
Automating Interactive Theorem Provers and

Certifying Automatic Theorem Provers

Arjun Viswanathan

Abstract

Interactive theorem provers (ITPs) and automatic theorem provers
(ATPs) are two distinct categories of theorem provers on different ends of
the spectrum of theorem proving. On one hand, ITPs are typically robust
tools with a small, verified kernel, making them highly reliable. How-
ever, they require user intervention in the proving process, only offering
a minimal amount of automation. ATPs, on the other hand, are push-
button theorem provers that use complex heuristics to prove theorems; as
a consequence, they have a large code-base that is hard to maintain and
susceptible to bugs. A lot of recent research has focused on bridging the
gap between these two poles of theorem proving. Hammers and certified
checkers are tools that were born from this research, that have different
approaches to solving this problem. This work aims to comprehensively
study these different tools with a focus on using SMT solvers as the ATPs
enhancing automation in ITPs.

1 Introduction

Interactive theorem provers (ITPs) or proof assistants are software tools that
allow formalizing of mathematical proofs. They provide an expressive logic to
state theorems in, and an interactive interface through which the user can at-
tempt to prove these theorems using methods called tactics. Generally, this
interface mimics a written mathematical proof with a context and a goal that
changes on the fly as one steps through the parts of the proof. The data struc-
tures provided by the ITP are minimal and the user’s mathematical structures
are defined on top of these, keeping the verified kernel of the ITP small. These
proofs provide a high level of reliability but are hard to come up with from the
user’s point of view.

Automatic theorem provers (ATPs) have grown rapidly over the past decades
and refer to tools that allow automatic proving of logical formulas. Interaction
between the user and the ATP is kept to a minimum; ideally, the user would
provide a theorem to the ATP and the ATP either proves it or comes up with a
counter-example that disproves it. Satisfiability modulo theories (SMT) solvers
and superposition provers are two popular categories of ATPs. Although both
of these have different approaches to proving, they both look at a formula in

1

Expressiveness

Soundness Automation

ITP
ATP

Figure 1: Comparing Interactive Theorem Provers (ITPs) and Automatic The-
orem Provers. Credits: Chantal Keller (ATPs)

terms of its satisfiability. The satisfiability problem is the dual of the validity
problem (proving a formula to be valid) — a formula can be proved to be valid
by establishing that its negation is unsatisfiable.

ATPs and ITPs clearly have different modes of operations and offer distinct
advantages: ITPs certify their results with a high degree of trustworthiness al-
though reaching the proofs might take some time and effort from the user; in
contrast, ATPs offer relatively quick and automated results, while not provid-
ing the same kind of guarantees that ITPs do. A natural research question is
whether we can get the best of both worlds — reliable proofs with maximum
automation. In this work, we study various tools that attempt to combine ATPs
and ITPs.

After specifying the notation used in the rest of the paper, we describe SMT
solvers and superposition provers in Section 3. Section 4 explores the state-
of-the-art of ITPs. Section 5 and Section 6 explore hammers in general, and
Sledgehammer’s integration with SMT solvers in particular. In Section 7, we
look at SMTCoq. Finally, we compare the 2 approaches in Section 10, then
present some related work, and discuss our plans to take this research forward.

2 Technical Preliminaries

Most of the notation and technicalities are introduced where needed in this
document. For a thorough introduction to first order logic and satisfiability
modulo theories, see [10]. Briefly, literals are variables or negations of variables,

2

terms are built from literals, and formulas are built from terms and quantifiers.
Most provers reason over arbitrary logical formulas which they convert into
a normal form for easier processing. One such normal form is the conjunction
nomal form (CNF). A formula in CNF is a conjunction of clauses (disjunctions of
literals). Additionally, SMT deals with a sorted FOL - sort is a formal synonym
for type.

We also look at various rule systems. In general a rule looks like this:

premise1 premise2 ... premisen
conclusion

rule− name

The rule called rule-name has n premises premise1, ..., premisen and a conclu-
sion conclusion. The rule can be understood as follows — if all n premises are
true, then it follows that the conclusion is true. Usually, the premises and the
conclusion are formulas but the Z3 SMT solver uses a sequent calculus where
these are sequents. These are introduced later before their usage.

We discuss various proof systems that give refutation proofs of validity. A
refutation proof employs the duality between validity and satisfiability. To prove
a formula F , it suffices to prove that ¬F is unsatisfiable. If there is no way to
satisfy ¬F , then by refutation, F must be true. This form of proofs is a recurring
theme in this work.

The following abbreviations are repeatedly used: SAT (SAT), satisfiability
modulo theories (SMT), unsat (unsatisfiable), first-order logic (FOL), higher-
order logic (HOL).

3 Automatic Theorem Provers

3.1 SMT Solvers

Boolean satisfiability, often called the SAT problem, is the problem of deter-
mining if a Boolean formula is satisfiable, that is, whether there is an assigment
of the values of True or False to the variables of the formula so that the entire
formula evaluates to True. For example,

(x ∨ y) ∧ z

can be satisfied by the assignment {x = True, y = False, z = True}. On the
other hand,

x ∧ ¬x

is unsatisfiable, no matter what value is assigned to x.
Satisfiability Modulo Theories [10] or SMT lifts SAT to a level that includes

theories, by considering formulas whose atoms can be not just propositional
variables but also atomic formulas in some logical theory of interest. For exam-
ple,

(a = b) ∧ (b = c) ∧ ¬(a = c)

3

is a formula that is unsatisfiable in the theory of equality over uninterpreted
functions, in which we have the axioms of equality and the only information
about functions/constants we have is syntactical. This formula is “unsat” be-
cause, by transitivity of a = b and b = c, we have a = c. SMT allows us
to be more expressive with our formulas, but this comes at the cost of more
complicated procedures.

SMT solvers have plenty of applications in formal methods and software ver-
ification. For instance, SMT solvers are used in the back-end of model check-
ers [7], which take as input mathematical models of a software system, and
verify whether they satisfy a particular temporal property or not. Another area
of application is symbolic execution [8], which is to analyze multiple execution
paths of a program based on abstractions of the inputs. Other uses of SMT
solvers include program synthesis [16], static analysis, and generation of logical
interpolants [28].

Due to the recent emphasis on verifying results from SMT solvers [19, 41, 4],
many SMT solvers are proof producing. When an SMT solver finds that a
(quantifier-free) formula is satisfiable, an easily checkable certificate of this is
a satisfying model of the formula. However, when a solver concludes that a
formula is unsatisfiable, it is more difficult to produce an acceptable certificate
since this certificate must contain, in effect, a proof of unsatisfiability. Most
SMT solvers follow some version of the DPLL(T) algorithm, which tries to sat-
isfy the formula by propagating assignments, making choices on assignments
when necessary, and concluding “unsat” when all choices have been tried un-
successfully. Since the resolution rule is central to this algorithm, a universally
accepted proof calculus is one based on resolution. Specifically, a proof of un-
satisfiability of a formula in conjunction normal form (CNF), is a tree with the
input clauses and theory lemmas at the leaves, and the empty clause at the
root. Each node of the tree is an application of rules that simplifies previous
nodes. The primary rule used in these trees is resolution.

