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1 Proof of Theorem 1

We first prove Theorem 1 regarding the perfect recovery of the sub-matrix Ẑ, which is essentially a
Corollary of the following Theorem for matrix completion.
Corollary 1. (Theorem 1.1 [2]) Let M be an n1 × n2 matrix of rank r with singular value decom-
position UΣV >. Without loss of generality, impose the conventions n1 ≤ n2, U is n1 × r, and V
is n2 × r. Assume that (i) The row and column spaces have coherences bounded above by some
positive µ0, and (ii) the matrix UV has a maximum entry bounded by µ1

√
r/(n1n2) in absolute

value for some positive µ1. Suppose N entries of M are observed with locations sampled uniformly
at random denoted by Σ. Then if

N ≥ 32 max{µ2
1, µ0}r(n1 + n2)β log2(2n2)

for some β > 1, the minimizer to the problem

min
X∈Rn1×n2

‖X‖tr s. t. Xi,j = Mi,j , ∀(i, j) ∈ Σ

is unique and equal to M with probability at least 1− 6 log(n2)(n1 + n2)2−2β − n2−2β
1/2

2

Proof. of Theorem 1 Let mk denote the number of examples in D̂m that belongs to the k-th class.

Since Ẑ =

r∑
k=1

mk
ĝk√
mk

ĝ>k√
mk

is an eigen-decomposition of Ẑ, it is easy to verify that the coherence

measure µ0 and µ1 is given by

µ0 =
1

rmin1≤k≤rmk/m
, µ2

1 =
1

rmin1≤k≤r(mk/m)2

Using the Chernoff bound, we have

Pr (mk < (1− ε)mpk) < exp

(
−ε

2mpk
2

)
By setting ε = 1/2, with a probability at least 1−

∑r
i=1 exp(−mpi/8), we have

mk/m ≥ pk/2, k = 1, . . . , r

and therefore
max

(
µ0, µ

2
1

)
≤ 2

r min
1≤i≤r

p2i

1



Then using Corollary 1 with β = 4, we have, with a probability at least 1− 6(2m)−6 logm−m−2,
that the solution to (2) in the paper is unique and equal to Ẑ if

|Σ| ≥ 128µ2
1rm log2(2m) (1)

We complete the proof by using the union bound and 6(2m)−6 logm ≤ m−2.

2 Proof of Theorem 2

The foundation of the proof of Theorem 2 and of Theorem 3 is the following Corollary that quantifies
how large m is in order to ensure the sub-matrix Ûs ∈ Rm×s has a full column rank.
Corollary 2. Let Us be an n×smatrix with orthonormal columns with a coherence measure µs. Let

Ûs be a m× s matrix with rows uniformly sampled from the rows of Us. If m ≥ 2µs
(1− ε)2

s log
(s
δ

)
,

then with a probability at least 1− δ, the matrix Ûs has full column rank and satisfies

‖(Û>s )†‖22 ≤
n

ε`

where M† denotes the pesudo inverse of a matrix M .

The above Corollary follows immediately from Lemma 1 in [1].

Now we are ready to prove Theorem 2. Let us review the two steps of the proposed algorithm
for estimating the ideal matrix Z =

∑r
k=1 gkg

>
k . The first step is to recover the sub-matrix Ẑ =∑r

k=1 ĝkĝ
>
k by matrix completion, for which we assume the recovery is perfect due to Theorem 1.

Because we assume the column space of Z lies in the subspace spanned by columns of Us, therefore
we can write gk and Z as

gk = Usak, k ∈ [r]

Z = Us

( >∑
k=1

aka
>
k

)
U>s (2)

Thus, the second step is to estimate
∑r
k=1 aka

>
k . The underlying logic is to estimate ak by

âk = arg min
a∈Rs

‖ĝk − Ûsa‖22 = (Û>s Ûs)
†Û>s ĝk, k ∈ [r] (3)

Then, the ideal matrix Z can be estimated by

Z ′ = Us

(
r∑

k=1

âkâ
>
k

)
U>s (4)

= Us(Û
>
s Ûs)

†Û>s

(
r∑

k=1

ĝkĝ
>
k

)
Ûs(Û

>
s Ûs)

†U>s = Us(Û
>
s Ûs)

†Û>s ẐÛs(Û
>
s Ûs)

†U>s

As a result, to prove Z ′ = Z amounts to showing âk = ak, k ∈ [r]. To this end, we focus on the
optimization problems in (3). Since Ẑ is a perfect recovery of a sub-matrix in Z under the conditions
in Theorem 1, it is safe to assume that ĝk ∈ Rm is equal to the entries in gk ∈ Rn that corresponds
to the sampled examples. It indicates that ak, k ∈ [r] are solutions to the problems in (3) due to
gk = Usak. Therefore, in order to show âk = ak, k ∈ [r], it is equivalent to show that ak, k ∈ [r]
are the unique minimizers of problems (3). It is sufficient to show the optimization problems in (3)
are strictly convex, which follows immediately from Corollary 2 since it implies that Û>s Ûs is a full
rank PSD matrix with a high probability. Then using the union bound, we can complete the proof.

