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Abstract

Kernel Principal Component Analysis (PCA) is a popular
extension of PCA which is able to find nonlinear patterns
from data. However, the application of kernel PCA to large-
scale problems remains a big challenge, due to its quadratic
space complexity and cubic time complexity in the number
of examples. To address this limitation, we utilize techniques
from stochastic optimization to solve kernel PCA with lin-
ear space and time complexities per iteration. Specifically, we
formulate it as a stochastic composite optimization problem,
where a nuclear norm regularizer is introduced to promote
low-rankness, and then develop a simple algorithm based on
stochastic proximal gradient descent. During the optimization
process, the proposed algorithm always maintains a low-rank
factorization of iterates that can be conveniently held in mem-
ory. Compared to previous iterative approaches, a remarkable
property of our algorithm is that it is equipped with an ex-
plicit rate of convergence. Theoretical analysis shows that the
solution of our algorithm converges to the optimal one at an
O(1/T ) rate, where T is the number of iterations.

Introduction
Principal Component Analysis (PCA) is a powerful di-
mensionality reduction method that has been widely used
in various applications including data mining, information
retrieval, and pattern recognition (Duda, Hart, and Stork
2000). While the classical PCA is limited to identifying lin-
ear structures, kernel PCA, a non-linear extension of PCA,
has been proposed for extracting non-linear patterns from
data (Schölkopf, Smola, and Müller 1998). The key idea is to
map the data into a kernel-induced Hilbert space, where dot
product between points can be computed efficiently through
the kernel evaluation. Given a set of n training examples,
kernel PCA needs to perform eigendecomposition of the
n × n kernel matrix K. As it takes O(n2) space to store K
and O(n3) time to eigendecompose it, kernel PCA is pro-
hibitively expensive for big data, where n is very large.

Existing studies for reducing the computational cost of
kernel PCA can be classified into two categories: approxi-
mate and iterative. Approximate approaches (Lopez-Paz et
al. 2014) construct a low-rank approximator of the kernel
matrix, and use its eigensystems as an alternative. Due to
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the low-rank structure, the approximator can be easily stored
and manipulated. The major limitation of approximate ap-
proaches is that there always exists a non-vanishing gap be-
tween their solution and that found by eigendecomposing
K directly. Iterative approaches (Kim, Franz, and Schölkopf
2005) use partial information ofK in each round to estimate
the top eigenvectors, and thus do not need to keep the entire
matrix in memory. With appropriate initialization, the solu-
tion of iterative approaches will converge to the groundtruth
asymptotically. However, there is no guarantee of the con-
vergence rate or the global convergence property for general
initial conditions.

Inspired by the recent progresses in stochastic optimiza-
tion (Avron et al. 2012; Rakhlin, Shamir, and Sridharan
2012), we develop a novel iterative algorithm for kernel
PCA that has a solid convergence guarantee. The staring
point is the following observation:

Since only the top eigensystems ofK are used in kernel
PCA, it is sufficient to find a low-rank matrix K̂ from
which we can recover the top eigensystems of K.

In this paper, we choose K̂ as the low-rank matrix obtained
by applying Singular Value Shrinkage (SVS) operator (Cai,
Candès, and Shen 2010) to K. Thus, the problem becomes
how to estimate K̂ without constructing K explicitly. To
this end, we formulate the SVS operation as a stochastic
composite optimization problem, and develop an efficient
algorithm based on Stochastic Proximal Gradient Descent
(SPGD). The advantage of the stochastic formulation is that
only a low-rank estimate of K is needed during the opti-
mization process. Since the SVS operation is applied in each
iteration, all the iterates are prone to be low-rank. Further-
more, the low-rankness of iterates in turn makes the SVS
operation very efficient. As a result, in each iteration, both
space and time complexities are linear in n.

By exploiting the strong convexity of the objective, we
prove that the last iterate of SPGD converges to K̂ at an
O(1/T ) rate, where T is the number of iterations. It implies
we can simply take the last iterate as the final solution, and
thus avoid the averaging operation in the traditional algo-
rithms (Hazan and Kale 2011; Rakhlin, Shamir, and Sridha-
ran 2012). Finally, we examine the empirical performance
of the proposed algorithm on two benchmark data sets.