The resolution rule takes two clauses, a pivot element that occurs with op-
posite polarities in each of the clauses, and gives one clause that is a consequent
of the premises. The idea is that, beginning with the input clauses and the the-
ory lemmas (which might have their own sub-proof trees coming from separate
internal solvers called theory solvers), the tree derives that the empty clause
holds, which is the most basic notion of unsatisfiability since the there is no way
to satisfy the empty clause.

ϕ1 ∨ ... ∨ ϕn ∨ χ ¬χ ∨ ψ1 ∨ ... ∨ ψm

ϕ1 ∨ ... ∨ ϕn ∨ ψ1 ∨ ... ∨ ψm
resolution

For instance, the following is a valid application of the resolution rule.

a ∨ ¬b b ∨ c
a ∨ c

The proof calculus for an SMT solver consists of proof rules such as resolution
and a proof of unsatisfiability is a proof tree with the assertions asserted in the
problem as leaves, as illustrated in Figure 2. Additionally, clauses asserted to be

4

assertion1 assertion2 assertionn. . . lemma1 lemma2 lemman. . .

. . .

⊥

. . .

Figure 2: A proof tree of unsatisfiability.

true by a theory solver — called theory lemmas - can also be leaves. These are
usually justified by the theory solver, possibly by a tree rooted at the lemma.
Each node in the tree is an application of a proof rule, and the root concludes
the empty clause ⊥.

Even though this sort of calculus is common among proof-producing SMT
solvers, there is no standard one and each solver uses its own variation. For
example, CVC4 [11] uses a general proof framework called LFSC or Logical
Framework with Side Conditions that mixes declarative rules with computable
programs; veriT [17] uses a rule-based calculus defined in a SMT-LIB-like syn-
tax; Z3 [23] uses a rule-based calculus with a relatively lower level of granularity.

3.2 Superposition Provers

Superposition provers or resolution provers differ from SMT solvers in that they
focus on proving conjectures rather than finding a satisfying model for a set of
formulas. While these problems are duals of each other, picking one over the
other does make a difference in the kinds of problems that become solvable
due to the complexity of the problem space - the SAT problem is NP-complete
and quantification and theory reasoning often lead to undecidability. The input

5

problem to a superposition prover is formulated as a set of axioms that relate to
the problem space, a set assumptions and a conjecture to prove. Additionally,
while theories are built-in to SMT solvers, they need to be externally axiom-
atized for resolution provers. As such, superposition provers are better suited
for quantified formulas and minimal theory reasoning, whereas SMT solvers do
well on problems that contain constraints in theories and quantified formulas
slow them down. Because theories aren’t built-in to superposition provers, they
distinguish axioms and assumptions in their inputs. Superposition provers, like
SMT-solvers, produce resolution proofs.

The goal is to find the unsatisfiability of the negation of the conjecture
along with the assumptions and the axioms, and this is done by refutation. The
prover converts the input formulas into a set of clauses and uses a small set of
inference rules to add implied clauses to the input set of clauses — ultimately
it tries to derive the empty clause or figure out that this is not possible. These
provers are resolution-based — the most important rule in the calculus is the
resolution rule. This has evolved into the paramodulation rule to accommodate
the notion of equality, and ultimately into the superposition rules that take into
consideration, along with equality, an ordering on the terms in the clauses to
reduce the number of rule applications.

Conceptually, a proof trace is a tree with the empty clause at the root, and
the axioms/assumptions at the leaves. Each node is obtained using one or more
inference rules applied to the previous nodes/leaves. In practice, the tree is im-
plemented as a directed acyclic graph (DAG) since nodes are shared. The proof
calculus is sound and refutationally complete — if the input is unsatisfiable, the
empty clause will be derived. Termination, however, depends on the availability
of resources (time and memory) when the input is satisfiable, and thus isn’t
guaranteed.

Popular resolution provers such as Vampire [35], E [54], and SPASS [60]
adhere to the TPTP (Thousands of Problems for Theorem Provers) [56] in-
put/output standard.

A superposition prover applies the inference rules to the input set of clauses
until saturation — that is until the resultant set of clauses is closed under
the inference rules. To keep this system efficient, provers use an ordering on
the terms. The saturation algorithm used by the prover guides the process of
choosing the next inference rule to apply based on this term ordering.

Given S, the set of input clauses, the possible outcomes of a superposition
prover are:

1. The empty clause is derived from S, and S is unsatisfiable.

2. The solver terminates without generating the empty clause, and S is sat-
isfiable.

3. The saturation algorithm does not terminate before the prover runs out of
resources, and the empty clause is not generated. In this case, the result
is unknown.

6

Since there may be redundancy in the application of inference rules and the
generated clauses, many provers work on minimizing this redundancy in the
interest of efficiency.

Resolution provers deal with theories by adding a user-provided axiomatiza-
tion of the theory to the leaves of the proof DAG before running the saturation
algorithm.

4 Proof Assistants

A proof assistant or interactive theorem prover (ITP) is a software tool used to
formalize proofs by human-machine collaboration. Proof assistants originated
with the Automath [22] and the Logic for Computable Functions (LCF) theo-
rem prover [46], which is designed in the logic with the same name [38]. Both
emphasized the principle of having a small trustable proof checker. In LCF-style
theorem provers, theorems are implemented as an abstract datatype, and new
theorems can only be constructed through a fixed set of functions, that corre-
spond to the underlying logic’s axiom schemata and inference rules, provided
by this datatype. This keeps the trusted codebase to a minimum, and provides
strong soundness guarantees. LCF-style theorem provers include the HOL fam-
ily of ITPs: HOL Light [29], HOL4 [55] and Isabelle [61]. Automath is based on
type theory and the Curry-Howard isomorphism, where propositions or theo-
rem statements are types, and their proofs are programs inhabiting them. ITPs
taking the Automath approach to theorem-proving include Coq [58], Agda [18],
NuPRL [30], Matita [5], and Lean [24].

In the following sections, we focus on particular ATP integrations with Is-
abelle/HOL and Coq. Isabelle is a generic proof assistant that can be instan-
tiated with a particular logic and calculus. Isabelle/HOL is an instance of
Isabelle that provides an expressive HOL to prove theorems in its proof lan-
guage Isar, and also consists of a large library of formally verified mathematics.
The Coq proof assistant provides a functional programming language interface
in Gallina, and implements a type theory called the calculus of inductive con-
structions (CIC). Similar to Automath, theorems are types in Coq, and proofs
are programs inhabiting them. While these proofs are written manually by the
user, Coq provides some automation in the form of tactics. Using tactics, the
user must build a term whose type is the theorem being proved, and a proof
ends with Qed which calls the Coq type checker to certify the proof.

