
Noname manuscript No.
(will be inserted by the editor)

Regret bounded by gradual variation for online
convex optimization

Tianbao Yang · Mehrdad Mahdavi ·
Rong Jin · Shenghuo Zhu

Received: date / Accepted: date

Abstract Recently, it has been shown that the regret of the Follow the
Regularized Leader (FTRL) algorithm for online linear optimization can be
bounded by the total variation of the cost vectors rather than the number
of rounds. In this paper, we extend this result to general online convex op-
timization. In particular, this resolves an open problem that has been posed
in a number of recent papers. We first analyze the limitations of the FTRL
algorithm in [16] when applied to online convex optimization, and extend the
definition of variation to a gradual variation which is shown to be a lower bound
of the total variation. We then present two novel algorithms that bound the
regret by the gradual variation of cost functions. Unlike previous approaches
that maintain a single sequence of solutions, the proposed algorithms maintain
two sequences of solutions that make it possible to achieve a variation-based
regret bound for online convex optimization.

To establish the main results, we discuss a lower bound for FTRL that
maintains only one sequence of solutions, and a necessary condition on smooth-
ness of the cost functions for obtaining a gradual variation bound. We extend
the main results three-fold: (i) we present a general method to obtain a grad-
ual variation bound measured by general norm; (ii) we extend algorithms to
a class of online non-smooth optimization with gradual variation bound; and

Tianbao Yang
NEC Laboratories America
E-mail: tyang@nec-labs.com
(The most part of the work was done when the author was at Michigan State University)

Mehrdad Mahdavi and Rong Jin
Department of Computer Science and Engineering
Michigan State University
E-mail: mahdavim@cse.msu.edu, rongjin@cse.msu.edu

Shenghuo Zhu
NEC Laboratories America
E-mail: zsh@nec-labs.com

2 Tianbao Yang et al.

(iii) we develop a deterministic algorithm for online bandit optimization in
multipoint bandit setting.

Keywords online convex optimization · regret bound · gradual variation ·
bandit

1 Introduction

We consider the general online convex optimization problem [26] which pro-
ceeds in trials. At each trial, the learner is asked to predict the decision vector
xt that belongs to a bounded closed convex set P ⊆ Rd; it then receives a cost
function ct(·) : P → R and incurs a cost of ct(xt) for the submitted solution.
The goal of online convex optimization is to come up with a sequence of solu-
tions x1, . . . ,xT that minimizes the regret, which is defined as the difference
in the cost of the sequence of decisions accumulated up to the trial T made
by the learner and the cost of the best fixed decision in hindsight, i.e.

RegretT =

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x).

In the special case of linear cost functions, i.e. ct(x) = f>t x, the problem
becomes online linear optimization. The goal of online convex optimization is
to design algorithms that predict, with a small regret, the solution xt at the
tth trial given the (partial) knowledge about the past cost functions cτ (·), τ =
1, · · · , t− 1.

Over the past decade, many algorithms have been proposed for online con-
vex optimization, especially for online linear optimization. As the first semi-
nal paper in online convex optimization, Zinkevich [26] proposed a gradient
descent algorithm with a regret bound of O(

√
T). When cost functions are

strongly convex, the regret bound of the online gradient descent algorithm is
reduced to O(log T) with appropriately chosen step size [13]. Another com-
mon methodology for online convex optimization, especially for online linear
optimization, is based on the framework of Follow the Leader (FTL) [17]. FTL
chooses xt by minimizing the cost incurred by xt in all previous trials. Since
the naive FTL algorithm fails to achieve sublinear regret in the worst case,
many variants have been developed to fix the problem, including Follow the
Perturbed Leader (FTPL) [17], Follow the Regularized Leader (FTRL) [1],
and Follow the Approximate Leader (FTAL) [13]. Other methodologies for
online convex optimization introduce a potential function (or link function)
to map solutions between the space of primal variables and the space of dual
variables, and carry out primal-dual update based on the potential function.
The well-known Exponentiated Gradient (EG) algorithm [20] or multiplicative
weights algorithm [12] belong to this category. We note that these different
algorithms are closely related. For example, in online linear optimization, the
potential-based primal-dual algorithm is equivalent to FTRL algorithm [16].

Regret Bounded by Gradual Variation 3

Generally, most previous studies of online convex optimization bound the
regret in terms of the number of trials T . However, it is expected that the
regret should be low in an unchanging environment or when the cost functions
are somehow correlated. Specifically, the tightest rate for the regret should de-
pend on the variance of the sequence of cost functions rather than the number
of rounds T . An algorithm with regret in terms of variation of the cost func-
tions is expected to perform better when the cost sequence has low variation.
Therefore, it is of great interest to derive a variation-based regret bound for
online convex optimization in an adversarial setting.

As it has been established as a fact that the regret of a natural algorithm
in a stochastic setting, i.e. the cost functions are generated by a stationary
stochastic process, can be bounded by the total variation in the cost func-
tions [16], devising algorithm in fully adversarial setting, i.e. the cost func-
tions are chosen completely adversarially, is posed as an open problem in [5].
The concern is whether or not it is possible to derive a regret bound for an
online optimization algorithm by the variation of the observed cost functions.
Recently [16] made a substantial progress in this route and proved a variation-
based regret bound for online linear optimization by tight analysis of FTRL
algorithm with an appropriately chosen step size. A similar regret bound is
shown in the same paper for prediction from expert advice by slightly modify-
ing the multiplicative weights algorithm. In this work, we aim to take one step
further and contribute to this research direction by developing algorithms for
general framework of online convex optimization with variation-based regret
bounds.

A preliminary version of this paper appeared at the Conference on Learning
Theory (COLT) [8] as the result of a merge between two papers as discussed
in a commentary written by Satyen Kale [18]. We highlight the differences
between this paper and [8]. We first motivate the definition of a gradual vari-
ation by showing that the total variation bound in [16] is not necessary small
when the cost functions change slowly, and the gradual variation is smaller
than the total variation. We then extend FTRL to achieve a regret bounded
by the gradual variation in Subsection 2.1. The second algorithm in Subsec-
tion 2.2 is similar to the one that appeared in [8]. Sections 3 and 4 contain
generalizations of the second algorithm to non-smooth functions and a bandit
setting, respectively, which appear in this paper for the first time.

In the remaining of this section, we first present the results from [16] for
online linear optimization and discuss their potential limitations when applied
to online convex optimization which motivates our work.

1.1 Online Linear Optimization

Many decision problems can be cast into online linear optimization problems,
such as prediction from expert advice [6], online shortest path problem [25].
[16] proved the first variation-based regret bound for online linear optimization
problems in an adversarial setting. Hazan and Kale’s algorithm for online

4 Tianbao Yang et al.

Algorithm 1 Follow The Regularized Leader for Online Linear Optimization
1: Input: η > 0
2: for t = 1, . . . , T do
3: If t = 1, predict xt = 0
4: If t > 1, predict xt by

xt = arg min
x∈P

t−1∑
τ=1

f>τ x +
1

2η
‖x‖22

5: Receive cost vector ft and incur loss f>t xt
6: end for

linear optimization is based on the framework of FTRL. For completeness,
the algorithm is shown in Algorithm 1. At each trial, the decision vector xt is
given by solving the following optimization problem:

xt = arg min
x∈P

t−1∑
τ=1

f>τ x +
1

2η
‖x‖22,

where ft is the cost vector received at trial t after predicting the decision xt,
and η is a step size. They bound the regret by the variation of cost vectors
defined as

VART =

T∑
t=1

‖ft − µ‖22, (1)

where µ = 1/T
∑T
t=1 ft. By assuming ‖ft‖2 ≤ 1,∀t and setting the value of η

to η = min(2/
√

VART , 1/6), they showed that the regret of Algorithm 1 can
be bounded by

T∑
t=1

f>t xt −min
x∈P

T∑
t=1

f>t x ≤
{

15
√

VART if
√

VART ≥ 12

150 if
√

VART ≤ 12
. (2)

From (2), we can see that when the variation of the cost vectors is small (less
than 12), the regret is a constant, otherwise it is bounded by the variation
O(
√

VART). This result indicates that online linear optimization in the ad-
versarial setting is as efficient as in the stationary stochastic setting.

1.2 Online Convex Optimization

Online convex optimization generalizes online linear optimization by replacing
linear cost functions with non-linear convex cost functions. It has found ap-
plications in several domains, including portfolio management [3] and online
classification [19]. For example, in online portfolio management problem, an
investor wants to distribute his wealth over a set of stocks without knowing
the market output in advance. If we let xt denote the distribution on the

Regret Bounded by Gradual Variation 5

Algorithm 2 Follow The Regularized Leader (FTRL) for Online Convex Op-
timization
1: Input: η > 0
2: for t = 1, . . . , T do
3: If t = 1, Predict xt = 0
4: If t > 1, Predict xt by

xt = arg min
x∈P

t−1∑
τ=1

f>τ x +
1

2η
‖x‖22

5: Receive cost function ct(·) and incur loss ct(xt)
6: Compute ft = ∇ct(xt)
7: end for

stocks and rt denote the price relative vector, i.e. rt[i] denote the the ratio of
the closing price of stock i on day t to the closing price on day t− 1, then an
interesting function is the logarithmic growth ratio, i.e.

∑T
t=1 log(x>t rt), which

is a concave function to be maximized. Similar to [16], we aim to develop al-
gorithms for online convex optimization with regret bounded by the variation
in the cost functions.

Before presenting our algorithms, we first show that directly applying the
FTRL algorithm to general online convex optimization may not be able to
achieve the desired result. To extend FTRL for online convex optimization,
a straightforward approach is to use the first order approximation for convex
cost function, i.e., ct(x) ' ct(xt) + ∇ct(xt)>(x − xt), and replace the cost
vector ft in Algorithm 1 with the gradient of the cost function ct(·) at xt,
i.e., ft = ∇ct(xt). The resulting algorithm is shown in Algorithm 2. Using the
convexity of ct(·), we have

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤
T∑
t=1

f>t xt −min
x∈P

T∑
t=1

f>t x. (3)

If we assume ‖∇ct(x)‖2 ≤ 1,∀t,∀x ∈ P, we can apply Hazan and Kale’s
variation-based bound in (2) to bound the regret in (3) by the variation

VART =

T∑
t=1

‖ft − µ‖22 =

T∑
t=1

∥∥∥∥∥∇ct(xt)− 1

T

T∑
τ=1

∇cτ (xτ)

∥∥∥∥∥
2

2

. (4)

To better understand VART in (4), we rewrite VART as

VART =

T∑
t=1

∥∥∥∥∥∇ct(xt)− 1

T

T∑
τ=1

∇cτ (xτ)

∥∥∥∥∥
2

2

=
1

2T

T∑
t,τ=1

‖∇ct(xt)−∇cτ (xτ)‖2

≤ 1

T

T∑
t=1

T∑
τ=1

‖∇ct(xt)−∇ct(xτ)‖22 +
1

T

T∑
t=1

T∑
τ=1

‖∇ct(xτ)−∇cτ (xτ)‖22

= VAR1
T + VAR2

T . (5)

6 Tianbao Yang et al.

We see that the variation VART is bounded by two parts: VAR1
T essentially

measures the smoothness of individual cost functions, while VAR2
T measures

the variation in the gradients of cost functions. Let us consider an easy setting
when all cost functions are identical. In this case, VAR2

T vanishes, and VART

is equal to VAR1
T /2, i.e.,

VART =
1

2T

T∑
t,τ=1

‖∇ct(xt)−∇cτ (xτ)‖2 =
1

2T

T∑
t,τ=1

‖∇ct(xt)−∇ct(xτ)‖2

=
VAR1

T

2
.

As a result, the regret of the FTRL algorithm for online convex optimization
may still be bounded by O(

√
T) regardless of the smoothness of the cost

function.
To address this challenge, we develop two novel algorithms for online con-

vex optimization that bound the regret by the variation of cost functions. In
particular, we would like to bound the regret of online convex optimization by
the variation of cost functions defined as follows

GVT =

T−1∑
t=1

max
x∈P
‖∇ct+1(x)−∇ct(x)‖22. (6)

Note that the variation in (6) is defined in terms of gradual difference between
individual cost function to its previous one, while the variation in (1) [16] is
defined in terms of total difference between individual cost vectors to their
mean. Therefore we refer to the variation defined in (6) as gradual variation 1,
and to the variation defined in (1) as total variation. It is straightforward to
show that when ct(x) = f>t x, the gradual variation GVT defined in (6) is
upper bounded by the total variation VART defined in (1) with a constant
factor:

T−1∑
t=1

‖ft+1 − ft‖22 ≤
T−1∑
t=1

2‖ft+1 − µ‖22 + 2‖ft − µ‖22 ≤ 4

T∑
t=1

‖ft − µ‖22.

On the other hand, we can not bound the total variation by the gradual
variation up to a constant. This is verified by the following example: f1 =
· · · = fT/2 = f and fT/2+1 = · · · = fT = g 6= f . The total variation in (1) is
given by

VART =

T∑
t=1

‖ft − µ‖22 =
T

2

∥∥∥∥f − f + g

2

∥∥∥∥2
2

+
T

2

∥∥∥∥g − f + g

2

∥∥∥∥2
2

= Ω(T),

while the gradual variation defined in (6) is a constant given by

GVT =

T−1∑
t=1

‖ft+1 − ft‖22 = ‖f − g‖22 = O(1).

1 This is also termed as deviation in [8].

Regret Bounded by Gradual Variation 7

Based on the above analysis, we claim that the regret bound by gradual vari-
ation is usually tighter than total variation. Before closing this section, we
present the following lower bound for FTRL whose proof can be found in [8].

Theorem 1 The regret of FTRL is at least Ω(min(GVT ,
√
T)).

