common Lisp. HOL90 was then implemented in Standard ML.
HOL Light [15] was another variant implemented in Caml Light that prioritizes
constructive logic over classical logic.

As new logics were designed, so were proof assistants that could reason
about them. Isabelle [26] was born as an LCF-style proof assistant for Martin-
Löf’s constructive type theory and grew into a general framework to deal with
multiple logics. Lawrence C. Paulson developed it as an LCF-like system that
provided a meta-logic, within which other logical frameworks could be declared
- in the previous HOL systems, the logic had to be implemented in ML. Higher-
order unification along with backtracking is central to proof search in Isabelle.
While higher-order unification is able to unify more expressive terms such as
variables representing functions, it adds undecidability and non-determinism to
the solution space. For example, f 3 and 3 + 3 can be unified by substituting
4 possible function definitions for f : λx.x + 3, λx.3 + x, λx.x + x, λx.3 + 3.
These issues are usually avoided because in practice, Isabelle has to deal with
first-order unification more often. Additionally, a subset of higher-order terms,
called higher-order patterns were found to behave like first-order terms for the
purposes of unification. When there are a non-deterministic set of unifiers,
backtracking allows different solutions to be explored. Paulson used a higher-
order unification algorithm by Huet [17], who also proved its undecidability.
Unification of higher-order terms was novel when Isabelle used it, but it is
common in today’s proof assistants.
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In Isabelle, the theorem type can essentially be extended to reason about
a particular object logic. Instances of Isabelle include Isabelle/CTT (construc-
tive type theory), Isabelle/IFOL (intuitionistic first-order logic), Isabelle/FOL
(classical FOL), Isabelle/FOL with Zermelo-Fraenkel set theory. The most pop-
ular of these is Isabelle/HOL [21] - the Isabelle instance for higher-order logic.
Isabelle/HOL became a replacement for HOL due to its efficient automation
via a simplifier and support for external first-order theorem proving tools [19],
and its vast proof libraries which include a standard library and the Archive of
Formal Proofs [1].

Thus, the reduction of proof-checking to type-checking of abstract datatypes
in the meta language is at the core of LCF-style proof systems which includes
the entire HOL family, including Isabelle which is a generic logical framework
that can be instantiated to do proof checking in particular logics.

4 A Comparison - Automath vs LCF

While there isn’t evidence that the Automath project was influenced by the
LCF project (to the contrary, their dates overlap), the LCF approach, credited
to Edinburgh LCF is the approach followed by most proof assistants today.
Theorem provers that follow the LCF approach implement a small proof kernel
that facilitates the creation of theorems. This proof kernel usually ensures
soundness by some form of type-checking. In this sense, Automath, and its
successors also follow the LCF approach with type-checking proof terms to have
types as propositions, using the Curry-Howard Isomorphism. Some works claim
that Coq is a descendant of LCF [24]. On the other hand, the de Bruijn criterion
- that necessitates that either proof terms generated by a proof assistant or the
proof checker itself are externally checkable by a simple program - is arguably
satisfied by LCF-style theorem provers as well. Thus, while we look at some
of the differences between Automath and LCF, and their respective successors,
we will keep in mind that both introduced some principles that have become
pervasive in modern proof assistants.

Although both Automath-style and LCF-style systems reduce proof-checking
to type checking, the type-checkers and indeed the type systems, of both tools
are quite different. In LCF and the HOL systems, the type-checker of the
implementation language or the meta-language guarantees the soundness of the
proof assistant. For Automath-style ITPs, the type of propositions and the
type-checking algorithm are implemented within the implementation language.
For instance, in Coq, what it means to be a Prop and how a type-checker
would check terms of type Prop are described in OCaml (the implementation
language of Coq). This distinction offers some trade-offs. On the one hand,
in LCF, the trust-base is the type-checker of the entire ML language, whereas
in Automath, the trust-base is a type-checker that is implemented inside the
meta language. In principle, this could be smaller than the type checker of the
entire language. In practice, while this is a clear difference in approach, we have
not seen this argument being made to claim that one tool is better than the
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other. Additionally, because LCF’s theorem type is abstract, proof objects i.e.
instances of type theorem cannot be inspected or modified. Milner intended for
it to be this way to make LCF space efficient - once a proof was type-checked,
it only mattered what was proven, not how it was proven. In Automath, on the
other hand, proof objects can be are available for inspection. For instance, in
Coq, proof terms can be pattern matched on by advanced users who are able to
manipulate Coq’s OCaml code.