5 Hammers

Hammers are automated tools that use ATPs to help automate the proving of
goals within ITPs that depend on certain other lemmas. A hammer provides
a method for automation within the ITP as follows. When a user calls the
hammer’s tactic on a goal, it sends the goal along with a set of premises (pre-
viously proven lemmas) to the ATP, and if the ATP is able to prove the goal,

7

it processes this proof in some way within the ITP to give the user a closed
proof of the goal. A hammer is composed of a premise selector, which is a
method to identify relevant premises that help prove a goal; a translator that
bridges the gap between the logic of the ITP and that of the ATP(s); and a
proof reconstructor that reconstructs in the ITP the external proof provided by
the ATPs.

5.1 Premise Selection

A typical ITP goal L has a set of hypotheses H1, H2, ...,Hn and a conjecture G
to prove:

L : H1 → H2 → ...→ Hn → G.

Proving L is equivalent to proving the unsatisfiability of ¬L.

¬L = ¬(H1 → H2 → ...→ Hn → G)

= ¬(¬H1 ∨ ¬H2 ∨ ... ∨ ¬Hn ∨G) by unfolding →
= ¬¬H1 ∧ ¬¬H2 ∧ ... ∧ ¬¬Hn ∧ ¬G by De Morgan’s law

= H1 ∧H2 ∧ ... ∧Hn ∧ ¬G by double negation elimination

So the problem can be equivalently stated in the context of ATPs as check-
ing the unsatisfiability of a set of hypotheses along with the negation of the
conjecture. For instance, in an SMT-LIB file, this would like this:

assert H_1

assert H_2

...

assert H_n

assert (not G)

check-sat

However, goals in ITPs aren’t necessarily self-contained as in L. The hypotheses
needed to prove G might have been proven earlier. In fact, ITPs have large
libraries of proven lemmas, any of which might be useful in proving a goal G.
As such, picking the right hypotheses to send along with the negation of the goal
to an ATP is challenging. This process is called premise selection. The most
basic form of premise selection simply leaves it to the user to find relevant facts
to prove a conjecture. But given that these libraries have hundreds of lemmas,
using automatic methods to select premises is a more scalable and generalizable
approach.

Modern hammers have plenty of ways to automate premise selection. Some
of them use machine learning to learn axiom selection from previously success-
ful proofs using a variety of methods based on Bayesian statistics [2], nearest-
neighbor ranking functions [33], and non-linear kernel methods [2]. Others use
simpler algorithms; the relevance filter by Meng and Paulson [45] for the Is-
abelle/HOL ITP selects relevant facts by giving priority to those with a larger

8

number of symbols in common with the goal. The Divvy system [52] also uses a
syntactic relevance filtering technique; it also uses an ordering technique based
on latent semantics called APRILS (Automated Prophesier of Relevance Incor-
porating Latent Semantics). Others use semantics instead of syntax to guide
the selection process. For instance, the SRASS (Semantic Relevance Axiom Se-
lection System) [57] finds countermodels of the conjecture and selects axioms
that exclude the countermodels. Other work combines these various types of
methods to increase efficiency [31, 36].

5.2 Translation

ITPs use expressive higher-order logics sometimes with set-theoretic notation,
whereas ATPs are mostly restricted to first-order logic (FOL). Thus, not all ITP
problems are transferable to an ATP. However, there is a large enough subset of
problems provable by an ATP that can help an ITP user. When a goal is prov-
able by an ATP, it needs to be soundly translated from the ITP’s logic to that
of the ATP. The translation can involve various tricks to eliminate higher-order
constructs [44] such as higher-order quantification, partial function applications,
and anonymous functions from the goal; and an encoding of complex types into
simpler types, where applicable. Furthermore, resolution-based provers usually
do not have built-in theories, so a theory must be externally axiomatized within
the ATP. With SMT solvers, there maybe a stronger correspondence between
some ITP types and sorts in the SMT solver, so the respective theory might
serve as an axiomatization.

5.3 Proof Reconstruction

Once the goal is translated to a problem understandable to the ATP, the result
from the ATP needs to be soundly translated back to a valid ITP output.
As previously mentioned, the validity of a goal in the ITP corresponds to the
unsatisfiability of its negation in the ATP. If it is satisfiable, this translates
to a counterexample of the fact that the goal holds. Hammers sometimes use
this feature of the ATP to avoid wasting effort trying to prove unprovable sub-
goals. More interestingly, if the goal is found to be unsatisfiable in the ATP, the
refutation proof of its unsatisfiability needs to be processed by the ITP. In its
simplest form, this pipeline consists of using the ATP as an oracle, that is, to
consider the goal to be proven in the ITP if the ATP concludes that its negation
is unsatisfiable. This compromises the ITP’s trustworthiness and adds to the
the trust-base, the entire ATP.

An improvement is to independently reconstruct the proof in the proof as-
sistant once the ATP finds the goal to be unsatisfiable. In this case, the only
information the ITP gets from the ATP is that the goal is provable given the
premises. It does not care about how the ATP proved this conjecture. Essen-
tially, the ATP acts as a relevance filter for the prover inside the ITP. This is
done, for instance, with Isabelle and the Metis prover [49]. A more sophisti-
cated but also more complex integration uses the proof steps used by the ATP

9

in addition to the premises to guide the construction of a proof in the ITP, as
done in PRocH [32] which reconstructs TPTP proofs in HOL Light.

6 Sledgehammer

Sledgehammer is a component of Isabelle/HOL that uses external ATPs to guide
Isabelle/HOL’s proof methods. Sledgehammer uses both resolution provers and
SMT solvers for proof automation. When a user wishes to find a proof for a con-
jecture using Sledgehammer, the tool picks a few hundred relevant lemmas from
Isabelle’s libraries and sends them along with the conjecture to the ATP. The
conjecture is translated from Isabelle’s polymorphic higher-order logic (HOL)
to the ATP’s first order logic (FOL). Sledgehammer sends this query in parallel
to all available ATPs. If an ATP is able to prove the conjecture, Isabelle’s own
FOL subprover - Metis - sets out to reprove the goal with the same premises. Es-
sentially, the role of the ATP in this integration is to filter out relevant facts for
Metis to efficiently work with and also to eliminate disprovable sub-goals from
Metis’s search space. This is useful in Isabelle because Metis is considerably
slower than the external ATPs.

In the rest of this section, we expand on the work done to integrate SMT
solvers with Isabelle/HOL via Sledgehammer. Sledgehammer provides the smt
tactic to utilize this feature.

This integration, like other hammer integrations, consists of a premise se-
lection phase, a translation from Isabelle’s HOL to the SMT solvers’ FOL, and
the reconstruction of proofs found by the SMT solver with inference rules of Is-
abelle/HOL. Reconstruction involves either passing the minimal amount of facts
needed to prove the goal by the external solver to Metis, Sledgehammer’s inter-
nal prover or, Sledgehammer can reconstruct the proof of the external prover,
inference by inference. The SMT solvers integrated in Sledgehammer are Z3,
Yices [25], and CVC3 [9]. The integration with CVC3 was later extended to one
with CVC4. Yices and CVC3 are trusted as oracles. Trusting SMT-solvers is
not a dependable technique for previously mentioned reasons. The integration
with Z3 involves proof production by Z3 and reconstruction of these proofs in
Isabelle.