The theorem motivates us to develop new algorithms for online convex opti-
mization to achieve a gradual variation bound of O(

√
GVT).

The remainder of the paper is organized as follows. We present in Section 2
the proposed algorithms and the main results. Section 3 generalizes the results
to the special class of non-smooth functions that is composed of a smooth and
a non-smooth component. Section 4 is devoted to extending the proposed
algorithms to the setting where only partial feedback about the cost functions
are available, i.e., online bandit convex optimization with a variation-based
regret bound. Finally, in Section 5, we conclude this work and discuss a few
open problems.

2 Algorithms and Main Results

Without loss of generality, we assume that the decision set P is contained in
a unit ball B, i.e., P ⊆ B, and 0 ∈ P [16]. We propose two algorithms for
online convex optimization. The first algorithm is an improved FTRL and the
second one is based on the mirror prox method [21]. One common feature
shared by the two algorithms is that both of them maintain two sequences of
solutions: decision vectors x1:T = (x1, · · · ,xT) and searching vectors z1:T =
(z1, · · · , zT) that facilitate the updates of decision vectors. Both algorithms
share almost the same regret bound except for a constant factor. To facilitate
the discussion, besides the variation of cost functions defined in (6), we define
another variation, named extended gradual variation, as follows

EGVT,2(y1:T) =

T−1∑
t=0

‖∇ct+1(yt)−∇ct(yt)‖22 ≤ ‖∇c1(y0)‖22 + GVT , (7)

where c0(x) = 0, the sequence (y0, . . . ,yT) is either (z0, . . . , zT) (as in the
improved FTRL) or (x0, . . . ,xT) (as in the prox method) and the subscript 2
means the variation is defined with respect to `2 norm. When all cost functions
are identical, GVT becomes zero and the extended variation EGVT,2(y1:T) is
reduced to ‖∇c1(y0)‖22, a constant independent from the number of trials. In
the sequel, we use the notation EGVT,2 for simplicity. In this study, we assume
smooth cost functions with Lipschtiz continuous gradients, i.e., there exists a
constant L > 0 such that

‖∇ct(x)−∇ct(z)‖2 ≤ L‖x− z‖2,∀x, z ∈ P,∀t. (8)

8 Tianbao Yang et al.

Algorithm 3 Improved FTRL for Online Convex Optimization
1: Input: η ∈ (0, 1]
2: Initialization: z0 = 0 and c0(x) = 0
3: for t = 1, . . . , T do
4: Predict xt by

xt = arg min
x∈P

{
x>∇ct−1(zt−1) +

L

2η
‖x− zt−1‖22

}

5: Receive cost function ct(·) and incur loss ct(xt)
6: Update zt by

zt = arg min
x∈P

{
x>

t∑
τ=1

∇cτ (zτ−1) +
L

2η
‖x‖22

}
7: end for

Our results show that for online convex optimization with L-smooth cost func-
tions, the regrets of the proposed algorithms can be bounded as follows

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ O
(√

EGVT,2

)
+ constant. (9)

Remark 1 We would like to emphasize that our assumption about the smooth-
ness of cost functions is necessary 2 to achieve the variation-based bound stated
in (9). To see this, consider the special case of c1(x) = · · · = cT (x) = c(x).
If the bound in (9) holds for any sequence of convex functions, then for the
special case where all the cost functions are identical, we have

T∑
t=1

c(xt) ≤ min
x∈P

T∑
t=1

c(x) +O(1),

implying that x̂T = (1/T)
∑T
t=1 xt approaches the optimal solution at the rate

of O(1/T). This contradicts the lower complexity bound (i.e. O(1/
√
T)) for

any optimization method which only uses first order information about the
cost functions [22, Theorem 3.2.1]. This analysis indicates that the smooth-
ness assumption is necessary to attain variation based regret bound for general
online convex optimization problem. We would like to emphasize the fact that
this contradiction holds when only the gradient information about the cost
functions is provided to the learner and the learner may be able to achieve
a variation-based bound using second order information about the cost func-
tions, which is not the focus of the present work.

2.1 An Improved FTRL Algorithm for Online Convex Optimization

2 Gradual variation bounds for a special class of non-smooth cost functions that are
composed of a smooth component and a non-smooth component are discussed in section 3.

Regret Bounded by Gradual Variation 9

The improved FTRL algorithm for online convex optimization is presented
in Algorithm 3. Note that in step 6, the searching vectors zt are updated
according to the FTRL algorithm after receiving the cost function ct(·). To
understand the updating procedure for the decision vector xt specified in step
4, we rewrite it as

xt = arg min
x∈P

{
ct−1(zt−1) + (x− zt−1)>∇ct−1(zt−1) +

L

2η
‖x− zt−1‖22

}
.

(10)

Notice that

ct(x) ≤ ct(zt−1) + (x− zt−1)>∇ct(zt−1) +
L

2
‖x− zt−1‖22

≤ ct(zt−1) + (x− zt−1)>∇ct(zt−1) +
L

2η
‖x− zt−1‖22, (11)

where the first inequality follows the smoothness condition in (8) and the
second inequality follows from the fact η ≤ 1. The inequality (11) provides an
upper bound for ct(x) and therefore can be used as an approximation of ct(x)
for predicting xt. However, since ∇ct(zt−1) is unknown before the prediction,
we use ∇ct−1(zt−1) as a surrogate for ∇ct(zt−1), leading to the updating
rule in (10). It is this approximation that leads to the variation bound. The
following theorem states the regret bound of Algorithm 3.

Theorem 2 Let ct(·), t = 1, . . . , T be a sequence of convex functions with L-
Lipschitz continuous gradients. By setting η = min

{
1, L/

√
EGVT,2

}
, we have

the following regret bound for Algorithm 3

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ max
(
L,
√

EGVT,2

)
.

Remark 2 Comparing with the variation bound in (5) for the FTRL algorithm,
the smoothness parameter L plays the same role as VAR1

T that accounts for
the smoothness of cost functions, and term EGVT,2 plays the same role as
VAR2

T that accounts for the variation in the cost functions. Compared to the
FTRL algorithm, the key advantage of the improved FTRL algorithm is that
the regret bound is reduced to a constant when the cost functions change only
by a constant number of times along the horizon. Of course, the extended
variation EGVT,2 may not be known apriori for setting the optimal η, we can
apply the standard doubling trick [6] to obtain a bound that holds uniformly
over time and is a factor at most 8 from the bound obtained with the optimal
choice of η. The details are provided in Appendix A.

To prove Theorem 2, we first present the following lemma.

10 Tianbao Yang et al.

Lemma 1 Let ct(·), t = 1, . . . , T be a sequence of convex functions with L-
Lipschitz continuous gradients. By running Algorithm 3 over T trials, we have

T∑
t=1

ct(xt) ≤ min
x∈P

[
L

2η
‖x‖22 +

T∑
t=1

ct(zt−1) + (x− zt−1)>∇ct(zt−1)

]

+
η

2L

T−1∑
t=0

‖∇ct+1(zt)−∇ct(zt)‖22.

With this lemma, we can easily prove Theorem 2 by exploring the convexity
of ct(x).

Proof (of Theorem 2) By using ‖x‖2 ≤ 1,∀x ∈ P ⊆ B, and the convexity of
ct(x), we have

min
x∈P

{
L

2η
‖x‖22 +

T∑
t=1

ct(zt−1) + (x− zt−1)>∇ct(zt−1)

}
≤ L

2η
+ min

x∈P

T∑
t=1

ct(x).

Combining the above result with Lemma 1, we have

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ L

2η
+

η

2L
EGVT,2.

By choosing η = min(1, L/
√

EGVT,2), we have the regret bound claimed in
Theorem 2.

The Lemma 1 is proved by induction. The key to the proof is that zt is the
optimal solution to the strongly convex minimization problem in Lemma 1,
i.e.,

zt = arg min
x∈P

[
L

2η
‖x‖22 +

t∑
τ=1

cτ (zτ−1) + (x− zτ−1)>∇cτ (zτ−1)

]
Proof (of Lemma 1) We prove the inequality by induction. When T = 1, we
have x1 = z0 = 0 and

min
x∈P

[
L

2η
‖x‖22 + c1(z0) + (x− z0)>∇c1(z0)

]
+

η

2L
‖∇c1(z0)‖22

≥ c1(z0) +
η

2L
‖∇c1(z0)‖22 + min

x

{
L

2η
‖x‖22 + (x− z0)>∇c1(z0)

}
= c1(z0) = c1(x1).

where the inequality follows that by relaxing the minimization domain x ∈ P
to the whole space. We assume the inequality holds for t and aim to prove it
for t+ 1. To this end, we define

ψt(x) =

[
L

2η
‖x‖22 +

t∑
τ=1

cτ (zτ−1) + (x− zτ−1)>∇cτ (zτ−1)

]

+
η

2L

t−1∑
τ=0

‖∇cτ+1(zτ)−∇cτ (zτ)‖22.

Regret Bounded by Gradual Variation 11

According to the updating procedure for zt in step 6, we have zt = arg minx∈P ψt(x).
Define φt = ψt(zt) = minx∈P ψt(x). Since ψt(x) is a (L/η)-strongly convex
function, we have

ψt+1(x)− ψt+1(zt) ≥
L

2η
‖x− zt‖22 + (x− zt)

>∇ψt+1(zt)

=
L

2η
‖x− zt‖22 + (x− zt)

> (∇ψt(zt) +∇ct+1(zt)) .

Setting x = zt+1 = arg minx∈P ψt+1(x) in the above inequality results in

ψt+1(zt+1)− ψt+1(zt) = φt+1 − (φt + ct+1(zt) +
η

2L
‖∇ct+1(zt)−∇ct(zt)‖22)

≥ L

2η
‖zt+1 − zt‖22 + (zt+1 − zt)

> (∇ψt(zt) +∇ct+1(zt))

≥ L

2η
‖zt+1 − zt‖22 + (zt+1 − zt)

>∇ct+1(zt),

where the second inequality follows from the fact zt = arg minx∈P ψt(x), and
therefore (x−zt)

>∇ψt(zt) ≥ 0,∀x ∈ P. Moving ct+1(zt) in the above inequal-
ity to the right hand side, we have

φt+1 − φt −
η

2L
‖∇ct+1(zt)−∇ct(zt)‖22 (12)

≥ L

2η
‖zt+1 − zt‖22 + (zt+1 − zt)

>∇ct+1(zt) + ct+1(zt)

≥ min
x∈P

{
L

2η
‖x− zt‖22 + (x− zt)

>∇ct+1(zt) + ct+1(zt)

}

= min
x∈P

L

2η
‖x− zt‖22 + (x− zt)

>∇ct(zt)︸ ︷︷ ︸
ρ(x)

+ct+1(zt) + (x− zt)
>(∇ct+1(zt)−∇ct(zt))︸ ︷︷ ︸

r(x)

 .

To bound the right hand side, we note that xt+1 is the minimizer of ρ(x) by
step 4 in Algorithm 3, and ρ(x) is a L/η-strongly convex function, so we have

ρ(x) ≥ ρ(xt+1) + (x− xt+1)>∇ρ(xt+1)︸ ︷︷ ︸
≥0

+
L

2η
‖x− xt+1‖22 ≥ ρ(xt+1) +

L

2η
‖x− xt+1‖22.

Then we have

ρ(x) + ct+1(zt) + r(x) ≥ ρ(xt+1) + ct+1(zt) +
L

2η
‖x− xt+1‖22 + r(x)

=
L

2η
‖xt+1 − zt‖22 + (xt+1 − zt)

>∇ct(zt)︸ ︷︷ ︸
ρ(xt+1)

+ct+1(zt) +
L

2η
‖x− xt+1‖22 + r(x)

12 Tianbao Yang et al.

Plugging above inequality into the inequality in (12), we have

φt+1 − φt −
η

2L
‖∇ct+1(zt)−∇ct(zt)‖22

≥ L

2η
‖xt+1 − zt‖22 + (xt+1 − zt)

>∇ct(zt) + ct+1(zt)

+ min
x∈P

{
L

2η
‖x− xt+1‖22 + (x− zt)

>(∇ct+1(zt)−∇ct(zt))
}

To continue the bounding, we proceed as follows

φt+1 − φt −
η

2L
‖∇ct+1(zt)−∇ct(zt)‖22

≥ L

2η
‖xt+1 − zt‖22 + (xt+1 − zt)

>∇ct(zt) + ct+1(zt)

+ min
x∈P

{
L

2η
‖x− xt+1‖22 + (x− zt)

>(∇ct+1(zt)−∇ct(zt))
}

=
L

2η
‖xt+1 − zt‖22 + (xt+1 − zt)

>∇ct+1(zt) + ct+1(zt)

+ min
x∈P

{
L

2η
‖x− xt+1‖22 + (x− xt+1)>(∇ct+1(zt)−∇ct(zt))

}
≥ L

2η
‖xt+1 − zt‖22 + (xt+1 − zt)

>∇ct+1(zt) + ct+1(zt)

+ min
x

{
L

2η
‖x− xt+1‖22 + (x− xt+1)>(∇ct+1(zt)−∇ct(zt))

}
=
L

2η
‖xt+1 − zt‖22 + (xt+1 − zt)

>∇ct+1(zt) + ct+1(zt)−
η

2L
‖∇ct+1(zt)−∇ct(zt)‖22

≥ct+1(xt+1)− η

2L
‖∇ct+1(zt)−∇ct(zt)‖22,

where the first equality follows by writing (xt+1 − zt)
>∇ct(zt) = (xt+1 −

zt)
>∇ct+1(zt)− (xt+1 − zt)

>(∇ct+1(zt)−∇ct(zt)) and combining with (x−
zt)
>(∇ct+1(zt)−∇ct(zt)), and the last inequality follows from the smoothness

condition of ct+1(x). Since by induction φt ≥
∑t
τ=1 cτ (xτ), we have φt+1 ≥∑t+1

τ=1 cτ (xτ).