Related Work
In this section, we briefly review the related work on kernel
PCA and stochastic optimization.

Kernel PCA
The basic idea of kernel PCA is to map the input data into
a Reproducing Kernel Hilbert Space (RKHS) induced by a
kernel function, and perform PCA in that space (Schölkopf,
Smola, and Müller 1998). Let H be a RKHS with a ker-
nel function κ(x,y) = φ(x)>φ(y), ∀x,y ∈ Rd, where
φ : Rd 7→ H is a possibly nonlinear feature mapping. For
the sake of simplicity, we assume the data are centered, i.e.,∑n
i=1 φ(xi) = 0. The covariance matrix in H is given by

C = 1
n

∑n
i=1 φ(xi)φ(xi)

>. We now have to find the eigen-
values λ ≥ 0 and eigenvectors v ∈ H \ {0} satisfying
Cv = λv. Since all solutions v with λ 6= 0 lie within the
span of φ(x1), . . . , φ(xn), we can represent v as v = Φu,
where Φ = [φ(x1), . . . , φ(xn)] and u ∈ Rn. As a result, it
is equivalent to consider the following problem

1

n
ΦΦ>Φu = λΦu. (1)

Let K ∈ Rn×n be the kernel matrix with Kij = κ(xi,xj)
for i, j = 1 . . . , n. Multiplying both sides of (1) by Φ>, we
obtain K2u = λnKu, which can be simplified to the eigen-
value problem Ku = λnu (Schölkopf, Smola, and Müller
1998, Appendix A). Let (ui, λi) be the i-th eigenvector and
eigenvalue pair of K, with normalization λi‖ui‖22 = 1.
Then, the i-th eigenvector of C is given by vi = Φui, which
has unit length as indicated below

v>i vi = u>i Φ>Φui = u>i Kui = λi‖ui‖22 = 1.

Generally speaking, it takes O(dn2) time to calculate
K, O(n2) space to store, and O(n3) time to eigendecom-
pose it. Thus, the vanilla procedure described above be-
comes computationally expensive when n is large. Ap-
proximate approaches for kernel PCA (Achlioptas, Mc-
sherry, and Schölkopf 2002; Ouimet and Bengio 2005;
Zhang, Tsang, and Kwok 2008; Lopez-Paz et al. 2014)
adopt matrix approximation techniques, such as the Nyström
method (Williams and Seeger 2001; Drineas and Mahoney
2005), to construct a low-rank approximator of K, and then
perform eigendecomposition of this low-rank matrix. For
approximate approaches, there is a dilemma between the
space complexity and the accuracy of their solution. The
smaller the memory, the larger the approximation error, and
vice visa. On the other hand, iterative approaches can find
an accurate solution with a small memory, at the cost of a
longer time. The most popular iterative approach for ker-
nel PCA is the Kernel Hebbian Algorithm (KHA) (Kim,
Franz, and Schölkopf 2005; Günter, Schraudolph, and Vish-
wanathan 2007), which is a kernelized version of the gener-
alized Hebbian algorithm designed for linear PCA (Sanger
1989). Similar to the algorithm proposed here, KHA is also
a stochastic approximation algorithm. However, due to the
non-convexity of its formulation, there is no global conver-
gence guarantee for KHA.

While the work referenced above focus on reducing the
cost of kernel PCA during training, there are some studies

that aim to reduce its cost in testing. In particular, sparse
kernel PCA (Tipping 2001) has been proposed to express
each eigenvector vi in terms of a small number of training
examples. It was later extended to online setting (Honeine
2012), where training examples arrive sequentially.

Finally, we note that it is always possible to cast the prob-
lem of kernel PCA as a special case of linear PCA, which
can be solved efficiently by online algorithms designed for
linear PCA. To do this, we simply treat columns of K as
feature vectors, evaluate them sequentially, and pass them to
online algorithms for linear PCA. In this way, we can find
the top eigensystems of K2, from which we can derive the
top eigensystems of K. However, this kind of approaches
suffers from one of the following limitations.
1. Some online PCA algorithms, such as the generalized

Hebbian algorithm, are only able to find top eigenvectors.
But for kernel PCA, we need both top eigenvectors and
eigenvalues.