6.1 Translation

The integration of Sledgehammer with SMT solvers consists of a translation
from HOL to many-sorted FOL. The target of the translation is the SMTLIB
standard for SMT-solvers. The translation is sound - validity of the translated
problem implies validity of the original problem - but not complete - validity
of the original problem does not necessarily imply validity of the translated
problem. HOL is more expressive than FOL. As such, all first-order terms are
representable in HOL. Translation of this first-order subset of HOL is pretty
straightforward. More interestingly, the translation has to deal with certain
higher-order features that have no obvious first-order counterpart. Some of the

10

incompleteness of the translation does come from the inability to translate some
of these features.

The type system of HOL consists of type variables and compound types. A
type variable is a schematic type that can be instantiated to any particular type.
For instance, α→ β is the type of all functions from some type α to some type β.
This represents a polymorphic type which is handled using monomorphization
— the process of generating all instances of a set of schematic terms based on
a set of monomorphic terms until a fixed point is reached. This process can be
nonterminating. The translation performs a fixed number of monomorphization
steps since the terms that actually contribute to proofs are typically those that
are generated by the first few steps. Compound types are types constructed
from other types — κ τ1...τn is a type composed of the types τ1, ..., τn. After
recursively monomorphizing the types τ1, ..., τn, the translation represents the
compound type κ τ1...τn as a first-order type κn.

An anonymous function from HOL is translated to a named function and a
quantified constraint is added to specify the function’s behavior. This is called
λ−lifting. Specifically, a term t that contains a λ−abstraction (anonymous
function) λx.u is translated to a term t with all occurrences of this anonymous
function substituted with c and the constraint ∀x.c x = u is added as an axiom.

HOL also allows for partial applications of functions, which are handled in
the translation by using a constant app that represents explicit applications. If
c has arity m+ 1 and is represented in the problem with at least m arguments,
then c t1...tm is represented as is, and this term can be applied to another
argument tm+1 as app (c t1...tm) tm+1 along with an axiomatization of what it
means to construct terms with app:

∀t1, t2. app t1 t2 = t1 t2.

The translation is less general than the translation used by Sledgehammer for
superposition provers, in that, since (monomorphic) types are embedded in SMT
solvers, some of the types from Isabelle such as integers and reals are mapped
to their corresponding SMT types. In addition, this work was extended with
support for bit-vectors or machine integers [15]. The Isabelle/HOL counterpart
to the SMT-LIB theory of bit-vectors was developed by Dawson [21]. All the
SMT-LIB bit-vector operations have corresponding definitions in the bit-vector
libraries of HOL4 and Isabelle/HOL.

An evaluation on this translation showed that SMT solvers improved and
complemented the proof automation achieved with resolution provers alone on
many trivial and non-trivial problems.

6.2 The Z3 Proof System

Z3’s proof system is a sequent calculus that uses 38 proof rules. Some of these
rules are presented in Figure 3 using sequents Γ ` ϕ where Γ is a set of formulas
called the hypotheses and ϕ is a formula called the proposition. A rule consists
of one or more sequents as premises and a sequent as the conclusion. Similar to
resolution provers, a proof is represented as a tree in theory, but implemented

11

` > true
ϕ ∈ Π

{ϕ} ` ϕ asserted
Γ1 ` ϕ1 Γ2 ` ϕ1 → ϕ2

Γ1 ∪ Γ2 ` ϕ2

mp

{ϕ} ` ϕ
hypothesis

Γ \ {l1, ..., ln} ` ¬l1 ∨ ... ∨ ¬ln
Γ ∪ {l1, ..., ln} ` ⊥

lemma

Γ ` ϕ
Γ ` ϕ↔ > iff>

Γ ` ¬ϕ
Γ ` ϕ↔ ⊥ iff⊥

Γ ` ϕ1 ↔ ϕ2

Γ ` ϕ1 ∼ ϕ2
iff∼ ` t ' t refl'

Γ ` l1 ∧ ... ∧ ln
Γ ` li

elim∧
Γ ` ¬(l1 ∨ ... ∨ ln)

Γ ` ¬li
elim¬∨

Γ ` t1 ' t2
Γ ` t2 ' t1

symm'

Γ1 ` t1 ' t2 Γ2 ` t2 ' t3
Γ1 ∪ Γ2 ` t1 ' t3

trans'
Γ ` (t1 ≈ t2) ' (t′1 ≈ t′2)

Γ ` (t2 ≈ t1) ' (t′2 ≈ t′1)
comm',≈

Figure 3: Simple Z3 proof rules.

as a directed acyclic graph (DAG) by Z3 to due to node sharing. A proof tree
consists of axioms from the proof system as leaves, and application of rules as
nodes, and since proof trees document unsatisfiability of the input formulas,
the root of the tree concludes the empty clause ⊥, which is represented by the
sequent Π′ ` ⊥ where Π′ is the unsat core — a subset of the assertions Π
initially given to Z3 to be shown unsatisfiable.

A representative subset of the proof rules are documented in [14] and some
of them are repeated here to illustrate the workings of the Z3 proof system. In
addition to the simple rules from Figure 3, resolution is a rule that’s central to
the proof calculus. Resolution was introduced in Section 3.1 and a special case
of it called unit resolution is represented as follows in the sequent calculus of
Z3, where I = {1, ..., n} and J is a non-empty subset of I :

Γ `
∨
i∈I

li 〈Γj ` ¬lj〉j∈J

Γ ∪
⋃
j∈J

Γj `
∨

i∈I\J
li

unit-resolution

Additionally, Z3 has a set of rules for converting input formulas into equisat-
isfiable formulas in conjunctive normal form (CNF) with polynomial complexity,
based on Tseitin’s CNF conversion method [59]. Tseitin’s method introduces
auxiliary variables and constraints asserting their equivalence with sub-formulas
that aren’t in CNF, until the entire formula is in CNF. Z3 runs this algorithm
lazily and optimizes it to avoid introducing too many new variables. A formula
is in negation normal form (NNF) if negations are applied only to variables and
the only Boolean operators in it are conjunction and disjunction. NNF is an
intermediate step in the CNF conversion process when quantifiers are involved
and Z3 has a set of rules for translation of formulas to NNF in linear time.

12

The main rule for reasoning about equality is the congruence rule:

〈Γj ` tj ' t′j〉j∈J 〈ti ≡ t′i〉i∈I\J⋃
j∈J

Γj ` f(t1, ..., tn) ' f(t′1, ..., t
′
n)

cong

Equality (=), equivalence (⇐⇒), and equisatisfiability (∼) are congruence
relations, and ' represents any one of these relations. ≡ represents syntactic
equivalence of terms. I and J are defined as above for resolution.

Z3 is also proof producing for quantified formulas. Q represents either of
the two quantifiers — the universal quantifier ∀ or the existential quantifier ∃
— and x represents a list of variables x1, ..., xn. The following proof rule allows
introduction of quantifiers:

Γ ` ϕ1[x] ∼ ϕ2[x]

Γ ` (Qx.ϕ1[x]) ∼ (Qx.ϕ2[x])
introQ

The universal quantifier can be eliminated by instantiation and an existential
quantifiers can be eliminated using skolemization.

