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1 Proof of Theorem 1

We first prove Theorem 1 regarding the perfect recovery of the sub-matrix Z, which is essentially a
Corollary of the following Theorem for matrix completion.

Corollary 1. (Theorem 1.1 [2]) Let M be an n1 X ng matrix of rank r with singular value decom-
position USV T, Without loss of generality, impose the conventions ny < ng, U isny x r, and V
is ng X r. Assume that (i) The row and column spaces have coherences bounded above by some

positive g, and (ii) the matrix UV has a maximum entry bounded by j11+/7/(nln2) in absolute
value for some positive j1;. Suppose N entries of M are observed with locations sampled uniformly
at random denoted by .. Then if

N > 32max{ui, po}r(n1 + n2)5log?(2ns)
for some 3 > 1, the minimizer to the problem

min || Xy st Xij= M, , V(i,j) €S
XE]R"lX"Q

. . . 7. 2,2[3 2—2[31/2
is unique and equal to M with probability at least 1 — 6log(ng)(ny + n2) —ns

Proof. of Theorem 1 Let my, denote the number of examples in Zsm that belongs to the k-th class.

r 5. o7
Since Z = Z my 8k 8k jsan eigen-decomposition of Z, it is easy to verify that the coherence
— N ME /ML
measure /o and £ is given by
1 2= 1
1 — N
rming<p<,(mg/m)?

Ho = B )
rming<p<, mg/m

Using the Chernoff bound, we have

2
Pr(my < (1 — €)mpy) < exp (E T;ka)

By setting € = 1/2, with a probability at least 1 — >_._, exp(—mp; /8), we have
mg/m>pp/2,k=1,...,r

and therefore 5

2
r min p;
1§i§rpl

max (po, pi) <



Then using Corollary 1 with 3 = 4, we have, with a probability at least 1 — 6(2m) =% logm — m~2,

that the solution to (2) in the paper is unique and equal to Zif
22| > 128u2rmlog?(2m) (1)
We complete the proof by using the union bound and 6(2m) =% logm < m~2. O

2 Proof of Theorem 2

The foundation of the proof of Theorem 2 and of Theorem 3 is the following Corollary that quantifies
how large m is in order to ensure the sub-matrix Us; € R""*® has a full column rank.
Corollary 2. Let U be an n x s matrix with orthonormal columns with a coherence measure 5. Let

. 2415
Us be a m X s matrix with rows uniformly sampled from the rows of Us. If m > {a a B slog (;)
—€

then with a probability at least 1 — 6, the matrix [75 has full column rank and satisfies
T3 <
where M denotes the pesudo inverse of a matrix M.

The above Corollary follows immediately from Lemma 1 in [1].

Now we are ready to prove Theorem 2. Let us review the two steps of the proposed algorlthm
for estlmatlng the ideal matrix Z = >, _, grg, . The first step is to recover the sub-matrix Z =

> he1 8k gk by matrix completion, for which we assume the recovery is perfect due to Theorem 1.
Because we assume the column space of Z lies in the subspace spanned by columns of Uy, therefore
we can write g and Z as

gr = Usay, k € [r]

-
Z = U, <Z akag> Ul )

k=1
Thus, the second step is to estimate 22:1 aka—kr. The underlying logic is to estimate a; by
& = argmin g, - Ul = (U008, kelr] 3)
acRs?
Then, the ideal matrix Z can be estimated by

(Z 5@?) )
@7 (zm) GTB) T = OO 20,0 T

As aresult, to prove Z' = Z amounts to showing a; = ay, k € [r]. To this end, we focus on the

optimization problems in (3). Since Zisa perfect recovery of a sub-matrix in Z under the conditions
in Theorem 1, it is safe to assume that g, € R™ is equal to the entries in g € R™ that corresponds
to the sampled examples. It indicates that ag, k € [r] are solutions to the problems in (3) due to
gr = Usay. Therefore, in order to show a; = ay, k € [r], it is equivalent to show that ay, k € [r]
are the unique minimizers of problems (3). It is sufficient to show the optimization problems in (3)
are strictly convex, which follows immediately from Corollary 2 since it implies that U U is a full
rank PSD matrix with a high probability. Then using the union bound, we can complete the proof.

3 Proof of Theorem 3

To prove Theorem 3, we first define the following matrix Z, :

Z, =Us (Za,’;azT>



where
aj = arg min |lg — Usall3 = (U Us)7'U gk = U, g
We introduce a matrix £ € {0, 1}"*™ with columns selected from the identity matrix corresponding
to the indices of D,, in D,,. Then, we can write U, = E"U,, g, = E " g, and have the solution to
(3) written as
a, = (U, U)'U) g =(ETU) ETU) ' ETU] E g
= U/ EE"U,)"'U/ EE g
where we use inverse in place of pseudo inverse because we assume ﬁ;r (78 is a full rank matrix. To

proceed, we write g, as

8k = 8 —l—g”

= U,U/ gy is the projection of gy, into the subspace spanned by uy, ..., u, and g,JC- =

where gl

gL — g}l Then, we have

ay = (UTEET O WIEETUU] g + UTEETU,) U EET g
aj + (U EE"U,)"'U/ EE g
= z+<UJ E)ETgr =ai+(U,)E g
Define A = (ay,...,3a,) € R®*" and A, = (af,...,a’) € R**". Then we have

T

T T
1A= Al = | D 8 —ag2 < | 1T el

= 11 3 el = ||UT*Hﬂr<§:(gk—gi)(g ‘gi)T>

k=1

Note that we can also write Z, = Y, _, gL‘gLI , then we have

T

Z—Z.= (g —gl) (e —g) + (g —eghel +ele—gl)
k=1
Due to that g, — H is perpendicular to gH we have
" (z (s~ &) (s~ ) ) iz 2)
As aresult, =

1A= Allr <\ IO atr(Z = 2°)
Then we can bound || Z" — Z,||r by

Y Us@a] —ajfaj] "y

=1

= |AAT — A A]||F
'
<20 A — A|pl|AdlF + 1A - Al

12" = Z.|lr =

< 2\/H((7J)TH2W(Z = Z)tr(Z) + 1O) |lotr(Z - Z2)

where the last step follows from the fact ||A.||% < tr(Z.). We can further bound tr(Z — Z,) as
follows:

tr(Z — Z,) =tr(Z - UU] ZUU]) = tr(Z(I - UU])) = tr (Z(I = PUS)gkg,I>
k=1

=2 I = Pu)erl; =<
k=1
We complete the proof by using | Z' —Z||r < |Z' = Z:\|p+1Z« = Z||Fs | Z — Z||F < tr(Z—Z.),
tr(Zy) < tr(Z) = n, and the result in Corollary 2.
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