2.2 A Prox Method for Online Convex Optimization

In this subsection, we present a prox method for online convex optimization
that shares the same order of regret bound as the improved FTRL algorithm.
It is closely related to the prox method in [21] by maintaining two sets of
vectors x1:T and z1:T , where xt and zt are computed by gradient mappings

Regret Bounded by Gradual Variation 13

Algorithm 4 A Prox Method for Online Convex Optimization
1: Input: η > 0
2: Initialization: z0 = x0 = 0 and c0(x) = 0
3: for t = 1, . . . , T do
4: Predict xt by

xt = arg min
x∈P

{
x>∇ct−1(xt−1) +

L

2η
‖x− zt−1‖22

}

5: Receive cost function ct(·) and incur loss ct(xt)
6: Update zt by

zt = arg min
x∈P

{
x>∇ct(xt) +

L

2η
‖x− zt−1‖22

}
7: end for

using ∇ct−1(xt−1), and ∇ct(xt), respectively, as

xt = arg min
x∈P

1

2

∥∥∥x− (zt−1 −
η

L
∇ct−1(xt−1)

)∥∥∥2
2

zt = arg min
x∈P

1

2

∥∥∥x− (zt−1 −
η

L
∇ct(xt)

)∥∥∥2
2

The detailed steps are shown in Algorithm 4, where we use an equivalent
form of updates for xt and zt in order to compare to Algorithm 3 . Algorithm 4
differs from Algorithm 3: (i) in updating the searching points zt, Algorithm 3
updates zt by the FTRL scheme using all the gradients of the cost functions at
{zτ}t−1τ=1, while Algorithm 4 updates zt by a prox method using a single gradi-
ent ∇ct(xt), and (ii) in updating the decision vector xt, Algorithm 4 uses the
gradient ∇ct−1(xt−1) instead of ∇ct−1(zt−1). The advantage of Algorithm 4
compared to Algorithm 3 is that it only requires to compute one gradient
∇ct(xt) for each loss function; in contrast, the improved FTRL algorithm in
Algorithm 3 needs to compute the gradients of ct(x) at two searching points zt
and zt−1. It is these differences mentioned above that make it easier to extend
the prox method to a bandit setting, which will be discussed in section 5.

The following theorem states the regret bound of the prox method for
online convex optimization.

Theorem 3 Let ct(·), t = 1, . . . , T be a sequence of convex functions with L-
Lipschitz continuous gradients. By setting η = (1/2) min

{
1/
√

2, L/
√

EGVT,2

}
,

we have the following regret bound for Algorithm 4

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ 2 max
(√

2L,
√

EGVT,2

)
.

We note that compared to Theorem 2, the regret bound in Theorem 3 is
slightly worse by a factor of 2.

To prove Theorem 3, we need the following lemma, which is the Lemma
3.1 in [21] stated in our notations.

14 Tianbao Yang et al.

Lemma 2 (Lemma 3.1 [21]) Let ω(z) be a α-strongly convex function with
respect to the norm ‖ · ‖, whose dual norm is denoted by ‖ · ‖∗, and D(x, z) =
ω(x) − (ω(z) + (x − z)>ω′(z)) be the Bregman distance induced by function
ω(x). Let Z be a convex compact set, and U ⊆ Z be convex and closed. Let
z ∈ Z, γ > 0, Consider the points,

x = arg min
u∈U

γu>ξ +D(u, z), (13)

z+ = arg min
u∈U

γu>ζ +D(u, z), (14)

then for any u ∈ U , we have

γζ>(x− u) ≤ D(u, z)−D(u, z+) +
γ2

α
‖ξ − ζ‖2∗ −

α

2
[‖x− z‖2 + ‖x− z+‖2].

(15)

In order not to have readers struggle with complex notations in [21] for
the proof of Lemma 2, we present a detailed proof in Appendix A which is an
adaption of the original proof to our notations.

Theorem 3 can be proved by using the above Lemma, because the updates
of xt, zt can be written equivalently as (13) and (14), respectively. The proof
below starts from (15) and bounds the summation of each term over t =
1, . . . , T , respectively.

Proof (of Theorem 3) First, we note that the two updates in step 4 and step
6 of Algorithm 4 fit in the Lemma 2 if we let U = Z = P, z = zt−1, x = xt,
z+ = zt, and ω(x) = 1

2‖x‖
2
2, which is 1-strongly convex function with respect

to ‖ · ‖2. Then D(u, z) = 1
2‖u− z‖22. As a result, the two updates for xt, zt in

Algorithm 4 are exactly the updates in (13) and (14) with z = zt−1, γ = η/L,
ξ = ∇ct−1(zt−1), and ζ = ∇ct(xt). Replacing these into (15), we have the
following inequality for any u ∈ P,

η

L
(xt − u)>∇ct(xt) ≤

1

2

(
‖u− zt−1‖22 − ‖u− zt‖22

)
+
η2

L2
‖∇ct(xt)−∇ct−1(xt−1)‖22 −

1

2

(
‖xt − zt−1‖22 + ‖xt − zt‖22

)
Then we have

η

L
(ct(xt)− ct(u)) ≤ η

L
(xt − u)>∇ct(xt) ≤

1

2

(
‖u− zt−1‖22 − ‖u− zt‖22

)
+

2η2

L2
‖∇ct(xt−1)−∇ct−1(xt−1)‖22 +

2η2

L2
‖∇ct(xt)−∇ct(xt−1)‖22

− 1

2

(
‖xt − zt−1‖22 + ‖xt − zt‖22

)
≤ 1

2

(
‖u− zt−1‖22 − ‖u− zt‖22

)
+

2η2

L2
‖∇ct(xt−1)−∇ct−1(xt−1)‖22

+ 2η2‖xt − xt−1‖22 −
1

2

(
‖xt − zt−1‖22 + ‖xt − zt‖22

)
,

Regret Bounded by Gradual Variation 15

where the first inequality follows the convexity of ct(x), and the third inequal-
ity follows the smoothness of ct(x). By taking the summation over t = 1, · · · , T
with z∗ = arg min

u∈P

∑T
t=1 ct(u), and dividing both sides by η/L, we have

T∑
t=1

ct(xt)−min
x∈P

∑
t=1

ct(x) ≤ L

2η
+

2η

L

T−1∑
t=0

‖∇ct+1(xt)−∇ct(xt)‖22

+

T∑
t=1

2η2‖xt − xt−1‖22 −
T∑
t=1

1

2

(
‖xt − zt−1‖22 + ‖xt − zt‖22

)
︸ ︷︷ ︸

BT

(16)

We can bound BT as follows:

BT =
1

2

T∑
t=1

‖xt − zt−1‖22 +
1

2

T+1∑
t=2

‖xt−1 − zt−1‖22

≥ 1

2

T∑
t=2

(
‖xt − zt−1‖22 + ‖xt−1 − zt−1‖22

)
≥ 1

4

T∑
t=2

‖xt − xt−1‖22 =
1

4

T∑
t=1

‖xt − xt−1‖22 (17)

where the last equality follows that x1 = x0. Plugging the above bound
into (18), we have

T∑
t=1

ct(xt)−min
x∈P

∑
t=1

ct(x) ≤ L

2η
+

2η

L

T−1∑
t=0

‖∇ct+1(xt)−∇ct(xt)‖22

+

T∑
t=1

(
2η2 − 1

4

)
‖xt − xt−1‖22 (18)

We complete the proof by plugging the value of η.

2.3 A General Prox Method and Some Special Cases

In this subsection, we first present a general prox method to obtain a variation
bound defined in a general norm. Then we discuss four special cases: online
linear optimization, prediction with expert advice, and online strictly convex
optimization. The omitted proofs in this subsection can be easily duplicated
by mimicking the proof of Theorem 3, if necessary with the help of previous
analysis as mentioned in the appropriate text.

16 Tianbao Yang et al.

Algorithm 5 A General Prox Method for Online Convex Optimization
1: Input: η > 0, ω(z)
2: Initialization: z0 = x0 = minz∈P ω(z) and c0(x) = 0
3: for t = 1, . . . , T do
4: Predict xt by

xt = arg min
x∈P

{
x>∇ct−1(xt−1) +

L

η
D(x, zt−1)

}

5: Receive cost function ct(·) and incur loss ct(xt)
6: Update zt by

zt = arg min
x∈P

{
x>∇ct(xt) +

L

η
D(x, zt−1)

}
7: end for

2.3.1 A General Prox Method

The prox method, together with Lemma 2 provides an easy way to gen-
eralize the framework based on Euclidean norm to a general norm. To be
precise, let ‖ · ‖ denote a general norm, ‖ · ‖∗ denote its dual norm, ω(z) be
a α-strongly convex function with respect to the norm ‖ · ‖, and D(x, z) =
ω(x) − (ω(z) + (x − z)>ω′(z)) be the Bregman distance induced by function
ω(x). Let ct(·), t = 1, · · · , T be L-smooth functions with respect to norm ‖ · ‖,
i.e.,

‖∇ct(x)−∇ct(z)‖∗ ≤ L‖x− z‖.

Correspondingly, we define the extended gradual variation based on the general
norm as follows:

EGVT =

T−1∑
t=0

‖∇ct+1(xt)−∇ct(xt)‖2∗. (19)

Algorithm 5 gives the detailed steps for the general framework. We note
that the key differences from Algorithm 4 are: z0 is set to minz∈P ω(z), and
the Euclidean distances in steps 4 and 6 are replaced by Bregman distances,
i.e.,

xt = arg min
x∈P

{
x>∇ct−1(xt−1) +

L

η
D(x, zt−1)

}
,

zt = arg min
x∈P

{
x>∇ct(xt) +

L

η
D(x, zt−1)

}
.

The following theorem states the variation-based regret bound for the general
norm framework, where R measure the size of P defined as

R =
√

2(max
x∈P

ω(x)−min
x∈P

ω(x)).

Regret Bounded by Gradual Variation 17

Theorem 4 Let ct(·), t = 1, . . . , T be a sequence of convex functions whose
gradients are L-smooth continuous, ω(z) be a α-strongly convex function, both
with respect to norm ‖ · ‖, and EGVT be defined in (19). By setting η =
(1/2) min

{√
α/
√

2, LR/
√

EGVT

}
, we have the following regret bound

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ 2Rmax
(√

2LR/
√
α,
√

EGVT

)
.

2.3.2 Online Linear Optimization

Here we consider online linear optimization and present the algorithm and the
gradual variation bound for this setting as a special case of proposed algorithm.
In particular, we are interested in bounding the regret by the gradual variation

EGVf
T,2 =

T−1∑
t=0

‖ft+1 − ft‖22,

where ft, t = 1, . . . , T are the linear cost vectors and f0 = 0. Since linear
functions are smooth functions that satisfy the inequality in (8) for any positive
L > 0, therefore we can apply Algorithm 4 to online linear optimization with
any positive value for L 3. The regret bound of Algorithm 4 for online linear
optimization is presented in the following corollary.

Corollary 1 Let ct(x) = f>t x, t = 1, . . . , T be a sequence of linear functions.

By setting η =

√
1/
(

2EGVf
T,2

)
and L = 1 in Algorithm 4, then we have

T∑
t=1

f>t xt −min
x∈P

T∑
t=1

f>t x ≤
√

2EGVf
T,2.

Remark 3 Note that the regret bound in Corollary 1 is stronger than the regret
bound obtained in [16] for online linear optimization due to the fact that the
gradual variation is smaller than the total variation.

2.3.3 Prediction with Expert Advice

In the problem of prediction with expert advice, the decision vector x is a
distribution over m experts, i.e., x ∈ P = {x ∈ Rm+ :

∑m
i=1 xi = 1}. Let

ft ∈ Rm denote the costs for m experts in trial t. Similar to [16], we would like
to bound the regret of prediction from expert advice by the gradual variation
defined in infinite norm, i.e.,

EGVf
T,∞ =

T−1∑
t=0

‖ft+1 − ft‖2∞.

3 We simply set L = 1 for online linear optimization and prediction with expert advice.

18 Tianbao Yang et al.

Since it is a special online linear optimization problem, we can apply Algo-
rithm 4 to obtain a regret bound as in Corollary 1, i.e.,

T∑
t=1

f>t xt −min
x∈P

T∑
t=1

f>t x ≤
√

2EGVf
T,2 ≤

√
2mEGVf

T,∞.

However, the above regret bound scales badly with the number of experts.

We can obtain a better regret bound in O(
√

EGVf
T,∞ lnm) by applying the

general prox method in Algorithm 5 with ω(x) =
∑m
i=1 xi lnxi and D(x, z) =∑m

i=1 xi ln(zi/xi). The two updates in Algorithm 5 become

xit =
zit−1 exp([η/L]f it−1)∑m
j=1 z

j
t−1 exp([η/L]f jt−1)

, i = 1, . . . ,m

zit =
zit−1 exp([η/L]f it)∑m
j=1 z

j
t−1 exp([η/L]f jt)

, i = 1, . . . ,m.

The resulting regret bound is formally stated in the following Corollary.

Corollary 2 Let ct(x) = f>t x, t = 1, . . . , T be a sequence of linear functions

in prediction with expert advice. By setting η =
√

(lnm)/EGVf
T,∞, L = 1,

ω(x) =
∑m
i=1 xi lnxi and D(x, z) =

∑m
i=1 xi ln(xi/zi) in Algorithm 5, we have

T∑
t=1

f>t xt −min
x∈P

T∑
t=1

f>t x ≤
√

2EGVf
T,∞ lnm.