¬(∀x.ϕ[x]) ∨ ϕ[x 7→ t]
inst∀

Note the representation of implication a→ b in its CNF form ¬a ∨ b.
Skolemization [47] is the process of removing existential quantifiers from

formulas using constants called Skolem constants as witnesses.

(∃x.ϕ[y, x]) ∼ ϕ[y, f(y)]
sk∃

(¬∀x.ϕ[y, x]) ∼ (¬ϕ[y, f(y)])
sk∀

Besides these, Z3 provides theory rules, that conclude disjunctions of the-
ory literals called theory lemmas, for theory specific reasoning and rewriting
rules. These are called th-lemma rules. The theory of bit-vectors has special
th-lemma-bv rules owing to the fact that bit-vector proofs involve reasoning
about the corresponding bits of a bit-vector — a process called bit-blasting.

Rewriting is an important part of SMT solvers — this process takes care of
various simplifications and transformations to canonical forms. Z3 provides a
set of metatheorems that are rewriting patterns that may repeatedly occur such
as symmetry of equality, common propositional tautologies, etc. Sledgehammer
allows users to add rules to the set of metatheorems. If one of Z3’s rewrite rules
fails to be reconstructed in Sledgehammer, the user can add a metatheorem
that matches the pattern to fix the failure. For the bit-vector extension [15],
schematic theorems that play the same roles as metatheorems have proved to
be crucially time-saving. If a schematic theorem’s conclusion matches a term,
the entire theorem is instantiated by the scheme. Besides commutativity and
associativity rules specific to bit-vector operations, examples include simplifi-
cation rules such as the neutrality of the bit-vector representing 0 for bit-wise
disjunction.

13

6.3 Proof Reconstruction

Sledgehammer smt tactic trusts the Yices and CVC3 solvers, so only proofs
produced by Z3 are reconstructed in Isabelle. The Z3 proofs are reconstructed
step-by-step, and currently supported theories are equality, linear arithmetic,
and bit-vector arithmetic. Since Z3’s FOL is a subset of Isabelle’s HOL, for-
mulas in Z3 proofs are easily representable as terms in Isabelle/HOL. The Z3
proof tree is scanned in depth-first post-order, starting from the root node, and
reconstructed in Isabelle, step-by-step. Each proof node, contains information
such as rule name, references to premises and propositions, and is represented as
an algebraic datatype with a unique ID assigned by Z3. Sledgehammer stores
these in a balanced tree with logarithmic lookup using the IDs as keys. Re-
construction of a proof node represents a proven Isabelle/HOL theorem of the
node’s conclusion. Every node’s premises are discharged as theorems, which are
then used to derive the node’s conclusion. Once reconstructed, a proof node can
be reused by Sledgehammer. If Π is the set of asserted formulas, Π′ represents
the unsat core returned by Z3 — the minimal subset of Π required to prove the
problem unsat. After reconstructing the root node, Sledgehammer checks the
rest of the tree to see that only the formulas from Π′ remain as leaves.

Proof reconstruction is sound by construction and does not extend the
trusted code base beyond Isabelle’s LCF kernel, but it is incomplete. In fact,
this work led to the discoveries of soundness bugs in Z3 that were subsequently
fixed by the developers.

For the theory of bit-vectors, the smt tactic involves some additional opti-
mizations to offset the complexity added by bit-blasting - a process that can
cause an exponential blow-up. One of these - schematic theorem instantiation
- is described in the previous sub-section. Memoization of theorems, that is,
caching of certain computationally expensive bit-vector specific theorems in a
structure called a term net also proved useful. These techniques, and many use-
ful bit-vector rewrite rules — are used with HOL4 and Isabelle/HOL’s existing
automation for bit-vector reasoning.

Since Z3’s proofs are relatively coarse-grained, proof reconstruction in Sledge-
hammer has to perform proof search when the proof step is not reflected in Z3’s
proof. According to [14], enhancing Z3 with more descriptive rules would help
improve the smt tactic and strengthen the integration.

7 SMTCoq

SMTCoq implements a skeptical cooperation between Coq and proof-producing
SMT and SMT solvers. It can be used as a proof checker for proofs produced
by SAT and SMT solvers. More relevantly, it is a Coq plugin that uses SAT
and SMT solvers to prove goals in Coq. It is written and proved correct in Coq,
with some OCaml support for translation and preprocessing. SMTCoq allows
the user to query a number of SAT/SMT solvers and if the solver is able to
validate the query, that is, it determines that the negation of the conjecture is

14

unsatisfiable, it produces a proof of unsatisfiability, which is checked in Coq.
SMTCoq’s uses computational reflection [3] to invoke Coq’s computation

within proofs. Proofs can be shortened by increasing their computational part,
due to the Curry-Howard isomorphism that Coq is based on. Reflection requires
the SMT solver’s first-order terms to have two representations. FOL terms
are represented in Coq using Coq’s first-order terms in a shallow embedding
and also using datatypes defined in Coq — the deep embedding. Thus, FOL
statements are naturally represented in Coq in its shallow embedding. Reflection
allows to prove these statements using computations on their deep embedding.
SMTCoq provides the tools necessary to switch between the two embeddings
— an interpretion function compiles deep terms to their Coq counterparts; and
reification - written in OCaml without compromising soundness — transforms
shallow terms to the corresponding deep terms.

SMTCoq represents the quantifier free formulas from the SMT solver in Coq
as Boolean terms. Thus, a Boolean decision procedure in SMTCoq, checks proof
certificates from solvers. However, Prop is the type of propositions in Coq, and
thus is the type of proofs. The Ssreflect plugin allows reflection from the bool

type in Coq to Prop. This is crucial since Booleans are easier to manipulate via
computations and propositions are harder to prove.

SMTCoq is sound — proven to be correct in Coq - but not complete. This
means that when an SMT solver proves a conjecture, we can we be confident of
its response since we get a Qed proof in Coq. However, if SMTCoq is not able to
prove a conjecture, we cannot be sure that its unprovable. Since certain theories
can make SMT solving undecidable, completeness is not a realistic goal.

Since different SMT solvers produce resolution proofs of unsatisfiability in
different formats, SMTCoq has its own input certificate format. The proofs from
the different SMT solvers are translated to an SMTCoq certificate which can
then be checked within Coq. Given an input query, the SMT solver first converts
it into CNF (conjunction normal form) which is better suited for resolution
proofs. The final resolution proof might also consist of smaller proofs of theory
lemmas from the theory solver.