2. Many online algorithms for linear PCA, such as capped
MSG (Arora, Cotter, and Srebro 2013) and incremental
SVD (Brand 2006), lack formal theoretical guarantees.

3. Although certain online algorithms are equipped with re-
gret bounds (Warmuth and Kuzmin 2008), the difference
between the eigenvectors returned by online algorithms
and the ground-truth remains unclear.

Stochastic Optimization
Stochastic optimization refers to the setting where we can
only access to the stochastic gradient of the objective func-
tion (Hazan and Kale 2011; Zhang, Mahdavi, and Jin
2013). For general Lipschitz continuous convex functions,
Stochastic Gradient Descent (SGD) exhibits the unimprov-
able O(1/

√
T ) rate of convergence (Nemirovski and Yudin

1983). For strongly convex functions, some variants of
SGD (Hazan and Kale 2011; Rakhlin, Shamir, and Sridha-
ran 2012; Zhang et al. 2013) achieve the optimal O(1/T )
rate (Agarwal et al. 2012).

Recently, a special case of stochastic optimization,
namely Stochastic Composite Optimization (SCO), has re-
ceived significant interest in optimization and learning com-
munities (Ghadimi and Lan 2012; Lin, Chen, and Peña 2014;
Zhang et al. 2014). In SCO, the objective function is given
by the summation of non-smooth and smooth stochastic
components (Lan 2012). The most popular non-smooth
components are the `1-norm regularizer for vectors and the
nuclear norm regularizer for matrices, which enforce sparse-
ness and low-rankness, respectively. Although the generic
algorithms designed for stochastic optimization can also be
applied to SCO, by replacing gradient with subgradient, they
can not utilize the structure of the objective function to gen-
erate sparse or low-rank intermediate solutions. The spe-
cialized algorithms for SCO are all built upon Stochastic
Proximal Gradient Descent (SPGD), where the power of the
non-smooth term is preserved (Lan 2012; Ghadimi and Lan
2012; Chen, Lin, and Peña 2012; Lin, Chen, and Peña 2014).

A major limitation of existing algorithms for SCO is that
they did not treat memory as a limited resource. If we ap-
ply them to the SCO problem considered in this paper, the



memory complexity is still O(n2). We do find a heuristic al-
gorithm (Avron et al. 2012) in the literature which combines
truncated SVD with SGD to control the space complexity.
But it relies on the assumption that the objective value can
be evaluated easily, which unfortunately does not hold in our
case. That is the reason why we choose the basic SPGD in-
stead of more advanced methods to optimize our problem
and establish a novel convergence guarantee for SPGD.

Algorithm
We first formulate kernel PCA as a SCO problem, then de-
velop the optimization algorithm, next discuss implementa-
tion issues, and finally present the theoretical guarantee.

Reformulation of Kernel PCA
Denote the eigendecomposition of the kernel matrix K by
UΛU>, where U = [u1, . . . ,un], Λ = diag[λ1, . . . , λn],
and λ1 ≥ λ2 ≥ · · ·λn. To train kernel PCA, it is sufficient to
find a low-rank matrix K̂ from which the top eigensystems
of K can be recovered. The ideal low-rank matrix would be
the truncated SVD of K, i.e.,

∑k
i=1 λiuiu

>
i for some inte-

ger k > 0. However, the truncated SVD operation is non-
convex, making it difficult to design a principled algorithm.
Instead, we consider the low-rank matrix K̂ obtained by ap-
plying the Singular Value Shrinkage (SVS) operator to K
with threshold λ (Cai, Candès, and Shen 2010), 1 i.e.,

K̂ = Dλ[K] =
∑
i:λi>λ

(λi − λ)uiu
>
i .

From the above expression, we observe that eigenvectors of
K̂ with nonzero eigenvalues are the top eigenvectors of K.
Furthermore, nonzero eigenvalues of K̂ are the top eigen-
values of K minus λ. As a result, we can recover the top
eigensystems ofK (with eigenvalues larger than λ) from the
eigendecomposition of K̂.