Remark 4 By noting the definition of EGVf
T,∞, the regret bound in Corollary 2

is O

(√∑T−1
t=0 maxi |f it+1 − f it | lnm

)
, which is similar to the regret bound ob-

tained in [16] for prediction with expert advice. However, the definitions of the
variation are not exactly the same. In [16], the authors bound the regret of pre-

diction with expert advice by O

(√
lnmmaxi

∑T
t=1 |f it − µit|2 + lnm

)
, where

the variation is the maximum total variation over all experts. To compare
the two regret bounds, we first consider two extreme cases. When the costs
of all experts are the same, then the variation in Corollary 2 is a standard
gradual variation, while the variation in [16] is a standard total variation. Ac-
cording to the previous analysis, a gradual variation is smaller than a total
variation, therefore the regret bound in Corollary 2 is better than that in [16].
In another extreme case when the costs at all iterations of each expert are
the same, both regret bounds are constants. More generally, if we assume the
maximum total variation is small (say a constant), then

∑T−1
t=0 |f it+1 − f it | is

also a constant for any i ∈ [m]. By a trivial analysis
∑T−1
t=0 maxi |f it+1 − f it | ≤

mmaxi
∑T−1
t=0 |f it+1 − f it |, the regret bound in Corollary 2 might be worse up

to a factor
√
m than that in [16].

Regret Bounded by Gradual Variation 19

Remark 5 It was shown in [8], both the regret bounds in Corollary 1 and Corol-
lary 2 are optimal because they match the lower bounds for a special sequence
of loss functions. In particular, for online linear optimization if all loss func-

tions but the first Tk =
√

EGVf
T,2 are all-0 functions, then the known lower

bound Ω(
√
Tk) [22] matches the upper bound in Corollary 1. Similarly, for

prediction from expert advice if all loss functions but the first T ′k =
√

EGVf
T,∞

are all-0 functions, then the known lower bound Ω(
√
T ′k lnm) [6] matches the

upper bound in Corollary 2.

2.3.4 Online Strictly Convex Optimization

In this subsection, we present an algorithm to achieve a logarithmic variation
bound for online strictly convex optimization [14]. In particular, we assume
the cost functions ct(x) are not only smooth but also strictly convex defined
formally in the following.

Definition 1 For β > 0, a function c(x) : P → R is β-strictly convex if for
any x, z ∈ P

c(x) ≥ c(z) +∇c(z)>(x− z) + β(x− z)>∇c(z)∇c(z)>(x− z) (20)

It is known that such a defined strictly convex function include strongly con-
vex function and exponential concave function as special cases as long as the
gradient of the function is bounded. To see this, if c(x) is a β′-strongly convex
function with a bounded gradient ‖∇c(x)‖2 ≤ G, then

c(x) ≥ c(z) +∇c(z)>(x− z) + β′(x− z)>(x− z)

≥ c(z) +∇c(z)>(x− z) +
β′

G2
(x− z)>∇c(z)∇c(z)>(x− z),

thus c(x) is a (β′/G2) strictly convex. Similarly if c(x) is exp-concave, i.e.,
there exists α > 0 such that h(x) = exp(−αc(x)) is concave, then c(x) is a
β = 1/2 min(1/(4GD), α) strictly convex (c.f. Lemma 2 in [14]), where D is
defined as the diameter of the domain.

Therefore, in addition to smoothness and strict convexity we also assume
all the cost functions have bounded gradients, i.e., ‖∇ct(x)‖2 ≤ G. In [8], a
logarithmic gradual variation regret bound has been proved. For complete-
ness, we present the algorithm in the framework of general prox method and
summarize the results and analysis.

To derive a logarithmic gradual variation bound for online strictly con-
vex optimization, we need to change the Euclidean distance function in Algo-
rithm 4 to a generalized Euclidean distance function. Specifically, at trial t,
we let Ht = I + βG2I + β

∑t−1
τ=0∇cτ (xτ)∇cτ (xτ)> and use the generalized

Euclidean distance Dt(x, z) = 1
2‖x− z‖2Ht

= 1
2 (x− z)>Ht(x− z) in updating

20 Tianbao Yang et al.

xt and zt, i.e.,

xt = arg min
x∈P

{
x>∇ct−1(xt−1) +

1

2
‖x− zt−1‖2Ht

}
zt = arg min

x∈P

{
x>∇ct(xt) +

1

2
‖x− zt−1‖2Ht

}
,

(21)

To prove the regret bound, we can prove a similar inequality as in Lemma 2
by applying ω(x) = 1/2‖x‖2Ht

, which is stated as follows

∇ct(xt)>(xt − z) ≤ Dt(z, zt−1)−Dt(z, zt)

+ ‖∇ct(xt)−∇ct−1(xt−1)‖2
H−1

t
− 1

2

[
‖xt − zt−1‖2Ht

+ ‖xt − zt‖2Ht

]
.

Then by applying inequality in (20) for strictly convex function, we obtain the
following

ct(xt)− ct(z) ≤ Dt(x, zt−1)−Dt(x, zt)− β‖xt − z‖2ht

+ ‖∇ct(xt)−∇ct−1(xt−1)‖2
H−1

t
− 1

2

[
‖xt − zt−1‖2Ht

+ ‖xt − zt‖2Ht

]
, (22)

where ht = ∇ct(xt)∇ct(xt)>. It remains to apply the analysis in [8] to obtain a
logarithmic gradual variation bound, which is stated in the following corollary
and its proof is deferred to Appendix C.

Corollary 3 Let ct(x), t = 1, . . . , T be a sequence of β-strictly convex and L-
smooth functions with gradients bounded by G. We assume 8dL2 ≥ 1, otherwise
we can set L =

√
1/(8d). An algorithm that adopts the updates in (21) has a

regret bound by

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ 1 + βG2

2
+

8d

β
ln max(16dL2, βEGVT,2),

where EGVT,2 =
∑T−1
t=0 ‖∇ct+1(xt) − ∇ct(xt)‖22 and d is the dimension of

x ∈ P.

3 Online Non-Smooth Optimization with Gradual Variation Bound

All the results we have obtained so far rely on the assumption that the cost
functions are smooth. Additionally, at the beginning of Section 2, we showed
that for general non-smooth functions when the only information presented
to the learner is the first order information about the cost functions, it is
impossible to obtain a regret bound by gradual variation. However, in this
section, we show that a gradual variation bound is achievable for a special
class of non-smooth functions that is composed of a smooth component and a
non-smooth component.

Regret Bounded by Gradual Variation 21

We consider two categories for the non-smooth component. In the first
category, we assume that the non-smooth component is a fixed function and
is relatively easy such that the composite gradient mapping can be solved
without too much computational overhead compared to gradient mapping.
A common example that falls into this category is to consider a non-smooth
regularizer. For example, in addition to the basic domain P, one would enforce
the sparsity constraint on the decision vector x, i.e., ‖x‖0 ≤ k < d, which is
important in feature selection. However, the sparsity constraint ‖x‖0 ≤ k is
a non-convex function, and is usually implemented by adding a `1 regularizer
λ‖x‖1 to the objective function, where λ > 0 is a regularization parameter.
Therefore, at each iteration the cost function is given by ct(x)+λ‖x‖1. To prove
a regret bound by gradual variation for this type of non-smooth optimization,
we first present a simplified version of the general prox method and show that
it has the exactly same regret bound as stated in Subsection 2.3.1, and then
extend the algorithm to the non-smooth optimization with a fixed non-smooth
component.

In the second category, we assume that the non-smooth component can be
written as an explicit maximization structure. In general, we consider a time-
varying non-smooth component, present a primal-dual prox method, and prove
a min-max regret bound by gradual variation. When the non-smooth compo-
nents are equal across all trials, the usual regret is bounded by the min-max
bound plus a variation in the non-smooth component. To see an application of
min-max regret bound, we consider the problem of online classification with
hinge loss and show that the number of mistakes can be bounded by a variation
in sequential examples.

Before moving to the detailed analysis, it is worth mentioning that sev-
eral pieces of works have proposed algorithms for optimizing the two types
of non-smooth functions as described above to obtain an optimal convergence
rate of O(1/T) [24,23]. Therefore, the existence of a regret bound by gradual
variation for these two types of non-smooth optimization does not violate the
contradictory argument in Section 2.

3.1 Online Non-Smooth Optimization with a Fixed Non-smooth Component

3.1.1 A Simplified Version of Algorithm 5

In this subsection, we present a simplified version of Algorithm 5, which is the
foundation for us to develop the algorithm for non-smooth optimization.

The key trick is to replace the domain constraint x ∈ P with a non-smooth
function in the objective. Let δP(x) denote the indicator function of the domain
P, i.e.,

δP(x) =

 0, x ∈ P

∞, otherwise

22 Tianbao Yang et al.

Then the proximal gradient mapping for updating x (step 4) in Algorihtm 5
is equivalent to

xt = arg min
x

x>∇ct−1(xt−1) +
L

η
D(x, zt−1) + δP(x).

By the first order optimality condition, there exists a sub-gradient vt ∈ ∂δP(xt)
such that

∇ct−1(xt−1) +
L

η
(∇ω(xt)−∇ω(zt−1)) + vt = 0. (23)

Thus, xt is equal to

xt = arg min
x

x>(∇ct−1(xt−1) + vt) +
L

η
D(x, zt−1). (24)

Then we can change the update for zt to

zt = arg min
x

x>(∇ct(xt) + vt) +
L

η
D(x, zt−1). (25)

The key ingredient of above update compared to step 6 in Algorithm 5 is that
we explicitly use the sub-gradient vt that satisfies the optimality condition
for xt instead of solving a domain constrained optimization problem. The
advantage of updating zt by (25) is that we can easily compute zt by the first
order optimality condition, i.e.,

∇ct(xt) + vt +
L

η
(∇ω(zt)−∇ω(zt−1)) = 0. (26)

Note that equation (23) indicates vt = −∇ct−1(xt−1) −∇ω(xt) +∇ω(zt−1).
By plugging this into (26), we reach to the following simplified update for zt,

∇ω(zt) = ∇ω(xt) +
η

L
(∇ct−1(xt−1)−∇ct(xt)).

The simplified version of Algorithm 5 is presented in Algorithm 6.

Remark 6 We make three remarks for Algorithm 6. First, the searching point
zt does not necessarily belong to the domain P, which is usually not a problem
given that the decision point xt is always in P. Nevertheless, the update can
be followed by a projection step zt = minx∈P D(x, z′t) to ensure the searching
point also stay in the domain P, where we slightly abuse the notation z′t in
∇ω(z′t) = ∇ω(xt) + η

L (∇ct−1(xt−1)−∇ct(xt)).

Second, the update in step 6 can be implemented by [6, Chapter 11]:

zt = ∇ω∗(∇ω(xt) +
η

L
(∇ct−1(xt−1)−∇ct(xt))),

Regret Bounded by Gradual Variation 23

Algorithm 6 A Simplified General Prox Method for Online Convex Opti-
mization
1: Input: η > 0, ω(z)
2: Initialization: z0 = x0 = minz∈P ω(z) and c0(x) = 0
3: for t = 1, . . . , T do
4: Predict xt by

xt = arg min
x∈P

{
x>∇ct−1(xt−1) +

L

η
D(x, zt−1)

}

5: Receive cost function ct(·) and incur loss ct(xt)
6: Update zt by solving

∇ω(zt) = ∇ω(xt) +
η

L
(∇ct−1(xt−1)−∇ct(xt)).

7: end for

where ω∗(·) is the Legendre-Fenchel conjugate of ω(·). For example, when
ω(x) = 1/2‖x‖22, ω∗(x) = 1/2‖x‖22 and the update for the searching point is
given by

zt = xt + (η/L)(∇ct−1(xt−1)−∇ct(xt));

when ω(x) =
∑
i xi lnxi, ω

∗(x) = log [
∑
i exp(xi)] and the update for the

searching point can be computed by

[zt]i ∝ xi exp (η/L[∇ct−1(xt−1)−∇ct(xt)]) , s.t.
∑
i

[zt]i = 1.

Third, the key inequality in (15) for proving the regret bound still hold for
ζ = ∇ct(xt)+vt, ξ = ∇ct−1(xt−1)+vt by noting the equivalence between the
pairs (24, 25) and (13, 14), which is given below:

η

L
(∇ct(xt) + vt)

>(xt − x) ≤ D(x, zt−1)−D(x, zt)

+
γ2

α
‖∇ct(xt)−∇ct−1(xt−1)‖2∗ −

α

2
[‖xt − zt−1‖2 + ‖x− zt‖2],∀x ∈ P.

where vt ∈ ∂δP(xt). As a result, we can apply the same analysis as in the proof
of Theorem 3 to obtain the same regret bound in Theorem 4 for Algorithm 6.
Note that the above inequality remains valid even if we take a projection
step after the update for z′t due to the generalized pythagorean inequality
D(x, zt) ≤ D(x, z′t),∀x ∈ P [6].

3.1.2 A Gradual Variation Bound for Online Non-Smooth Optimization

In spirit of Algorithm 6, we present an algorithm for online non-smooth op-
timization of functions ct(x) = ĉt(x) + g(x) with a regret bound by gradual

24 Tianbao Yang et al.

Algorithm 7 A General Prox Method for Online Non-Smooth Optimization
with a Fixed Non-Smooth Component
1: Input: η > 0, ω(z)
2: Initialization: z0 = x0 = minz∈P ω(z) and c0(x) = 0
3: for t = 1, . . . , T do
4: Predict xt by

xt = arg min
x∈P

{
x>∇ct−1(xt−1) +

L

η
D(x, zt−1) + g(x)

}

5: Receive cost function ct(·) and incur loss ct(xt)
6: Update zt by

z′t = ∇ω∗
(
∇ω(xt) +

η

L
(∇ct−1(xt−1)−∇ct(xt))

)
and zt = minx∈P D(x, z′t)

7: end for

variation EGVT =
∑T−1
t=0 ‖∇ct+1(xt) − ∇ct(xt)‖2∗. The trick is to solve the

composite gradient mapping:

xt = arg min
x∈P

x>∇ct−1(xt−1) +
L

η
D(x, zt−1) + g(x)

and update zt by

∇ω(zt) = ∇ω(xt) +
η

L
(∇ct−1(xt−1)−∇ct(xt)).