SMTCoq takes a modular approach of checking an SMT proof. The checker
is divided into a main checker that delegates parts of the proof to small check-
ers. The proof is divided into steps that small checkers can check. There is a
small checker for CNF conversion, one for resolution, and one for each theory.
SMT solvers perform a preprocessing step to rewrite certain input formulas to
a simplified version, and SMTCoq has a step and a checker corresponding to
this rewriting phase. The main checker divides the proof into steps, gives the
step to the relevant small checker, and checks that in the end, the empty clause
is deduced from the initial query. Since this initial query is the negation of
our conjecture, deriving the empty clause from it signifies its unsatisfiability.
Each small checker operates independently and maintains an invariant that al-
lows the checking process to be split this way. Specifically, the correctness of
the main checker depends on the correctness of each small checker. Since each
small checker transforms the initial query, generated from the initial goal, by
replacing clauses by new ones, its correctness guarantees that it will not make

15

SMTCoq

Proof
witness

Certificate

Formula

Coq
goal

Legend:

Coq checker + Soundess

Preprocessor

SMT solver

Certified

Trusted!

Untrusted

Coq

Reification

Theorem

Qed.

No
x ≜ 1
f ≜ λ a ⇒ a+1

counter-example

Figure 4: SMTCoq’s integration with SMT solvers. Credits: Alain Mebsout

unsound transformations. In other words, the small checker guarantees that its
transformations preserve the (un)satisfiability of the current query.

SMTCoq uses Coq’s native arrays to store the clauses, a set of which repre-
sent the goal. The main checker handles this initial array of clauses representing
the negation of the goal in CNF, and each small checker computes a clause that
is implied from a subset of the clauses. For efficiency, SMTCoq replaces the
unnecessary clauses with new ones when it knows that they will not be useful
anymore. After all the steps are handled by the small checkers, the main checker
checks that the final implied clause is the empty clause. Sub-terms of deep terms
are hash-consed (i.e., cached for maximal term sharing. Additionally, variables
and literals of FOL are represented in Coq using machine integers on which fast
computations can be performed to manipulate them.

Currently SMTCoq supports the SAT-solvers zChaff [39] and Glucose [6],
and the SMT-solvers CVC4 and veriT.

8 Comparison

Sledgehammer has three possible integrations with SMT-solvers: it either (i)
trusts the SMT-solver as an oracle, (ii) uses the SMT-solver as a relevance filter
on premises so it can prove goals efficiently using Metis, or (iii) reconstructs

16

proofs produced by the SMT solver to produce goals without compromising
the soundness guarantees of the small LCF-kernel. The third of these is most
comparable to how SMTCoq operates — it sends Coq conjectures to the SAT or
SMT solver, which returns a proof of the conjecture if it finds it to be provable;
SMTCoq then checks this proof within Coq by reflection. SMTCoq can also
be used as a checker for proofs produced by SMT solvers. In fact, while there
exists an independent LFSC checker for LFSC proofs provided by CVC4, veriT
produces proofs but does not have a dedicated checker. It relies on integrations
with proof assistants to check its output. In this section, we compare the usage
of SMTCoq and Sledgehammer according to their ability to use SMT-solvers to
automate proofs within their respective ITPs.

Recall that ITPs have more expressive logics than ATPs, and that roughly,
the logic of an ATP is a subset of that of an ITP. So they can be used to
automate goals that are expressed within this subset. Sledgehammer goes a little
further by describing a translation of certain HOL features into FOL features
understood by SMT solvers. While this translation is incomplete, it captures
enough HOL features to widen the set of problems that an SMT solver can
help automate. Since SMTCoq does not deal with Coq’s non-FOL constructs,
SMTCoq’s tactics cannot be called on Coq goals that contain, for instance,
anonymous functions, partial function applications, or higher-order terms in
general. SMTCoq does not deal with polymorphic types or compound types
either. There is a correspondence between types in Coq and theories in SMT,
and only Coq goals that have these particular types can use the SMT solver.
The integer sort from SMT-LIB is mapped to Coq’s Z type, and Coq’s Bool
type corresponds to propositional reasoning in SAT or SMT. However, SMTCoq
defines custom types for machine integers and arrays. While these serve as
rich, independent Coq libraries for these types, they are not standardized in
Coq. In contrast, Sledgehammer only supports the theories of linear integer
arithmetic and bit-vectors, besides equality over uninterpreted functions which
is also supported by SMTCoq. Additionally, SMTCoq does not have support for
quantified formulas. Although the goal in Coq is universally quantified, on the
SMT side, it amounts to checking the unsatisfiability of a quantifier-free formula.
This is not the case with formulas containing either alternating quantifiers, or
those that occur outside the head of the formula — SMTCoq will fail on these.
Sledgehammer uses Z3’s quantifier proofs to support quantified fragments of its
theories.

Premise selection is a crucial part of Sledgehammer. A lot of research has
gone into optimizing premise selection to make proving more efficient. Conse-
quently, the SMT integration also uses Sledgehammer’s premise selection mech-
anisms to supply the SMT solver with the best possible hypotheses to prove a
goal. This process is so imperative that using the SMT solver just as a relevance
filter for premises has given useful results. In SMTCoq, each lemma is consid-
ered an independent entity with its set of hypotheses H and goal G that are
translated to an SMT-LIB problem. If the proof of G depends on conjectures
stated outside of H, the SMT solver will likely not be able to prove them. This
difference in ideology comes from the difference in axiomatizations of theories in

17

SMT solvers and resolution provers. Sledgehammer was originally coupled only
with resolution provers that do not have a notion of theories. Any additional
axioms of a theory must be appended to the input of a superposition prover.
SMT solvers have theories encoded into them, which might have facts besides
H that might help prove G. However, this might not always be the case. In
the next section, we propose an extension to SMTCoq using abduction to deal
with this shortcoming.

The Sledgehammer integration with SMT solvers is specific to Z3 (although
there are looser integrations with other SMT solvers). Although SMT solvers
have a common input/output syntax in SMT-LIB, their proof formats are quite
different. Extending Sledgehammer’s smt tactic to other SMT solvers might not
be straightforward due to the idiosyncrasies of Z3. On the other hand, SMTCoq
claims to be generic and extensible. SMTCoq has a certificate format, that is
different from the proof formats of each SMT solver. To extend SMTCoq’s sup-
port with a new solver, one only needs to write a preprocessor that translates
proofs from this solver’s format to that of the SMTCoq certificate. The SMT-
Coq checker’s soundness lemmas are also general enough to make it possible to
add more theories simply by extending the type of terms in SMTCoq. These
claims are corroborated by several successful extensions to SMTCoq. Initially,
it had support only for the ZChaff SAT solver and the veriT SMT-solver, with
the ability to reason in the theories of EUF and LIA. Since its inception, the
CVC4 SMT solver and the theories of bit-vectors and arrays have been added
to SMTCoq’s capabilities [26].

9 Related Work

In this section, we present other integrations between ATPs and ITPs, and
related research, that we didn’t get into deeply in this work. [13] presents the
framework for embedding the resolution calculus within type theoretic ITPs.
Some instances of this embedding are: in [1], between the 3TAP [12] ATP and
the Karlsruhe Interactive Verifier (KIV) [50]; IVY [42], a verified prover in the
ACL2 framework [34] that calls the Otter [43] theorem prover. Connections
between ITPs and SMT solvers include ones between the PVS system [48] and
the Yices SMT solver in [53], between the UCLID solver [37] and ACL2 in [40],
and haRVey (now veriT) with Isabelle/HOL in [27].