In the following, we formulate the SVS operation as a
SCO problem. First, it is well-known K̂ is the optimal so-
lution to the following convex composite optimization prob-
lem

min
Z∈Rn×n

1

2
‖Z −K‖2F + λ‖Z‖∗ (2)

where ‖ · ‖∗ is the nuclear norm of matrices. Let ξ be a low-
rank random matrix which is an unbiased estimate ofK, i.e.,

K = E[ξ].

We list examples of such random matrices below.
1. For general kernel matrix K, we can construct ξ by sam-

pling its rows or columns randomly. Let {i1, . . . , ik} be a
set of random indices sampled from [n] uniformly, K∗ij
be the ij-th column of K, eij be the ij-th canonical base.
Then,

ξ =
n

k

k∑
j=1

K∗ije
>
ij

1For a matrix X ∈ Rm×n with singular value de-
composition UΣV >, where Σ = diag[σ1, . . . , σmin(m,n)],
Dλ[X] is given by Dλ[X] = UDλ[Σ]V > and Dλ[Σ] =
diag

[
max(0, σ1 − λ), . . . ,max(0, σmin(m,n) − λ)

]
.

is an unbiased estimate of K with rank at most k. If a
symmetric matrix is desired, we can set

ξ =
n

2k

 k∑
j=1

K∗ije
>
ij +

k∑
j=1

eijK
>
∗ij


which is an unbiased estimate of K with rank at most 2k.

2. When the kernel matrix K is generated by a shift-
invariant kernel, such as the Gaussian kernel and the
Laplacian kernel. We can construct ξ by the random
Fourier features (Rahimi and Recht 2008). Let κ(x, y) be
the shift-invariant kernel with Fourier representation

κ(x,y) =

∫
p(w) exp(jw>(x− y))dw

where p(w) is a density function. Let w be a Fourier com-
ponent randomly sampled from p(w), and let a(w) and
b(w) be the feature vectors generated by w, i.e.,

a(w) =[cos(w>x1), . . . , cos(w>xn)]>,

b(w) =[sin(w>x1), . . . , sin(w>xn)]>.

By drawn k independent samples from p(w), denoted by
w1, . . . ,wk, we construct ξ as

ξ =
1

k

k∑
i=1

a(wi)a(wi)
> + b(wi)b(wi)

>

which is an unbiased estimate of K with rank at most 2k.
3. For dot product kernels such as the polynomial kernel,

we can generate the random matrix ξ in a similar way
(Kar and Karnick 2012).
Then, we rewrite ‖Z −K‖2F in (2) as

‖Z −K‖2F = ‖Z‖2F − 2 tr(Z>K) + ‖K‖2F
=‖Z‖2F − 2 tr(Z>E[ξ]) + E[‖ξ‖2F ] + ‖K‖2F − E[‖ξ‖2F ]

=E
[
‖Z − ξ‖2F

]
+ ‖K‖2F − E[‖ξ‖2F ]

Since ‖K‖2F −E[‖ξ‖2F ] is a constant term with respect to Z,
(2) is equivalent to

min
Z∈Rn×n

1

2
E
[
‖Z − ξ‖2F

]
+ λ‖Z‖∗ (3)

a standard SCO problem with a nuclear norm regularizer.

Optimization by Stochastic Proximal Gradient
Descent (SPGD)
At this point, one may consider applying existing algorithms
for stochastic optimization to the problem in (3). Unfortu-
nately, we find that all the previous algorithms can not be
applied directly due to the high space complexity or unreal-
istic assumptions, as explained below.
1. The generic algorithms for stochastic optimization (Ne-

mirovski et al. 2009; Hazan and Kale 2011; Rakhlin,
Shamir, and Sridharan 2012; Shamir and Zhang 2012) are
built up SGD, and thus cannot utilize the structure of (3)
to enforce low-rankness. Furthermore, those algorithms
return the average of iterates as the final solution, which
could be full-rank.