Algorithm 7 shows the detailed steps and Corollay 4 states the regret bound,
which can be proved similarly.

Corollary 4 Let ct(·) = ĉt(·) + g(·), t = 1, . . . , T be a sequence of convex
functions where ĉt(·) are L-smooth continuous w.r.t ‖ · ‖ and g(·) is a non-
smooth function, ω(z) be a α-strongly convex function w.r.t ‖ · ‖, and EGVT

be defined in (19). By setting η = (1/2) min
{√

α/
√

2, LR/
√

EGVT

}
, we have

the following regret bound

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ 2Rmax
(√

2LR/
√
α,
√

EGVT

)
.

3.2 Online Non-Smooth Optimization with an Explicit Max Structure

In previous subsection, we assume the composite gradient mapping with the
non-smooth component can be efficiently solved. Here, we replace this assump-
tion with an explicit max structure of the non-smooth component.

In what follows, we present a primal-dual prox method for such non-smooth
cost functions and prove its regret bound. We consider a general setting, where

Regret Bounded by Gradual Variation 25

the non-smooth functions ct(x) has the following structure:

ct(x) = ĉt(x) + max
u∈Q
〈Atx,u〉 − φ̂t(u), (27)

where ĉt(x) and φ̂t(u) are L1-smooth and L2-smooth functions, respectively,
and At ∈ Rm×d is a matrix used to characterize the non-smooth component of
ct(x) with −φ̂t(u) by maximization. Similarly, we define a dual cost function
φt(u) as

φt(u) = −φ̂t(u) + min
x∈P
〈Atx,u〉+ ĉt(x). (28)

We refer to x as the primal variable and to u as the dual variable. To mo-
tivate the setup, let us consider online classification with hinge loss `t(w) =
max(0, 1 − ytw>xt), where we slightly abuse the notation (xt, yt) to denote
the attribute and label pair received at trial t. It is straightforward to see that
`t(w) is a non-smooth function and can be cast into the form in (27) by

`t(w) = max
α∈[0,1]

α(1− ytw>xt) = max
α∈[0,1]

−αytx>t w + α.

To present the algorithm and analyze its regret bound, we introduce some
notations. Let Ft(x,u) = ĉt(x) + 〈Atx,u〉 − φ̂t(u), ω1(x) be a α1-strongly
convex function defined on the primal variable x w.r.t a norm ‖ · ‖p and ω2(u)
be a α2-strongly convex function defined on the dual variable u w.r.t a norm
‖·‖q. Correspondingly, let D1(x, z) and D2(u,v) denote the induced Bregman
distance, respectively. We assume the domains P, Q are bounded and matrices
At have a bounded norm, i.e.,

max
x∈P
‖x‖p ≤ R1, max

u∈Q
‖u‖q ≤ R2

max
x∈P

ω1(x)−min
x∈P

ω1(x) ≤M1

max
u∈Q

ω2(u)−min
u∈Q

ω2(u) ≤M2

‖At‖p,q = max
‖x‖p≤1,‖u‖q≤1

u>Atx ≤ σ.

(29)

Let ‖ · ‖p,∗ and ‖ · ‖q,∗ denote the dual norms to ‖ · ‖p and ‖ · ‖q, respectively.
To prove a variational regret bound, we define a gradual variation as follows:

EGVT,p,q =

T−1∑
t=0

‖∇ĉt+1(xt)−∇ĉt(xt)‖2p,∗ + (R2
1 +R2

2)

T−1∑
t=0

‖At −At−1‖2p,q

+

T−1∑
t=0

‖∇φ̂t+1(ut)−∇φ̂t(ut)‖2q,∗. (30)

Given above notations, Algorithm 8 shows the detailed steps and Theorem 5
states a min-max bound.

26 Tianbao Yang et al.

Algorithm 8 General Prox Method for Online Non-smooth Optimization
with an Explicit Max Structure
1: Input: η > 0, ω1(z), ω2(v)
2: Initialization: z0 = x0 = minz∈P ω1(z), v0 = u0 = minv∈Q ω2(v) and ĉ0(x) =

φ̂0(u) = 0
3: for t = 1, . . . , T do
4: Update ut by

ut = arg max
u∈Q

{
u>(At−1xt−1 −∇φ̂t−1(ut−1))−

L2

η
D2(u,vt−1)

}

5: Predict xt by

xt = arg min
x∈P

{
x>(∇ĉt−1(xt−1) +A>t−1ut−1) +

L1

η
D1(x, zt−1)

}

6: Receive cost function ct(·) and incur loss ct(xt)
7: Update vt by

vt = arg max
u∈Q

{
u>(Atxt −∇φ̂t(ut))−

L2

η
D2(u,vt−1)

}

8: Update zt by

zt = arg min
x∈P

{
x>(∇ĉt(xt) +A>t ut) +

L1

η
D1(x, zt−1)

}
9: end for

Theorem 5 Let ct(x) = ĉt(x) + maxu∈Q〈Atx,u〉 − φ̂t(u), t = 1, . . . , T be a

sequence of non-smooth functions. Assume ĉt(x), φ̂(u) are L = max(L1, L2)-
smooth functions and the domain P,Q and At satisfy the boundness condition
as in (29). Let ω(x) be a α1-strongly convex function w.r.t the norm ‖·‖p, ω(u)
be a α2-strongly convex function w.r.t. the norm ‖ · ‖q, and α = min(α1, α2).
By setting η = min

(√
M1 +M2/(2

√
EGVT,p,q),

√
α/(4

√
σ2 + L2)

)
in Algo-

rithm 8, then we have

max
u∈Q

T∑
t=1

Ft(xt,u)−min
x∈P

T∑
t=1

Ft(x,ut)

≤ 4
√
M1 +M2 max

(
2

√
(M1 +M2)(σ2 + L2)

α
,
√

EGVT,p,q

)
.

To facilitate understanding, we break the proof into several Lemmas. The
following Lemma is by analogy with Lemma 2.

Lemma 3 Let θ =
(x

u

)
denote a single vector with a norm ‖θ‖ =

√
‖x‖2p + ‖u‖2q

and a dual norm ‖θ‖∗ =
√
‖x‖2p∗ + ‖u‖2q∗. Let ω(θ) = ω1(x)+ω2(u), D(θ, ζ) =

Regret Bounded by Gradual Variation 27

D1(x,u) +D2(z,v). Then

η

(
∇xFt(xt,ut)

−∇uFt(xt,ut)

)>(
xt − x

ut − u

)
≤ D(θ, ζt−1)−D(θ, ζt)

+ η2
(
‖∇xFt(xt,ut)−∇xFt−1(xt−1,ut−1)‖2p,∗

)
+ η2

(
‖∇uFt(xt,ut)−∇uFt−1(xt−1,ut−1)‖2q,∗

)
− α

2

(
‖xt − zt‖2p + ‖ut − vt‖2q + ‖xt − zt−1‖2p + ‖ut − vt−1‖2q

)
.

Proof The updates of (xt,ut) in Algorithm 8 can be seen as applying the

updates in Lemma 2 with θt =

(
xt
ut

)
in place of x, ζt =

(
zt
vt

)
in place of z+,

ζt−1 =

(
zt−1
vt−1

)
in place of z. Note that ω(θ) is a α = min(α1, α2)-strongly

convex function with respect to the norm ‖θ‖. Then applying the results in
Lemma 2 we can complete the proof.

Applying the convexity of Ft(x,u) in terms of x and the concavity of Ft(x,u)
in terms of u to the result in Lemma 3, we have

η (Ft(xt,u)− Ft(x,ut))
≤ D1(x, zt−1)−D1(x, zt) +D2(u,vt−1)−D2(u,vt)

+ η2‖∇ĉt(xt)−∇ĉt−1(xt−1) +A>t ut −A>t−1ut−1‖2p,∗
+ η2‖∇φ̂t(ut)−∇φ̂t−1(ut−1) +Atxt −At−1xt−1‖2q,∗
− α

2

(
‖xt − zt−1‖2p + ‖xt − zt‖2p

)
− α

2

(
‖ut − vt−1‖2q + ‖ut − vt‖2q

)
≤ D1(x, zt−1)−D1(x, zt) +D2(u,vt−1)−D2(u,vt)

+ 2η2‖∇ĉt(xt)−∇ĉt−1(xt−1)‖2p,∗ + 2η2‖A>t ut −A>t−1ut−1‖2p,∗
+ 2η2‖∇φ̂t(ut)−∇φ̂t−1(ut−1)‖2q,∗ + 2η2‖Atxt −At−1xt−1‖2q,∗
− α

2

(
‖xt − zt−1‖2p + ‖xt − zt‖2p

)
− α

2

(
‖ut − vt−1‖2q + ‖ut − vt‖2q

)

(31)

The following lemma provides tools for proceeding the bound.

Lemma 4

‖∇ĉt(xt)−∇ĉt−1(xt−1)‖2p,∗ ≤ 2‖∇ĉt(xt)−∇ĉt−1(xt)‖2p,∗ + 2L2‖xt − xt−1‖2p

‖∇φ̂t(ut)−∇φ̂t−1(ut−1)‖2q,∗ ≤ 2‖∇φ̂t(ut)−∇φ̂t−1(ut)‖2q,∗ + 2L2‖ut − ut−1‖2q

‖Atxt −At−1xt−1‖2q,∗ ≤ 2R2
1‖At −At−1‖2p,q + 2σ2‖xt − xt−1‖2p

‖A>t ut −A>t−1ut−1‖2p,∗ ≤ 2R2
2‖At −At−1‖2p,q + 2σ2‖ut − ut−1‖2q

28 Tianbao Yang et al.

Proof We prove the first and the third inequalities. Another two inequalities
can be proved similarly.

‖∇ĉt(xt)−∇ĉt−1(xt−1)‖2p,∗
≤ 2‖∇ĉt(xt)−∇ĉt−1(xt)‖2p,∗ + 2‖∇ĉt−1(xt)−∇ĉt−1(xt−1)‖2p,∗
≤ 2‖∇ĉt(xt)−∇ĉt−1(xt)‖2p,∗ + 2L2‖xt − xt−1‖2p

where we use the smoothness of ĉt(x).

‖Atxt −At−1xt−1‖2q,∗ ≤ 2‖(At −At−1)xt‖2q,∗ + 2‖At−1(xt − xt−1)‖2p
≤ 2R2

1‖At −At−1‖2p,q + 2σ2‖xt − xt−1‖2p

Lemma 5 For any x ∈ P and u ∈ Q, we have

η (Ft(xt,u)− Ft(x,ut))
≤ D1(x, zt−1)−D1(x, zt) +D2(u,vt−1)−D2(u,vt)

+ 4η2
(
‖∇ĉt(xt)−∇ĉt−1(xt)‖2p,∗ + ‖∇φ̂t(ut)−∇φ̂t−1(ut)‖2q,∗

+ (R2
1 +R2

2)‖At −At−1‖2p,q
)

+ 4η2σ2‖xt − xt−1‖2p + 4η2L2‖xt − xt−1‖2p −
α

2
(‖xt − zt‖2p + ‖xt − zt−1‖2p)

+ 4η2σ2‖ut − ut−1‖2p + 4η2L2‖ut − ut−1‖2q −
α

2
(‖ut − vt‖2q + ‖ut − vt−1‖2q).

Proof The lemma can be proved by combining the results in Lemma 4 and
the inequality in (31).

η (Ft(xt,u)− Ft(x,ut))
≤ D1(x, zt−1)−D1(x, zt) +D2(u,vt−1)−D2(u,vt)

+ 2η2‖∇ĉt(xt)−∇ĉt−1(xt−1)‖2p,∗ + 2η2‖A>t ut −A>t−1ut−1‖2p,∗
+ 2η2‖∇φ̂t(ut)−∇φ̂t−1(ut−1)‖2q,∗ + 2η2‖Atxt −At−1xt−1‖2q,∗
− α

2

(
‖xt − zt−1‖2p + ‖xt − zt‖2p

)
− α

2

(
‖ut − vt−1‖2q + ‖ut − vt‖2q

)
≤ D1(x, zt−1)−D1(x, zt) +D2(u,vt−1)−D2(u,vt)

+ 4η2‖∇ĉt(xt)−∇ĉt−1(xt)‖2p,∗ + 4η2L2‖xt − xt−1‖2p + 4η2σ2‖xt − xt−1‖2p
+ 4η2R2

1‖At −At−1‖2p,q + 4η2R2
2‖At −At−1‖2p,q

+ 4η2‖∇φ̂t(ut)−∇φ̂t−1(ut)‖2q,∗ + 4η2L2‖ut − ut−1‖2q + 4η2σ2‖ut − ut−1‖2q
− α

2

(
‖xt − zt−1‖2p + ‖xt − zt‖2p

)
− α

2

(
‖ut − vt−1‖2q + ‖ut − vt‖2q

)

Regret Bounded by Gradual Variation 29

≤ D1(x, zt−1)−D1(x, zt) +D2(u,vt−1)−D2(u,vt)

+ 4η2
(
‖∇ĉt(xt)−∇ĉt−1(xt)‖2p,∗ + ‖∇φ̂t(ut)−∇φ̂t−1(ut)‖2q,∗

+ (R2
1 +R2

2)‖At −At−1‖2p,q
)

+ 4η2σ2‖xt − xt−1‖2p + 4η2L2‖xt − xt−1‖2p −
α

2
(‖xt − zt‖2p + ‖xt − zt−1‖2p)

+ 4η2σ2‖ut − ut−1‖2p + 4η2L2‖ut − ut−1‖2q −
α

2
(‖ut − vt‖2q + ‖ut − vt−1‖2q).