CoqHammer [20] is a hammer for the Coq proof assistant. It’s novelty comes
from the fact that most current hammers are for LCF-style provers that have a
HOL that is different from CIC. CoqHammer has a translation from Coq’s CIC
to untyped FOL which has a practical level of soundness and completeness.

10 Conclusion and Future Work

We have looked at various integrations between automatic and interactive theo-
rem provers. Hammers that typically utilize resolution provers within ITPs have

18

complex premise selection methods to pick an optimal set of lemmas that will
allow the ATP to prove the goal. We looked at an extension of Sledgehammer
that applies this framework with an SMT solver. On the other hand, SMTCoq
queries SAT and SMT solvers with independent lemmas in Coq and certifies the
solver’s result within Coq using computational reflection.

These illustrate the currently popular solutions to the premise selection prob-
lem - use smart methods to find a good set of premises that will enable the ATP
to find a proof; alternatively, hope that the ATP’s axiomatization is strong
enough to have any extra information necessary, or fail otherwise. We suggest
involving the user in the premise selection process with some help from the
ATP. Our proposal involves using CVC4’s abduction solver [51] in SMTCoq to
do this. For a theory T , given a set of axioms A and a goal G, abduction finds
a formula φ (the abduct) — if it exists — such that

A ∧ φ |=T G

In other words, it finds a formula φ that is consistent with the axioms and when
added to them, allows for the goal to be proven. When SMTCoq sends CVC4 a
lemma H |= G and CVC4 finds that G does not follow from H, the idea would
be to have it return a set of abducts for G and H. The user would then prove
the relevant abduct from previously proven lemmas and query CVC4 with that
abduct added to H, thus enabling CVC4 to prove the goal. We hope to take
SMTCoq’s CVC4 integration forward this way and avoid the premise selection
problem.

References

[1] Ahrendt, Beckert, Hähnle, Menzel, Reif, Schellhorn, and Schmitt. Integrat-
ing Automated and Interactive Theorem Proving, pages 97–116. Springer
Netherlands, Dordrecht, 1998.

[2] J. Alama, T. Heskes, D. Kühlwein, E. Tsivtsivadze, and J. Urban. Premise
selection for mathematics by corpus analysis and kernel methods. J. Autom.
Reason., 52(2):191–213, 2014.

[3] S. F. Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The semantics
of reflected proof. In [1990] Proceedings. Fifth Annual IEEE Symposium
on Logic in Computer Science, pages 95–105, 1990.

[4] C. Artho, A. Biere, and M. Seidl. Model-based testing for verification back-
ends. In M. Veanes and L. Viganò, editors, Tests and Proofs, pages 39–55,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[5] A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. The matita interactive
theorem prover. In Proceedings of the 23rd International Conference on
Automated Deduction, CADE’11, page 64–69, Berlin, Heidelberg, 2011.
Springer-Verlag.

19

[6] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
sat solvers. In Proceedings of the 21st International Jont Conference on
Artifical Intelligence, IJCAI’09, page 399–404, San Francisco, CA, USA,
2009. Morgan Kaufmann Publishers Inc.

[7] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

[8] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi. A
survey of symbolic execution techniques. ACM Comput. Surv., 51(3):50:1–
50:39, 2018.

[9] C. Barrett and C. Tinelli. Cvc3. In Proceedings of the 19th International
Conference on Computer Aided Verification, CAV’07, page 298–302, Berlin,
Heidelberg, 2007. Springer-Verlag.

[10] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook of
Model Checking., pages 305–343. 2018.

[11] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan
and S. Qadeer, editors, Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceed-
ings, volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, 2011.

[12] B. Beckert, R. Hähnle, P. Oel, and M. Sulzmann. The tableau-based theo-
rem prover 3tap version 4.0. In Proceedings of the 13th International Con-
ference on Automated Deduction: Automated Deduction, CADE-13, page
303–307, Berlin, Heidelberg, 1996. Springer-Verlag.

[13] M. Bezem, D. Hendriks, and H. de Nivelle. Automated proof construc-
tion in type theory using resolution. In D. McAllester, editor, Automated
Deduction - CADE-17, pages 148–163, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

[14] S. Böhme. Proving Theorems of Higher-Order Logic with SMT Solvers.
PhD thesis, Technical University Munich, 2012.

[15] S. Böhme, A. C. J. Fox, T. Sewell, and T. Weber. Reconstruction of z3’s
bit-vector proofs in hol4 and isabelle/hol. In J.-P. Jouannaud and Z. Shao,
editors, Certified Programs and Proofs, pages 183–198, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[16] J. Bornholt. Program synthesis explained. https://homes.cs.

washington.edu/~bornholt/post/synthesis-explained.html, 2015.
[Online; accessed 28-August-2018].

[17] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and P. Fontaine. verit:
An open, trustable and efficient smt-solver. In R. A. Schmidt, editor, Au-
tomated Deduction – CADE-22, pages 151–156, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

20

https://homes.cs.washington.edu/~bornholt/post/synthesis-explained.html
https://homes.cs.washington.edu/~bornholt/post/synthesis-explained.html

[18] A. Bove, P. Dybjer, and U. Norell. A brief overview of agda – a functional
language with dependent types. In S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, editors, Theorem Proving in Higher Order Logics, pages 73–78,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[19] R. Brummayer and A. Biere. Fuzzing and delta-debugging smt solvers.
In Proceedings of the 7th International Workshop on Satisfiability Modulo
Theories, SMT ’09, page 1–5, New York, NY, USA, 2009. Association for
Computing Machinery.

[20] L. Czajka and C. Kaliszyk. Hammer for coq: Automation for dependent
type theory. Journal of Automated Reasoning, 61, 06 2018.

[21] J. Dawson. Isabelle theories for machine words. Electronic Notes in The-
oretical Computer Science, 250(1):55 – 70, 2009. Proceedings of the Sev-
enth International Workshop on Automated Verification of Critical Systems
(AVoCS 2007).

[22] N. G. de Bruijn. The mathematical language automath, its usage, and
some of its extensions. In M. Laudet, D. Lacombe, L. Nolin, and
M. Schützenberger, editors, Symposium on Automatic Demonstration,
pages 29–61, Berlin, Heidelberg, 1970. Springer Berlin Heidelberg.

[23] L. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R. Ramakr-
ishnan and J. Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[24] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The
lean theorem prover (system description). In A. P. Felty and A. Middeldorp,
editors, Automated Deduction - CADE-25, pages 378–388, Cham, 2015.
Springer International Publishing.

[25] B. Dutertre. Yices 2.2. In A. Biere and R. Bloem, editors, Computer-
Aided Verification (CAV’2014), volume 8559 of Lecture Notes in Computer
Science, pages 737–744. Springer, July 2014.

[26] B. Ekici, G. Katz, C. Keller, A. Mebsout, A. J. Reynolds, and C. Tinelli.
Extending smtcoq, a certified checker for SMT (extended abstract). In
J. C. Blanchette and C. Kaliszyk, editors, Proceedings First International
Workshop on Hammers for Type Theories, HaTT@IJCAR 2016, Coimbra,
Portugal, July 1, 2016, volume 210 of EPTCS, pages 21–29, 2016.