2. Although the specialized algorithms for SCO can gen-
erate low-rank iterates based on SPGD, they need to
keep track of the averaged iterates as an auxiliary vari-
able (Chen, Lin, and Peña 2012; Lin, Chen, and Peña
2014) or as the final solution (Lan 2012; Ghadimi and Lan
2012). Thus, the space complexity is still O(n2).

3. Although the heuristic algorithm in (Avron et al. 2012)
is able to make the space complexity linear in n, it needs
to evaluate the objective value in each iteration, which is
impossible for the SCO problem in (3). Furthermore, it
is designed for general SCO problems and thus cannot
exploit the strong convexity of (3).
Due to the above reasons, we develop a new algorithm to

optimize (3), which is purely based on SPGD and takes its
last iterate as the final solution. Denote by Zt the solution
at the t-th iteration. In this iteration, we first sample a ran-
dom matrix ξt ∈ Rn×n, and it is easy to verify that Zt − ξt
is an unbiased estimate of the gradient of 1

2E
[
‖Z − ξ‖2F

]
.

Then, we update the current solution by the SPGD, which is
essentially a stochastic variant of composite gradient map-
ping (Nesterov 2013)

Zt+1

= argmin
Z∈Rn×n

1

2
‖Z − Zt‖2F + ηt〈Z − Zt, Zt − ξt〉+ ηtλ‖Z‖∗

= argmin
Z∈Rn×n

1

2
‖Z − [(1− ηt)Zt + ηtξt]‖2F + ηtλ‖Z‖∗

=Dηtλ [(1− ηt)Zt + ηtξt]

where ηt > 0 is the step size. Let Z ′t+1 = (1−ηt)Zt+ηtξt.
The SVS operation applies a soft-thresholding rule to the
singular values of Z ′t+1, effectively shrinking them toward
zero. In particular, singular values of Z ′t+1 that are below
the threshold ηtλ vanish, and thus Zt+1 tends to be a low-
rank matrix.

Let ZT+1 be the final solution obtained after T iterations.
If ZT+1 is symmetric, we will eigendecompose ZT+1 and
obtain its eigensystems {(ui, σi)}ki=1 with nonzero eigen-
values. Otherwise, we will use the eigensystems of (ZT+1 +
Z>T+1)/2 instead of ZT+1. Note that (ZT+1 + Z>T+1)/2 is
symmetric and always more close to K̂ than ZT+1, since∥∥∥∥1

2
(ZT+1 + Z>T+1)− K̂

∥∥∥∥
F

≤1

2
‖ZT+1 − K̂‖F +

1

2
‖Z>T+1 − K̂‖F

=‖ZT+1 − K̂‖F .

Finally, we return {(ui, σi+λ)}ki=1 as the top eigensystems
of K. The above procedure is summarized in Algorithm 1.

Although we assume that data are centered in RKHS, our
algorithm can be immediately extend to the general case.
If data are uncentered, kernel PCA (Schölkopf, Smola, and
Müller 1998) needs the top eigensystems of K + Θ, where

Θ =
1

n2
(1>nK1n)1n1

>
n −

1

n
1n1

>
nK −

1

n
K1n1

>
n

Algorithm 1 A Stochastic algorithm for Kernel PCA
Input: The number of trials T , and the regularization param-
eter λ

1: Initialize Z1 = 0
2: for t = 1, 2, . . . , T do
3: Sample a random matrix ξt
4: ηt = 2/t
5: Zt+1 = Dηtλ [(1− ηt)Zt + ηtξt]
6: end for
7: Calculate the nonzero eigensystems of 1

2 (ZT+1 +

Z>T+1): {(ui, σi)}ki=1

8: return {(ui, σi + λ)}ki=1

and 1n is a n-dimensional vector of all ones. If ξ is an unbi-
ased estimate of K, then it is easy to verify ξ + θ where

θ =
1

n2
(1>n ξ1n)1n1

>
n −

1

n
1n1

>
n ξ −

1

n
ξ1n1

>
n

is an unbiased estimate of K + Θ. To find the top eigensys-
tems of K + Θ, we just need to replace the random matrix ξ
in our algorithm with ξ + θ and all the rest is the same.