Proof (of Theorem 5) Taking summation the inequalities in Lemma 5 over t =
1, . . . , T , applying the inequality in (17) twice and using η ≤

√
α/(4

√
σ2 + L2),

we have

T∑
t=1

Ft(xt,u)−
T∑
t=1

Ft(x,ut) ≤ 4ηEGVT,p,q +
M1 +M2

η

= 4
√
M1 +M2 max

(
2

√
(M1 +M2)(σ2 + L2)

α
,
√

EGVT,p,q

)
. (32)

We complete the proof by using x∗ = arg minx∈P
∑T
t=1 Ft(xt,u) and u∗ =

arg maxu∈Q
∑T
t=1 Ft(x,ut).

As an immediate result of Theorem 5, the following Corollary states a
regret bound for non-smooth optimization with a fixed non-smooth compo-
nent that can be written as a max structure, i.e., ct(x) = ĉt(x) + [g(x) =

maxu∈Q〈Ax,u〉 − φ̂(u)].

Corollary 5 Let ct(x) = ĉt(x) + g(x), t = 1, . . . , T be a sequence of non-

smooth functions, where g(x) = maxu∈Q〈Ax,u〉 − φ̂(u), and the gradual vari-
ation EGVT be defined in (19) w.r.t the dual norm ‖·‖p,∗. Assume ĉt(x) are L-
smooth functions w.r.t ‖·‖, the domain P,Q and A satisfy the boundness condi-
tion as in (29). If we set η = min

(√
M1 +M2/(2

√
EGVT),

√
α/(4

√
σ2 + L2)

)
in Algorithm 8, then we have the following regret bound

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x)

≤ 4
√
M1 +M2 max

(
2

√
(M1 +M2)(σ2 + L2)

α
,
√

EGVT

)
+ V(g,x1:T),

where x̂T =
∑T
t=1 xt/T and V(g,x1:T) =

∑T
t=1 |g(xt) − g(x̂T)| measures the

variation in the non-smooth component.

Proof In the case of fixed non-smooth component, the gradual variation de-
fined in (30) reduces the one defined in (19) w.r.t the dual norm ‖ · ‖p,∗. By

30 Tianbao Yang et al.

using the bound in (32) and noting that ct(x) = maxu∈Q Ft(x,u) ≥ Ft(x,ut),
we have

T∑
t=1

(
ĉt(xt) + 〈Axt,u〉 − φ̂(u)

)
≤

T∑
t=1

ct(x)+

4
√
M1 +M2 max

(
2

√
(M1 +M2)(σ2 + L2)

α
,
√

EGVT

)
.

Therefore

T∑
t=1

(
ĉt(xt) + g(x̂T)

)
≤

T∑
t=1

ct(x)+

4
√
M1 +M2 max

(
2

√
(M1 +M2)(σ2 + L2)

α
,
√

EGVT

)
.

We complete the proof by complementing ĉt(xt) with g(xt) to obtain ct(xt)

and moving the additional term
∑T
t=1(g(x̂T)− g(xt)) to the right hand side .

Remark 7 Note that the regret bound in Corollary 5 has an additional term
V (g,x1:T) compared to the regret bound in Corollary 4, which constitutes
a tradeoff between the reduced computational cost in solving a composite
gradient mapping.

To see an application of Theorem 5 to an online non-smooth optimization
with time-varying non-smooth components, let us consider the example of
online classification with hinge loss. At each trial, upon receiving an example
xt, we need to make a prediction based on the current model wt, i.e., ŷt =
w>t xt, then we receive the true label of xt denoted by yt ∈ {+1,−1}. The
goal is to minimize the total number of mistakes across the time line MT =∑T
t=1 I(ŷtyt ≤ 0). Here we are interested in a scenario that the data sequence

(xt, yt), t = 1, . . . , T has a small gradual variation in terms of ytxt. To obtain
such a gradual variation based mistake bound, we can apply Algorithm 8.
For the purpose of deriving the mistake bound, we need to make a small
change to Algorithm 8. At the begining of each trial, we first make a prediction
ŷt = w>t xt, and if we make a mistake I(ŷtyt ≤ 0) the we proceed to update
the auxiliary primal-dual pair (w′t, βt) similar to (zt,vt) in Algorithm 8 and
the primal-dual pair (wt+1, αt+1) similar to (xt+1,ut+1) in Algorithm 8, which
are given explicitly as follows:

βt =
∏
[0,1]

(βt−1 + η(1−wtytxt)) , w′t =
∏

‖w‖2≤R

(w′t−1 + ηαtytxt)

αt+1 =
∏
[0,1]

(βt + η(1−wtytxt)) , wt+1 =
∏

‖w‖2≤R

(w′t + ηαtytxt).

Without loss of generality, we let (xt, yt), t = 1, . . . ,MT denote the examples
that are predicted incorrectly. The Ft function is written as Ft(w, α) = α(1−

Regret Bounded by Gradual Variation 31

ytw
>
t xt). Then for a total sequence of T examples, we have the following bound

by assuming ‖xt‖2 ≤ 1 and η ≤ 1/2
√

2

MT∑
t=1

Ft(wt, α) ≤
MT∑
t=1

`(ytw
>xt) + η

MT−1∑
t=0

(R2 + 1)‖yt+1xt+1 − ytxt‖22 +
R2 + α2

2η
.

Since ytw
>
t xt is less than 0 for the incorrectly predicted examples, if we set

α = 1 in the above inequality, we have

MT ≤
MT∑
t=1

`(ytw
>xt) + η

MT−1∑
t=0

(R2 + 1)‖yt+1xt+1 − ytxt‖22 +
R2 + 1

2η

≤
MT∑
t=1

`(ytw
>xt) +

√
2(R2 + 1) max(2,

√
EGVT,2).

which results in a gradual variational mistake bound, where
√

EVGT,2 mea-
sures the gradual variation in the incorrectly predicted examples. To end the
discussion, we note that one may find applications of a small gradual variation
of ytxt in time series classification. For instance, if xt represent some medi-
cal measurements of a person and yt indicates whether the person observes a
disease, since the health conditions usually change slowly then it is expected
that the gradual variation of ytxt is small. Similarly, if xt are some sensor
measurements of an equipment and yt indicates whether the equipment fails
or not, we would also observe a small gradual variation of the sequence ytxt
during a time period.

4 Variation Bound for Online Bandit Convex Optimization

Online convex optimization becomes more challenging when the learner only
receives partial feedback about the cost functions. One common scenario of
partial feedback is that the learner only receives the cost c(xt) at the predicted
point xt but without observing the entire cost function ct(x). This setup is
usually referred to as bandit setting, and the related online learning problem
is called online bandit convex optimization.

Before describing our result for bandit setting, we give a quick review of
the literature on online bandit convex optimization. [11] presented a modified
gradient descent approach for online bandit convex optimization that attains
O(T 3/4) regret bound. The key idea of their algorithm is to compute the
stochastic approximation of the gradient of cost functions by single point eval-
uation of the cost functions. This regret bound is later improved to O(T 2/3) [4,
9] for online bandit linear optimization. More recently, [10] proposed an inef-
ficient algorithm for online bandit linear optimization with the optimal regret
bound O(poly(d)

√
T) based on multi-armed bandit algorithm. The key disad-

vantage of [10] is that it is not computationally efficient. Abernethy, Hazan,
and Rakhlin [1] presented an efficient randomized algorithm with an optimal

32 Tianbao Yang et al.

regret bound O(poly(d)
√
T) that exploits the properties of self-concordant

barrier regularization. For online bandit convex optimization, [2] proposed op-
timal algorithms in a multi-point bandit setting, in which multiple points can
be queried for the cost values. With multiple queries, they show that the mod-
ified online gradient descent algorithm [2] can give an O(

√
T) expected regret

bound.
Recently Hazan et al [15] extended the FTRL algorithm to online bandit

linear optimization and obtained a variation-based regret bound in the form of
O(poly(d)

√
VART log(T)+poly(d log(T))), where VART is the total variation

of the cost vectors. We continue this line of work by proposing algorithms for
general online bandit convex optimization with a variation-based regret bound.
We present a deterministic algorithm for online bandit convex optimization by
extending Algorithm 4 to a multi-point bandit setting, and prove the variation-
based regret bound, which is optimal when the variation is independent of the
number of trials. In our bandit setting , we assume we are allowed to query d+1
points around the decision point xt. We pose the problem of further reducing
the number of point evaluations to a constant number that is independent of
the dimension as an open problem.

4.1 A Deterministic Algorithm for Online Bandit Convex Optimization

To develop a variation bound for online bandit convex optimization, we fol-
low [2] by considering the multi-point bandit setting, where at each trial the
player is allowed to query the cost functions at multiple points. We propose a
deterministic algorithm to compete against the completely adaptive adversary
that can choose the cost function ct(x) with the knowledge of x1, · · · ,xt. To
approximate the gradient ∇ct(xt), we query the cost function to obtain the
cost values at ct(xt), and ct(xt+δei), i = 1, · · · , d, where ei is the ith standard
base in Rd. Then we compute the estimate of the gradient ∇ct(xt) by

gt(xt) =
1

δ

d∑
i=1

(ct(xt + δei)− ct(xt)) ei.

It can be shown that [2], under the smoothness assumption in (8),

‖gt(xt)−∇ct(xt)‖2 ≤
√
dLδ

2
. (33)

To prove the regret bound, besides the smoothness assumption of the cost
functions, and the boundness assumption about the domain P ⊆ B, we further
assume that (i) there exists r ≤ 1 such that rB ⊆ P ⊆ B, and (ii) the cost
function themselves are Lipschitz continuous, i.e., there exists a constant G
such that

|ct(x)− ct(z)| ≤ G‖x− z‖2,∀x, z ∈ P,∀t.

Regret Bounded by Gradual Variation 33

Algorithm 9 Deterministic Online Bandit Convex Optimization
1: Input: η, α, δ > 0
2: Initialization: z0 = 0 and c0(x) = 0
3: for t = 1, . . . , T do
4: Compute xt by

xt = arg min
x∈(1−α)P

{
x>gt−1(xt−1) +

G

2η
‖x− zt−1‖22

}

5: Observe ct(xt), ct(xt + δei), i = 1, · · · , d
6: Update zt by

zt = arg min
x∈(1−α)P

{
x>gt(xt) +

G

2η
‖x− zt−1‖22

}
7: end for

For our purpose, we define another gradual variation of cost functions by

EGVc
T =

T−1∑
t=0

max
x∈P
|ct+1(x)− ct(x)|. (34)

Unlike the gradual variation defined in (7) that uses the gradient of the cost
functions, the gradual variation in (34) is defined according to the values of
cost functions. The reason why we bound the regret of Algorithm 8 by the
gradual variation defined in (34) by the values of the cost functions rather
than the one defined in (7) by the gradient of the cost functions is that in
the bandit setting, we only have point evaluations of the cost functions. The
following theorem states the regret bound for Algorithm 9.

Theorem 6 Let ct(·), t = 1, . . . , T be a sequence of G-Lipschitz continuous
convex functions, and their gradients are L-Lipschitz continuous. By setting

δ =

√
4dmax(

√
2G,

√
EGVc

T)

(
√
dL+G(1 + 1/r))T

, η =
δ

4d
min

{
1√
2
,

G√
EGVc

T

}
, and α = δ/r,

we have the following regret bound for Algorithm 9

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ 4

√
max

(√
2G,

√
EGVc

T

)
d (dL+G/r)T.

Remark 8 Similar to the regret bound in [2](Theorem 9), Algorithm 9 also
gives the optimal regret bound O(

√
T) when the variation is independent of

the number of trials. Our regret bound has a better dependence on d (i.e., d)
compared with the regret bound in [2] (i.e., d2).

Proof Let ht(x) = ct(x)+(gt(xt)−∇ct(xt))>x. It is easy seen that ∇ht(xt) =
gt(xt). Followed by Lemma 2, we have for any z ∈ (1− α)P,

η

G
∇ht(xt)>(xt − z) ≤ 1

2

(
‖z− zt−1‖22 − ‖z− zt‖22

)
+
η2

G2
‖gt(xt)− gt−1(xt−1)‖22

− 1

2

(
‖xt − zt−1‖22 + ‖xt − zt‖22

)

34 Tianbao Yang et al.

Taking summation over t = 1, . . . , T , we have,

T∑
t=1

η

G
∇ht(xt)>(xt − z) ≤ ‖z− z0‖22

2
+

T∑
t=1

η2

G2
‖gt(xt)− gt−1(xt−1)‖22

−
T∑
t=1

1

2

(
‖xt − zt−1‖22 + ‖xt − zt‖22

)
≤ ‖z− z0‖22

2
+

T∑
t=1

η2

G2
‖gt(xt)− gt−1(xt−1)‖22 −

T∑
t=1

1

4
‖xt − xt−1‖22

≤ 1

2
+

T∑
t=1

η2

G2
‖gt(xt)− gt−1(xt−1)‖22 −

T∑
t=1

1

4
‖xt − xt−1‖22

≤ 1

2
+

T∑
t=1

2η2

G2
‖gt(xt)− gt(xt−1)‖22 +

T∑
t=1

2η2

G2
‖gt(xt−1)− gt−1(xt−1)‖22

−
T∑
t=1

1

4
‖xt − xt−1‖22

≤ 1

2
+

2η2

δ2G2

T∑
t=1

∥∥∥∥∥
d∑
i=1

(ct(xt + δei)− ct(xt−1 + δei))ei − (ct(xt)− ct(xt−1))ei

∥∥∥∥∥
2

2

+
2η2

δ2G2

T∑
t=1

∥∥∥∥∥
d∑
i=1

(ct(xt−1 + δei)− ct−1(xt−1 + δei))ei − (ct(xt−1)− ct−1(xt−1))ei

∥∥∥∥∥
2

2

−
T∑
t=1

1

4
‖xt − xt−1‖22.

where the second inequality follows (17). Next, we bound the middle two terms
in R.H.S of the above inequality.