[27] P. Fontaine, J.-Y. Marion, S. Merz, L. P. Nieto, and A. Tiu. Expressiveness
+ automation + soundness: Towards combining smt solvers and interac-
tive proof assistants. In H. Hermanns and J. Palsberg, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 167–181,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

21

[28] A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli. Ground interpola-
tion for the theory of equality. Logical Methods in Computer Science, 8(1),
2012.

[29] J. Harrison. Hol light: An overview. In S. Berghofer, T. Nipkow, C. Urban,
and M. Wenzel, editors, Theorem Proving in Higher Order Logics, pages
60–66, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[30] P. B. Jackson. The Nuprl Proof Development System, Version 4.2 Reference
Manual and User’s Guide. The PRL Group at Cornell University, 1996.

[31] C. Kaliszyk and J. Urban. Mizar 40 for mizar 40. CoRR, abs/1310.2805,
2013.

[32] C. Kaliszyk and J. Urban. Proch: Proof reconstruction for hol light. In
M. P. Bonacina, editor, Automated Deduction – CADE-24, pages 267–274,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[33] C. Kaliszyk and J. Urban. Stronger automation for flyspeck by feature
weighting and strategy evolution. In J. C. Blanchette and J. Urban, editors,
Third International Workshop on Proof Exchange for Theorem Proving,
PxTP 2013, Lake Placid, NY, USA, June 9-10, 2013, volume 14 of EPiC
Series in Computing, pages 87–95. EasyChair, 2013.

[34] M. Kaufmann and J. S. Moore. An acl2 tutorial. In O. A. Mohamed,
C. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order Logics,
pages 17–21, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[35] L. Kovács and A. Voronkov. First-order theorem proving and vampire. In
N. Sharygina and H. Veith, editors, Computer Aided Verification, pages
1–35, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[36] D. Kühlwein, T. van Laarhoven, E. Tsivtsivadze, J. Urban, and T. Heskes.
Overview and evaluation of premise selection techniques for large theory
mathematics. In B. Gramlich, D. Miller, and U. Sattler, editors, Auto-
mated Reasoning, pages 378–392, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[37] S. K. Lahiri and S. A. Seshia. The uclid decision procedure. In R. Alur and
D. A. Peled, editors, Computer Aided Verification, pages 475–478, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[38] J. Loeckx and K. Sieber. LCF, A Logic for Computable Functions, pages
199–214. Vieweg+Teubner Verlag, Wiesbaden, 1987.

[39] Y. S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An efficient sat solver.
In H. H. Hoos and D. G. Mitchell, editors, Theory and Applications of
Satisfiability Testing, pages 360–375, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

22

[40] P. Manolios and S. K. Srinivasan. Verification of executable pipelined
machines with bit-level interfaces. In 2005 International Conference on
Computer-Aided Design, ICCAD 2005, San Jose, CA, USA, November 6-
10, 2005, pages 855–862. IEEE Computer Society, 2005.

[41] M. N. Mansur, M. Christakis, V. Wüstholz, and F. Zhang. Detecting
critical bugs in smt solvers using blackbox mutational fuzzing, 2020.

[42] W. McCune and O. Shumsky. System description: Ivy. In D. McAllester,
editor, Automated Deduction - CADE-17, pages 401–405, Berlin, Heidel-
berg, 2000. Springer Berlin Heidelberg.

[43] W. McCune and L. Wos. Otter - the cade-13 competition incarnations. J.
Autom. Reason., 18(2):211–220, Apr. 1997.

[44] J. Meng and L. C. Paulson. Translating higher-order clauses to first-order
clauses. J. Autom. Reason., 40(1):35–60, 2008.

[45] J. Meng and L. C. Paulson. Lightweight relevance filtering for machine-
generated resolution problems. J. Appl. Log., 7(1):41–57, 2009.

[46] R. Milner. Logic for computable functions: Description of a machine im-
plementation. Technical report, Stanford, CA, USA, 1972.

[47] A. Nonnengart and C. Weidenbach. Chapter 6 - computing small clause
normal forms. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, Handbook of Automated Reasoning, pages 335 –
367. North-Holland, Amsterdam, 2001.

[48] S. Owre, J. M. Rushby, and N. Shankar. Pvs: A prototype verification
system. In D. Kapur, editor, Automated Deduction—CADE-11, pages 748–
752, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[49] L. C. Paulson and K. W. Susanto. Source-level proof reconstruction for
interactive theorem proving. In K. Schneider and J. Brandt, editors, The-
orem Proving in Higher Order Logics, pages 232–245, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[50] W. Reif. The Kiv-approach to software verification, pages 339–368. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1995.

[51] A. Reynolds, H. Barbosa, D. Larraz, and C. Tinelli. Scalable algorithms
for abduction via enumerative syntax-guided synthesis. In N. Peltier and
V. Sofronie-Stokkermans, editors, Automated Reasoning - 10th Interna-
tional Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Pro-
ceedings, Part I, volume 12166 of Lecture Notes in Computer Science, pages
141–160. Springer, 2020.

23

[52] A. Roederer, Y. Puzis, and G. Sutcliffe. Divvy: An atp meta-system based
on axiom relevance ordering. In R. A. Schmidt, editor, Automated Deduc-
tion – CADE-22, pages 157–162, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[53] J. Rushby. Tutorial: Automated formal methods with pvs, sal, and yices. In
Fourth IEEE International Conference on Software Engineering and For-
mal Methods (SEFM’06), pages 262–262, 2006.

[54] S. Schulz. E - a brainiac theorem prover. AI Commun., 15(2,3):111–126,
Aug. 2002.

[55] K. Slind and M. Norrish. A brief overview of hol4. In O. A. Mohamed,
C. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order Logics,
pages 28–32, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[56] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure.
From CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning,
59(4):483–502, 2017.

[57] G. Sutcliffe and Y. Puzis. Srass - a semantic relevance axiom selection
system. In F. Pfenning, editor, Automated Deduction – CADE-21, pages
295–310, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[58] L. Théry, P. Letouzey, and G. Gonthier. Coq, pages 28–35. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.

[59] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus,
pages 466–483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[60] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wis-
chnewski. Spass version 3.5. In R. A. Schmidt, editor, Automated Deduc-
tion – CADE-22, pages 140–145, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[61] M. Wenzel, L. C. Paulson, and T. Nipkow. The isabelle framework. In
O. A. Mohamed, C. Muñoz, and S. Tahar, editors, Theorem Proving in
Higher Order Logics, pages 33–38, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

24

	Introduction
	Technical Preliminaries
	Automatic Theorem Provers
	SMT Solvers
	Superposition Provers

	Proof Assistants
	Hammers
	Premise Selection
	Translation
	Proof Reconstruction

	Sledgehammer
	Translation
	The Z3 Proof System
	Proof Reconstruction

	SMTCoq
	Comparison
	Related Work
	Conclusion and Future Work