Automath and its descendents are based on Martin-Löf’s dependent type
theory, in contrast to the simple type theory implemented by LCF and most of
its descendants. While polymorphic types allow types to be parameterized by
other types - such as list α where α can be any type - dependent types allow
types to depend on types or values. For instance, consider the consN function for
list N (lists of natural numbers) that inserts elements into lists. cons has type
N → list N → list N. For example, inserting the element 1 into the empty
list gives the singleton list with 1, expressed as consN 1 [ ] = [1]. We would
need a consα for each type α. In a dependently typed system, we can type a
generic cons function as Π α : Type, α→ list α→ list α. The Π indicates
that the second and third arguments to cons depend on the first, which is a
type, or a value of type Type (types are often considered values in a hierarchy
of types in dependently typed systems). Dependently-typed systems allow for
more expressive types that could potentially avoid code reuse. Additionally,
the type system could catch certain bugs at compile time that might not be as
straightforward to do with simply-typed checkers. For instance, consider the
vector type vec : Type → N → Type. Here, the first argument specifies the
type of elements in the vector, while the second is a natural number representing
the length of the vector. Not only can we define a generic append function for
such vectors, we can also enforce a constraint on the length of the resultant
vector in the append function: append : Π (α : Type) (m n : N), vec α m→
vec α n → vec α (m + n). Given that the length of the first vector is m and
that that of the second is n, the type system can enforce at compile time that
the length of the result of appending the vectors is m + n. In contrast, such a
constraint must be expressed externally in a simply-typed system. For example,
John Harrison [14] modeled vectors vec α n in HOL as functions of type N → α
where N is a type with exactly n values. The examples for dependent types
were taken from Chapter 2 of Theorem Proving in Lean [4].

LCF implements a classical logic in comparison to Automath’s constructive
logic. Every constructive proof is classically valid. Classical logic can be con-
sidered as an extension of constructive logic with the law of the excluded middle
that states that for every proposition A, A∨¬A holds. This can also be stated
as the double negation elimination law or as proving a proposition by contradic-
tion. As such, some statements that are true in classical logic might not have a
proof in constructive logic. Additionally, some propositions might be easier to
prove in classical logic. A common example is a classical proof of the following
lemma.

Lemma : There are irrational numbers a and b such that ab is rational.
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Proof.
√

2
√
2

is either rational or irrational, by the law of the excluded middle.
If it’s rational, then a = b =

√
2.

If
√

2
√
2

is irrational, we know (
√

2
√
2
)
√
2 = 2. Then, a =

√
2
√
2

and b =
√

2.

Constructively, this proof is more complicated and involves proving that
√

2
√
2

is
irrational. However, constructive proofs construct a proof object [3]. For proofs
of existential statements and disjunctions, we actually have a proof object as
a witness to the existential and of one of the disjuncts. Due to its insistence
on constructive objects, constructive logic has a direct relation to computation,
which is, for instance, demonstrated by the Curry-Howard Isomorphism.

It is possible to do classical reasoning in some Automath-based systems,
and constructive reasoning in LCF-based ones. For instance, Isabelle was first
created as a tool to reason in constructive logic, and its first object-logic was
Isabelle/CTT, based on constructive type theory. While Coq’s logic is fully
constructive, classical axioms such as the law of the excluded middle and the
axiom of choice can be added as additional axioms to Coq to do classical rea-
soning. Also, since constructive proofs are programs, extraction of programs
that are correct by constructions from proof assistants like Coq is relatively
straightforward.

While these theoretical aspects are quite fundamental in differentiating LCF
and Automath and their respective descendants, more practical aspects might
play a role in choosing between modern-day proof assistants. Isabelle, one of
the most popular LCF-style provers today, offers a structured proof language
called Isar. Isabelle/HOL, offers on top of its large standard library, the Archive
of Formal Proofs [1] — a comprehensive collection of proofs contributed by the
Isabelle community. In fact, these vibrant communities for each proof assistant
have built extensive libraries for each of them over the years that might make
one more attractive than the other. For example, the Coq proof assistant has
plenty of libraries and verification projects available for reuse [2]. Similarly,
the Lean Theorem Prover also has an active user community that maintains a
library for mathematics called mathlib [18]. Other considerations may include
utilities such as independent tactic languages, for example, Coq’s LTAC [11].
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