T∑
t=1

∥∥∥∥∥
d∑
i=1

(ct(xt + δei)− ct(xt−1 + δei))ei − (ct(xt)− ct(xt−1))ei

∥∥∥∥∥
2

2

≤
T∑
t=1

2d

d∑
i=1

(
|ct(xt + δei)− ct(xt−1 + δei)|2 + |ct(xt)− ct(xt−1)|2

)
≤

T∑
t=1

4d2G2‖xt − xt−1‖22,

Regret Bounded by Gradual Variation 35

and

T∑
t=1

∥∥∥∥∥
d∑
i=1

(ct(xt−1 + δei)− ct−1(xt−1 + δei))ei − (ct(xt−1)− ct−1(xt−1))ei

∥∥∥∥∥
2

2

≤
T∑
t=1

2d

d∑
i=1

(
|ct(xt−1 + δei)− ct−1(xt−1 + δei)|2 + |ct(xt−1)− ct−1(xt−1)|2

)
≤

T∑
t=1

4d2 max
x∈P
|ct(x)− ct−1(x)|2.

Then we have

T∑
t=1

η

G
∇ht(xt)>(xt − z) ≤ 1

2
+

8d2η2

δ2

T∑
t=1

‖xt − xt−1‖22 +
8d2η2

δ2G2

T∑
t=1

max
x∈P
|ct(x)− ct−1(x)|2

−
T∑
t=1

1

4
‖xt − xt−1‖22

≤ 1

2
+

8d2η2

δ2G2

T∑
t=1

max
x∈P
|ct(x)− ct−1(x)|2

where the last inequality follows that η ≤ δ/(4
√

2d). Then by using the con-
vexity of ht(x) and dividing both sides by η/G, we have

T∑
t=1

ht(xt)−min
x∈P

ht((1− α)x) ≤ G

2η
+

8ηd2

Gδ2
EVARc

T ≤
4d

δ
max

(√
2G,

√
EVARc

T

)
Following the the proof of Theorem 8 in [2], we have

∑
t=1

ct(xt)−
T∑
t=1

ct(x) ≤
T∑
t=1

ht(xt)−
T∑
t=1

ht(x) +

T∑
t=1

ct(xt)− ht(xt)− ct(x) + ht(x)

≤
T∑
t=1

ht(xt)−
T∑
t=1

ht(x) +

T∑
t=1

(gt(xt)−∇ct(xt))>(x− xt)

≤
T∑
t=1

ht(xt)−
T∑
t=1

ht(x) +
√
dLδT

where the last inequality follows from the following facts:

‖gt(xt)−∇ct(xt)]‖2 ≤
√
dLδ

2
‖x− xt‖ ≤ 2

36 Tianbao Yang et al.

Then we have

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct((1− α)x) ≤ 4d

δ
max

(√
2G,

√
EVARc

T

)
+
√
dLδT

By the Lipschitz continuity of ct(x), we have

T∑
t=1

ct((1− α)x) ≤
T∑
t=1

ct(x) +GαT

The we get

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ 4d

δ
max

(√
2G,

√
EVARc

T

)
+ δ
√
dLT + αGT

Plugging the stated values of δ and α completes the proof.

5 Conclusions and Discussions

In this paper, we proposed two novel algorithms for online convex optimiza-
tion that bound the regret by the gradual variation of cost functions. The first
algorithm is an improvement of the FTRL algorithm, and the second algo-
rithm is based on the prox method. Both algorithms maintain two sequence
of solution points, a sequence of decision points and a sequence of searching
points, and share the same order of regret bound up to a constant. The prox
method only requires to keep tracking of a single gradient of each cost func-
tion, while the improved FTRL algorithm needs to evaluate the gradient of
each cost function at two points and maintain a sum of up-to-date gradients of
the cost functions. We also extended the prox method to a general framework
that yields a gradual variation bound with the variation defined by a general
norm and also to a multi-point bandit setting. We discuss several special cases,
including online linear optimization, predict with expert advice, online strictly
convex optimization. We also developed a simplified prox method using a com-
posite gradient mapping for non-smooth optimization with a fixed non-smooth
component and a primal-dual prox method for non-smooth optimization with
the non-smooth component written as a max structure.

Finally, it has been brought to our attention that as we prepare the final
version of the present work, Chiang et al. [7] published a paper at the Con-
ference on Learning Theory in 2013, which extends the prox method into a
two-point bandit setting and achieves a similar regret bound in expectation
as that in the full setting, i.e., O

(
d2
√

EGVT,2 ln T
)

for smooth convex cost

functions and O
(
d2 ln(EGVT,2 + ln T)

)
for smooth and strongly convex cost

functions, where EGVT,2 is the gradual variation defined on the gradients of
the cost functions. We would like to make a thought-provoking comparison
between our regret bound and their regret bound for online bandit convex
optimization with smooth cost functions. First, the gradual variation in our

Regret Bounded by Gradual Variation 37

bandit setting is defined on the values of the cost functions in contrast to
that defined on the gradients of the cost functions. Second, we query the cost
function d times in contrast to 2 times in their algorithms, and as a tradeoff
our regret bound has a better dependence on the number of dimensions (i.e.,
O(d)) than that (i.e., O(d2)) of their regret bound. Third, our regret bound
has an annoying factor of

√
T in comparison with

√
lnT in theirs. Therefore,

some open problems are how to achieve a lower order of dependence on d than
d2 in the two-point bandit setting, and how to remove the factor of

√
T while

keeping a small order of dependence on d in our multi-point bandit setting;
and studying the two different types of gradual variations for bandit settings
is a future work as well.

Acknowledgements We thank the reviewers for their immensely helpful and thorough
comments.

References

1. Abernethy, J., Hazan, E., Rakhlin, A.: Competing in the dark: An efficient algorithm for
bandit linear optimization. In: Proceedings of the 21st Annual Conference on Learning
Theory, pp. 263–274 (2008)

2. Agarwal, A., Dekel, O., Xiao, L.: Optimal algorithms for online convex optimization
with multi-point bandit feedback. In: Proceedings of the 23rd Annual Conference on
Learning Theory, pp. 28–40 (2010)

3. Agarwal, A., Hazan, E., Kale, S., Schapire, R.E.: Algorithms for portfolio management
based on the newton method. In: Proceedings of the 23rd international conference on
Machine learning, pp. 9–16 (2006)

4. Awerbuch, B., Kleinberg, R.D.: Adaptive routing with end-to-end feedback: distributed
learning and geometric approaches. In: Proceedings of the 36th ACM Symposium on
Theory of Computing, pp. 45–53 (2004)

5. Bianchi, N.C., Mansour, Y., Stoltz, G.: Improved Second-Order bounds for prediction
with expert advice. In: Proceedings of the 18th Annual Conference on Learning Theory,
vol. 3559, pp. 217–232 (2005)

6. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University
Press, New York, NY, USA (2006)

7. Chiang, C.K., Lee, C.J., Lu, C.J.: Beating bandits in gradually evolving worlds. In:
COLT, pp. 210–227 (2013)

8. Chiang, C.K., Yang, T., Lee, C.J., Mahdavi, M., Lu, C.J., Jin, R., Zhu, S.: Online
optimization with gradual variations. In: COLT, pp. 6.1–6.20 (2012)

9. Dani, V., Hayes, T.P.: Robbing the bandit: less regret in online geometric optimiza-
tion against an adaptive adversary. In: Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 937–943 (2006)

10. Dani, V., Hayes, T.P., Kakade, S.: The price of bandit information for online optimiza-
tion. In: Proceedings of the Twenty-First Annual Conference on Neural Information
Processing Systems (2007)

11. Flaxman, A.D., Kalai, A.T., McMahan, H.B.: Online convex optimization in the bandit
setting: gradient descent without a gradient. In: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 385–394 (2005)

12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and
an application to boosting. In: Proceedings of the 2nd European Conference on Com-
putational Learning Theory, pp. 23–37. Springer-Verlag, London, UK (1995)

13. Hazan, E., Agarwal, A., Kale, S.: Logarithmic regret algorithms for online convex opti-
mization. Machine Learning 69, 169–192 (2007)

38 Tianbao Yang et al.

14. Hazan, E., Agarwal, A., Kale, S.: Logarithmic regret algorithms for online convex opti-
mization. Mach. Learn. 69, 169–192 (2007)

15. Hazan, E., Kale, S.: Better algorithms for benign bandits. In: Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 38–47 (2009)

16. Hazan, E., Kale, S.: Extracting certainty from uncertainty: regret bounded by variation
in costs. Machine Learning 80(2-3), 165–188 (2010)

17. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. Journal of
Computer and System Sciences 71, 291–307 (2005)

18. Kale, S.: Commentary on ”online optimization with gradual variations”. Journal of
Machine Learning Research - Proceedings Track 23, 6.21–6.24 (2012)

19. Kivinen, J., Smola, A.J., Williamson, R.C.: Online Learning with Kernels. IEEE Trans-
actions on Signal Processing 52, 2165–2176 (2004)

20. Kivinen, J., Warmuth, M.K.: Additive versus exponentiated gradient updates for linear
prediction. In: Proceedings of the 27th annual ACM symposium on Theory of com-
puting, Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, pp. 209–218. ACM, New York, NY, USA (1995)

21. Nemirovski, A.: Prox-method with rate of convergence o(1/t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization 15, 229–251 (2005)

22. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course (Applied
Optimization), 1 edn. Springer Netherlands (2004)

23. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM Jour-
nal on Optimization 16, 235–249 (2005)

24. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103,
127–152 (2005)

25. Takimoto, E., Warmuth, M.K.: Path kernels and multiplicative updates. Journal Ma-
chine Learnning Research 4, 773–818 (2003)

26. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient as-
cent. In: Proceedings of the 20th International Conference on Machine Learning, pp.
928–936 (2003)

Appendix A. Regret Bound which holds uniformly over time

As mentioned in Remark 2, the algorithms presented rely on the previous
knowledge of the gradual variation EGVT,2 to tune the learning rate η to
obtain the optimal bound. In this appendix, we show that the Algorithm 3
can be used as a black-box to achieve the same regret bound but without any
prior knowledge of the EGVT,2. We note that the analysis here is not specific
to Algorithm 3 and it is general enough to be adapted to other algorithms in
the paper too.

The main idea is to run the algorithm in epochs with a fixed learning
rate ηk = η0/2

k for kth epoch where η0 is a fixed constant and will be de-
cided by analysis. We denote the number of epochs by K and let bk denote
the start of kth epoch. We note that bK+1 = T + 1. Within kth epoch, the

algorithm ensures that the inequality ηk
∑bk+1−1
t=bk

‖∇ct+1(zt)−∇ct(zt)‖22 ≤
L2η−1k holds. To this end, the algorithm computes and maintains the quan-

tity
∑t
s=bk
‖∇cs+1(zs)−∇cs(zs)‖22 and sets the beginning of new epoch to be

bk+1 = mint
∑t
s=bk
‖∇cs+1(zs)−∇cs(zs)‖22 > L2η−1k , i.e., the first iteration

for which the invariant is violated. We note that this decision can only be
made after seeing the tth cost function. Therefor, we burn the first iteration

Regret Bounded by Gradual Variation 39

of each epoch which causes an extra regret of KL2 in the total regret. From
the analysis we have:

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤
K∑
k=1

bk+1−1∑
t=bk

ct(xt)−min
x∈P

bk+1−1∑
t=bk

ct(x)

 (35)

≤
K∑
k=1

L

2ηk
+
ηk
2L

EGVbk:bk+1−1 +KL2

≤
K∑
k=1

L

2ηk
+

L

2ηk
+K = 2L

K∑
k=1

η−1k +KL2

where the first inequality follows the analysis of algorithm for each epoch,
the last inequality follows the invariant maintained within each phase and the
constant KL2 is due to burning the first iteration of each epoch. We now try
to upper bound the last term. We first note that

∑K
k=1 η

−1
k =

∑K−1
k=1 η−10 2k +

η−10 2K = η−10 (2K − 1) + η−10 2K ≤ η−10 2K+1. Furthermore, from bK , we know

that ηK−1
∑bK
t=bK−1

‖∇ct+1(zt)−∇ct(zt)‖22 ≥ L2η−1K−1 since the bK is the
first iteration within epoch K − 1 which violates the invariant. Also, from
the monotonicity of gradual variation one can obtain that ηK−1EGVT,2 ≥
ηK−1

∑bK
t=bK−1

‖∇ct+1(zt)−∇ct(zt)‖22 ≥ L2η−1K−1 which indicates η−1K−1 ≤√
EGVT,2/L. Putting these together, from (35) we obtain:

T∑
t=1

ct(xt)−min
x∈P

T∑
t=1

ct(x) ≤ 2L
2K+1

η0
+KL2 ≤ 8

√
EGVT,2 +KL2.