Implementation Issues
In this section, we discuss how to ensure all the iterates are
represented in low-rank factorization form and how to accel-
erate the SVS operation by utilizing this fact.

First, the random matrices ξt can always be represented
by ξt = ζtχ

>
t , where ζt, χt ∈ Rn×at are two rectan-

gular matrices with at � n. Now, suppose Zt is also
represented by Zt = UtV

>
t , where Ut, Vt ∈ Rn×bt are

two rectangular matrices with bt � n.2 Then, Zt+1 =
Dηtλ

[
(1− ηt)UtV >t + ηtζtχ

>
t

]
can be solved efficiently

according to Lemma 3.4 of (Avron et al. 2012). Specifically,
we introduce two matrices Xt, Yt ∈ Rn×(at+bt) such that

Xt =[
√

1− ηtUt,
√
ηtζt],

Yt =[
√

1− ηtVt,
√
ηtχt], and Zt+1 = Dηtλ[XtY

>
t ].

Next, we perform a reduced QR decomposition (Golub and
Van Loan 1996) of Xt = QXRX and Yt = QYRY , and
find the SVD of RXR>Y = Ũ Σ̃Ṽ >. Define Ût = QX Ũ and
V̂t = QY Ṽ . It is easy to verify that ÛtΣ̃V̂ >t is the SVD
of XtY

>
t , from which Zt+1 can be calculated trivially, and

represented in the from of Zt+1 = Ut+1V
>
t+1.

From the above discussion, it is clear that the space com-
plexity is O(n(at + bt)) in each iteration. The running time
is dominated by calculating ξt, which takes O(ndat) time,
and QR decompositions, which take O(n(at + bt)

2) time.
In summary, the time complexity is O(n[dat + (at + bt)

2]).
Thus, both space and time complexities are linear in n.

Theoretical Guarantee
The following theorem shows that with a high probability,
ZT+1 converges to K̂, the optimal solution to (3), at an
O(1/T ) rate.

2At least, we can represent Z1 in this form since Z1 = 0.



Theorem 1 Assume the Frobenius norm of the random ma-
trix ξ is upper bounded by some constant C > 0. By setting
ηt = 2/t, with a probability at least 1− δ, we have

‖ZT+1 − K̂‖2F

≤ 8

T

[
Cλmax

t∈[T ]

√
rt + C2

(
8 + 6 log

d2 log2 T e
δ

)]
=O

(
log log T

T

)
where rt is the rank of Zt.
Note that the O(1/T ) convergence rate matches the lower-
bound of stochastic optimization of strongly convex func-
tions (Agarwal et al. 2012). Our result differs from previ-
ous studies of SPGD (Rosasco, Villa, and Vũ 2014) in the
sense that we prove a high probability bound instead of
an expectation bound. Although a similar result has been
proved for SGD (Rakhlin, Shamir, and Sridharan 2012), this
is the first time such a guarantee is established for SPGD.
The proof of this theorem relies on the recent analysis of
SGD (Rakhlin, Shamir, and Sridharan 2012) and concentra-
tion inequalities (Bartlett, Bousquet, and Mendelson 2005;
Cesa-Bianchi and Lugosi 2006). Due to space limitations,
details are provided in the supplementary material.

Experiments
In this section, we perform several experiments to examine
the performance of our method.

Experimental Setting
We compare our stochastic algorithm for kernel PCA
(SKPCA) with the following methods.
1. Baseline (Schölkopf, Smola, and Müller 1998), which

calculates the kernel matrixK explicitly and eigendecom-
poses it.

2. Approximation based on the Nyström method (Drineas
and Mahoney 2005; Zhang, Tsang, and Kwok 2008),
which uses the Nyström method to find a low-rank ap-
proximator of K, and eigendecomposes it.