3 Proof of Theorem 3

To prove Theorem 3, we first define the following matrix Z∗ :

Z∗ = Us

(
r∑

k=1

a∗ka
∗
k
>

)
U>s
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where
a∗k = arg min

a∈Rs
‖gk − Usa‖22 = (U>s Us)

−1U>s gk = U>s gk

We introduce a matrixE ∈ {0, 1}n×m with columns selected from the identity matrix corresponding
to the indices of D̂m in Dn. Then, we can write Ûs = E>Us, ĝk = E>gk, and have the solution to
(3) written as

âk = (Û>s Ûs)
−1Û>s ĝk = ([E>Us]

>E>Us)
−1[E>Us]

>E>gk

= (U>s EE
>Us)

−1U>s EE
>gk

where we use inverse in place of pseudo inverse because we assume Û>s Ûs is a full rank matrix. To
proceed, we write gk as

gk = g⊥k + g
‖
k

where g
‖
k = UsU

>
s gk is the projection of gk into the subspace spanned by u1, . . . ,us and g⊥k =

gk − g
‖
k. Then, we have

âk = (U>s EE
>Us)

−1U>s EE
>UsU

>
s g
‖
i + (U>s EE

>Us)
−1U>s EE

>g⊥k

= a∗k + (U>s EE
>Us)

−1U>s EE
>g⊥k

= a∗k + (U>s E)†E>g⊥k = a∗k + (Û>s )†E>g⊥k

Define Â = (â1, . . . , âr) ∈ Rs×r and A∗ = (a∗1, . . . ,a
∗
r) ∈ Rs×r. Then we have

‖Â−A∗‖F =

√√√√ r∑
k=1

‖âk − a∗k‖2 ≤

√√√√‖(Û>s )†‖2
r∑

k=1

‖g⊥k ‖2

=

√√√√‖(Û>s )†‖2
r∑

k=1

∥∥∥gk − g
‖
k

∥∥∥2
2

=

√√√√‖(Û>s )†‖2tr

(
r∑

k=1

(
gk − g

‖
k

)(
gk − g

‖
k

)>)

Note that we can also write Z∗ =
∑r
k=1 g

‖
kg
‖
k

>
, then we have

Z − Z∗ =

r∑
k=1

(gk − g
‖
k)(gk − g

‖
k)> + (gk − g

‖
k)g
‖
k

>
+ g
‖
k(gk − g

‖
k)>

Due to that gk − g
‖
k is perpendicular to g

‖
k, we have

tr

(
r∑

k=1

(
gk − g

‖
k

)(
gk − g

‖
k

)>)
= tr(Z − Z∗)

As a result,

‖Â−A∗‖F ≤
√
‖(Û>s )†‖2tr(Z − Z∗)

Then we can bound ‖Z ′ − Z∗‖F by

‖Z ′ − Z∗‖F =

∥∥∥∥∥
s∑
i=1

Us(âiâ
>
i − a∗i [a

∗
i ]
>)U>s

∥∥∥∥∥
F

= ‖ÂÂ> −A∗A>∗ ‖F

≤ 2‖Â−A∗‖F ‖A∗‖F + ‖Â−A∗‖2F

≤ 2

√
‖(Û>s )†‖2tr(Z − Z∗)tr(Z∗) + ‖(Û>s )†‖2tr(Z − Z∗)

where the last step follows from the fact ‖A∗‖2F ≤ tr(Z∗). We can further bound tr(Z − Z∗) as
follows:

tr(Z − Z∗) = tr(Z − UsU>s ZUsU>s ) = tr(Z(I − UsU>s )) = tr

(
r∑

k=1

(I − PUs
)gkg

>
k

)

=

r∑
k=1

‖(I − PUs)gk‖22 = ε

We complete the proof by using ‖Z ′−Z‖F ≤ ‖Z ′−Z∗‖F +‖Z∗−Z‖F , ‖Z−Z∗‖F ≤ tr(Z−Z∗),
tr(Z∗) ≤ tr(Z) = n, and the result in Corollary 2.
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