It remains to bound the number of epochs in terms of EGVT,2. A simple idea
would be to set K to be blog EGVT,2c + 1, since it is the maximum number
of epochs that could exists. Alternatively, we can also bound K in terms of√

EGVT,2 which worsen the constant factor in the bound but results in a
bound similar to one obtained by setting optimal η.

Appendix B. Proof of Lemma 2

By using the definition of Bregman distance D(u, z), we can write equa-
tions (13) and (14) as

x = arg min
u∈U

u>(γξ − ω′(z)) + ω(u),

z+ = arg min
u∈U

u>(γζ − ω′(z)) + ω(u),

by the first oder optimality condition, we have

(u− x)>(γξ − ω′(z) + ω′(x)) ≥ 0,∀u ∈ U, (36)

(u− z+)>(γζ − ω′(z) + ω′(z+)) ≥ 0,∀u ∈ U. (37)

40 Tianbao Yang et al.

Applying (36) with u = z+ and (37) with u = x, we get

γ(x− z+)>ξ ≤ (ω′(z)− ω′(x))>(x− z+),

γ(z+ − x)>ζ ≤ (ω′(z)− ω′(z+))>(z+ − x).

Summing up the two inequalities, we have

γ(x− z+)>(ξ − ζ) ≤ (ω′(z+)− ω′(x))>(x− z+).

Then

γ‖ξ − ζ‖∗‖x− z+‖ ≥ −γ(x− z+)>(ξ − ζ) ≥ (ω′(z+)− ω′(x))>(z+ − x)

≥ α‖z+ − x‖2. (38)

where in the last inequality, we use the strong convexity of ω(x).

D(u, z)−D(u, z+) = ω(z+)− ω(z) + (u− z+)>ω′(z+)− (u− z)>ω′(z)

=ω(z+)− ω(z) + (u− z+)>ω′(z+)− (u− z+)>ω′(z)− (z+ − z)>ω′(z)

=ω(z+)− ω(z)− (z+ − z)>ω′(z) + (u− z+)>(ω′(z+)− ω′(z))

=ω(z+)− ω(z)− (z+ − z)>ω′(z) + (u− z+)>(γζ + ω′(z+)− ω′(z))− (u− z+)>γζ

≥ω(z+)− ω(z)− (z+ − z)>ω′(z)− (u− z+)>γζ

=ω(z+)− ω(z)− (z+ − z)>ω′(z)− (x− z+)>γζ︸ ︷︷ ︸
ε

+(x− u)>γζ,

where the inequality follows from (37). We proceed by bounding ε as:

ε =ω(z+)− ω(z)− (z+ − z)>ω′(z)− (x− z+)>γζ

=ω(z+)− ω(z)− (z+ − z)>ω′(z)− (x− z+)>γ(ζ − ξ)− (x− z+)>γξ

=ω(z+)− ω(z)− (z+ − z)>ω′(z)− (x− z+)>γ(ζ − ξ)
+ (z+ − x)>(γξ − ω′(z) + ω′(x))− (z+ − x)>(ω′(x)− ω′(z))

≥ω(z+)− ω(z)− (z+ − z)>ω′(z)− (x− z+)>γ(ζ − ξ)− (z+ − x)>(ω′(x)− ω′(z))

=ω(z+)− ω(z)− (x− z)>ω′(z)− (x− z+)>γ(ζ − ξ)− (z+ − x)>ω′(x)

=
[
ω(z+)− ω(x)− (z+ − x)>ω′(x)

]
+
[
ω(x)− ω(z)− (x− z)>ω′(z)

]
− (x− z+)>γ(ζ − ξ)

≥α
2
‖x− z+‖2 +

α

2
‖x− z‖2 − γ‖x− z+‖‖ζ − ξ‖∗

≥α
2
{‖x− z+‖2 + ‖x− z‖2} − γ2

α
‖ζ − ξ‖2∗,

where the first inequality follows from (36), the second inequality follows from
the strong convexity of ω(x), and the last inequality follows from (38). Com-
bining the above results, we have

γ(x− u)>ζ ≤ D(u, z)−D(u, z+) +
γ2

α
‖ζ − ξ‖2∗ −

α

2
{‖x− z+‖2 + ‖x− z‖2}.

Regret Bounded by Gradual Variation 41

Appendix C. Proof of Corollary 3

We first have the key inequality in (22): for any z ∈ P

ct(xt)− ct(z) ≤ Dt(z, zt−1)−Dt(z, zt)− β‖xt − z‖2ht

+ ‖∇ct(xt)−∇ct−1(xt−1)‖2
H−1

t
− 1

2

[
‖xt − zt−1‖2Ht

+ ‖xt − zt‖2Ht

]
.

Taking summation over t = 1, . . . , T , we have

T∑
t=1

ct(xt)−
T∑
t=1

ct(z) ≤
T∑
t=1

(Dt(z, zt−1)−Dt(z, zt))︸ ︷︷ ︸
At

−
T∑
t=1

β‖xt − z‖2ht︸ ︷︷ ︸
Ct

+

T∑
t=1

‖∇ct(xt)−∇ct−1(xt−1)‖2
H−1

t︸ ︷︷ ︸
St

−
T∑
t=1

1

2

[
‖xt − zt−1‖2Ht

+ ‖xt − zt‖2Ht

]
︸ ︷︷ ︸

Bt

Next we bound each term individually. First,

T∑
t=1

At = D1(z, z0)−DT (z, zT) +

T−1∑
t=1

(Dt+1(z, zt)−Dt(z, zt))

Note that D1(z, z0) = 1
2 (1 + βG2)‖z‖22 ≤ 1

2 (1 + βG2) for any z ∈ P, and

Dt+1(z, zt)−Dt(x, zt) = β
2 ‖z− zt‖2ht

, therefore

T∑
t=1

At ≤
1

2
(1 + βG2) +

T∑
t=1

β

2
‖z− zt‖2ht

Then

T∑
t=1

(At − Ct) ≤
1

2
(1 + βG2) +

T∑
t=1

[
β

2
‖z− zt‖2ht

− β‖xt − z‖2ht

]

≤ 1

2
(1 + βG2) +

T∑
t=1

[
β‖z− xt‖2ht

+ β‖xt − zt‖2ht
− β‖xt − z‖2ht

]
≤ 1

2
(1 + βG2) +

T∑
t=1

β‖xt − zt‖2ht
≤ 1

2
(1 + βG2) +

T∑
t=1

‖xt − zt‖2Ht

Noting the updates in (21) and from inequality in (38), we can get

‖xt − zt‖Ht
≤ ‖∇ct(xt)−∇ct−1(xt−1)‖H−1

t

42 Tianbao Yang et al.

Next, we bound
∑T
t=1Bt.

T∑
t=1

Bt =
1

2

T−1∑
t=0

‖xt+1 − zt‖2Ht+1
+

1

2

T∑
t=1

‖xt − zt‖2Ht

≥ 1

2

T−1∑
t=1

‖xt+1 − zt‖2Ht
+

1

2

T−1∑
t=1

‖xt − zt‖2Ht

≥ 1

4

T−1∑
t=1

‖xt+1 − xt‖2Ht
≥ 1

4

T−1∑
t=0

‖xt+1 − xt‖22 −
1

4
‖x1 − x0‖22

≥ 1

4

T−1∑
t=0

‖xt+1 − xt‖22,

where the last inequality follows that x0 = x1 = 0. Therefore,

T∑
t=1

ct(xt)−
T∑
t=1

ct(z) ≤ 1

2
(1 + βG2) + 2

T∑
t=1

‖∇ct(xt)−∇ct−1(xt−1)‖H−1
t

− 1

4

T−1∑
t=0

‖xt+1 − xt‖22

To proceed, we need the following lemma.

Lemma 6 (Lemma 19 [8])

T∑
t=1

‖∇ct(xt)−∇ct−1(xt−1)‖H−1
t
≤ 4d

β
ln

(
1 +

β

4

T∑
t=1

‖∇ct(xt)−∇ct−1(xt−1)‖22

)

Thus,

T∑
t=1

‖∇ct(xt)−∇ct−1(xt−1)‖H−1
t
≤ 4d

β
ln

(
1 +

β

4

T∑
t=1

‖∇ct(xt)−∇ct−1(xt−1)‖22

)

≤ 4d

β
ln

(
1 +

β

4

T∑
t=1

‖∇ct(xt)−∇ct(xt−1) +∇ct(xt−1)−∇ct−1(xt−1)‖22

)

≤ 4d

β
ln

(
1 +

β

2

T∑
t=1

L2‖xt − xt−1‖22 +
β

2

T∑
t=1

‖∇ct(xt−1)−∇ct−1(xt−1)‖22

)

≤ 4d

β
ln

(
1 +

β

2

T−1∑
t=0

L2‖xt+1 − xt‖22 +
β

2

T−1∑
t=0

‖∇ct+1(xt)−∇ct(xt)‖22

)

≤ 4d

β
ln

(
1 +

β

2

T−1∑
t=0

L2‖xt+1 − xt‖22 +
β

2
EGVT,2

)

Regret Bounded by Gradual Variation 43

Then,

T∑
t=1

ct(xt)−
T∑
t=1

ct(z) ≤ 1

2
(1 + βG2) +

8d

β
ln

(
1 +

β

2

T−1∑
t=0

L2‖xt+1 − xt‖22 +
β

2
EGVT,2

)

− 1

4

T−1∑
t=0

‖xt+1 − xt‖22

Without loss of generality we assume 8dL2 ≥ 1. Next, let us consider two
cases. In the first case, we assume βEGVT,2 ≤ 16dL2. Then

8d

β
ln

(
1 +

β

2

T−1∑
t=0

L2‖xt+1 − xt‖22 +
β

2
EGVT,2

)

≤ 8d

β
ln

(
1 +

β

2

T−1∑
t=0

L2‖xt+1 − xt‖22 + 8dL2

)

≤ 8d

β
ln

(
β

2

T−1∑
t=0

L2‖xt+1 − xt‖22 + 16dL2

)

=
8d

β

[
ln 16dL2 + ln

(
β
2

∑T−1
t=0 L2‖xt+1 − xt‖22

16dL2
+ 1

)]

≤ 8d

β
ln 16dL2 +

8d

β

β
2

∑T−1
t=0 L2‖xt+1 − xt‖22

16dL2
=

8d

β
ln 16dL2 +

∑T−1
t=0 ‖xt+1 − xt‖22

4

where the last inequality follows ln(1 + x) ≤ x for x ≥ 0. Then we get

T∑
t=1

ct(xt)−
T∑
t=1

ct(z) ≤ 1

2
(1 + βG2) +

8d

β
ln 16dL2

In the second case, we assume βEGVT,2 ≥ 16dL2 ≥ 2, then we have

8d

β
ln

(
1 +

β

2

T−1∑
t=0

L2‖xt+1 − xt‖22 +
β

2
EGVT,2

)

≤ 8d

β
ln

(
β

2

T−1∑
t=0

L2‖xt+1 − xt‖22 + βEGVT,2

)

≤ 8d

β

[
ln(βEGVT,2) + ln

(
β
2

∑T−1
t=0 L2‖xt+1 − xt‖22
βEGVT,2

+ 1

)]

=
8d

β
ln(βEGVT,2) +

8d

β

β
2

∑T−1
t=0 L2‖xt+1 − xt‖22
βEGVT,2

=
8d

β
ln(βEGVT,2) +

4dL2
∑T−1
t=0 ‖xt+1 − xt‖22
βEGVT,2

≤ 8d

β
ln(βEGVT,2) +

∑T−1
t=0 ‖xt+1 − xt‖22

4

44 Tianbao Yang et al.

where the last inequality follows βEGVT,2 ≥ 16dL2. Then we get

T∑
t=1

ct(xt)−
T∑
t=1

ct(z) ≤ 1

2
(1 + βG2) +

8d

β
ln(βEGVT,2)

Thus, we complete the proof by combining the two cases.
Next, we prove Lemma 6. We need the following lemma, which can be

proved by using Lemma 6 [14] and noting that |I +
∑t
τ=1 uτu

>
τ | ≤ (1 +∑T

t=1 ‖ut‖22)d, where | · | denotes the determinant of a matrix.

Lemma 7 Let ut ∈ Rd, t = 1, . . . , T be a sequence of vectors. Let Vt = I +∑t
τ=1 uτu

>
τ . Then,

T∑
t=1

u>t V
−1
t ut ≤ d ln

(
1 +

T∑
t=1

‖ut‖22

)

To prove Lemma 6, we let vt = ∇ct(xt), t = 1, . . . , T and v0 = 0. Then

Ht = I+βG2I+β
∑t−1
τ=0 vτv

>
τ . Note that we assume ‖∇ct(x)‖2 ≤ G, therefore

Ht ≥ I + β

t∑
τ=1

vτv
>
τ ≥ I +

β

2

t∑
τ=1

(vτv
>
τ + vτ−1v

>
τ−1)

≥ I +
β

4

t∑
τ=1

(vτ − vτ−1)(vτ − vτ−1)> = Vt

Let ut = (
√
β/2)(vt−vt−1), then Vt = I+

∑t
τ=1 uτu

>
τ . By applying the above

lemma, we have

β

4

T∑
t=1

(vt − vt−1)>V −1t (vt − vt−1) ≤ d ln

(
1 +

β

4

T∑
t=1

‖vt − vt−1‖22

)
Thus,

T∑
t=1

(vτ − vτ−1)>H−1t (vτ − vτ−1) ≤
T∑
t=1

(vτ − vτ−1)>V −1t (vτ − vτ−1)

≤ 4d

β
ln

(
1 +

β

4

T∑
t=1

‖vt − vt−1‖22

)

	Introduction
	Algorithms and Main Results
	Online Non-Smooth Optimization with Gradual Variation Bound
	Variation Bound for Online Bandit Convex Optimization
	Conclusions and Discussions