3. Kernel Hebbian Algorithm (KHA) (Kim, Franz, and
Schölkopf 2005), which is an iterative approach for kernel
PCA.
In order to run SKPCA, we need to decide the value of the

parameter λ in (3), which in turn determines the number of
eigenvectors used in kernel PCA. To minimize the general-
ization error, we would like to find a λ such that eigenvalues
of K that are smaller than it fall quickly (Shawe-Taylor et
al. 2005). However, it is infeasible to calculate eigenvalues
ofK for large n, so we will use eigenvalues of a small kernel
matrix K of m examples to estimate λ. Note that eigenval-
ues of K/n and K/m both converges to those of the inte-
gral operator (Braun 2006). Although the optimal step size
of KHA in theory is 1/t, we found it led to very slow con-
vergence, and thus set it to be 0.05 as suggested by (Kim,
Franz, and Schölkopf 2005).

We choose the Gaussian kernel κ(xi,xj) = exp(‖xi −
xj‖2/(2σ2)), and set the kernel width σ to the 20-th per-
centile of the pairwise distances (Mallapragada et al. 2009).

The random matrix in SKPCA is constructed by random
Fourier features (Rahimi and Recht 2008). The experiments
are done on two benchmark data sets: Mushrooms (Chang
and Lin 2011) and Magic (Frank and Asuncion 2010),
which contain 8, 124 and 19, 020 examples, respectively. We
choose those two medium-size data sets, because they can be
handled by Baseline and thus allow us to compare different
methods quantitatively. For all the experiments, we repeat
them 10 times and report the averaged result.

Experimental Results
We first examine the convergence rate of SKPCA. We run
SKPCA with four different combinations of the parame-
ter λ and the number of random Fourier components k. In
Fig. 1(a), we report the normalized recover error ‖Zt −
K̂‖2F /n2 with respect to the number of iterations t on the
Mushrooms data set. For comparison, we also plot the curve
of 0.03/t. From the similarity among those curves, we be-
lieve the proposed algorithm achieves the O(1/T ) rate. As
can be seen, the two curves of k = 5 (or k = 50) almost
overlap with each other. That is probably because on this
data set λ is not the dominating term in the upper bound
given in Theorem 1. On the other hand, the convergence rate
highly depends on the number of Fourier components k. The
curves of k = 50 converge significantly faster than those of
k = 5. The reason is that the larger k is, the closer ξ and K
are, and the smaller the constant C in Theorem 1 is.

Then, we check the rank of the intermediate iterate Zt,
denoted by rank(Zt), which determines the computational
complexity of the t-th round. Fig. 1(b) plots rank(Zt) as a
function of t, which first increases and then converges to cer-
tain constant. The rank of the target matrix K̂ is 158 when
λ = 1 and 55 when λ = 10. As can be seen, rank(Zt)

is just a constant factor larger than rank(K̂). To compare
different methods, we use the top 50 eigensystems returned
by each algorithm to construct a rank-50 approximator of
K, denoted by K50, and report the approximation error
‖K50 − K‖F /n in Fig. 1(c). In order to fit the figure, the
training time of Baseline was divided by 2. The result re-
turned by Baseline is optimal, but it takes a longer time and
a much larger memory. Although Nyström is able to find
a good solution, it cannot further reduce the approximation
error. In comparison, SKPCA is able to refine its solution
continuously and outperforms Nyström after 10 seconds. Fi-
nally, we note that SKPCA is much faster than KHA.

Experimental results on the Magic data set are provided
in Fig. 2, which exhibits similar behaviors. On this data set,
The rank of the K̂ is 89 when λ = 10 and 17 when λ = 100.
The training time of Baseline was divided by 20 in Fig. 2(c).

Conclusions
In this paper, we have formulated kernel PCA as a stochastic
composite optimization problem with a nuclear norm regu-
larizer, and then develop an iterative algorithm based on the
stochastic proximal gradient descent algorithm. The main
advantages of our method are i) both space and time com-
plexes are linear in the number of samples; and ii) it is guar-
anteed to converge at an O(1/T ) rate, where T is the num-
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Figure 1: Experimental Results on the Mushrooms data set. To fit the figure, the training time of Baseline was divided by 2 in
(c).
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Figure 2: Experimental Results on the Magic data set. To fit the figure, the training time of Baseline was divided by 20 in (c).

ber of iterations. Experiments on two benchmark data sets
illustrate the efficiency and effectiveness of the proposed
method.
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