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Abstract

Although many variants of stochastic gradient descent have been proposed for
large-scale convex optimization, most of them require projecting the solution at
each iteration to ensure that the obtained solution stays within the feasible domain.
For complex domains (e.g., positive semidefinite cone), the projection step can
be computationally expensive, making stochastic gradient descent unattractive for
large-scale optimization problems. We address this limitation by developing novel
stochastic optimization algorithms that do not need intermediate projections. In-
stead, only one projection at the last iteration is needed to obtain a feasible solution
in the given domain. Our theoretical analysis shows that with a high probability,

the proposed algorithms achieve an O(1/+/T)) convergence rate for general con-
vex optimization, and an O(InT/T) rate for strongly convex optimization under
mild conditions about the domain and the objective function.

1 Introduction

With the increasing amount of data that is available for training, it becomes an urgent task to devise
efficient algorithms for optimization/learning problems with unprecedented sizes. Online learning
algorithms, such as celebrated Stochastic Gradient Descent (SGD) [16, 2] and its online counterpart
Online Gradient Descent (OGD) [22], despite of their slow rate of convergence compared with the
batch methods, have shown to be very effective for large scale and online learning problems, both
theoretically [16, 13] and empirically [19]. Although a large number of iterations is usually needed
to obtain a solution of desirable accuracy, the lightweight computation per iteration makes SGD
attractive for many large-scale learning problems.

To find a solution within the domain /C that optimizes the given objective function f(x), SGD
computes an unbiased estimate of the gradient of f(x), and updates the solution by moving it in
the opposite direction of the estimated gradient. To ensure that the solution stays within the domain
KC, SGD has to project the updated solution back into the /C at every iteration. Although efficient
algorithms have been developed for projecting solutions into special domains (e.g., simplex and ¢4
ball [6, 14]); for complex domains, such as a positive semidefinite (PSD) cone in metric learning
and bounded trace norm matrices in matrix completion (more examples of complex domains can
be found in [10] and [11]), the projection step requires solving an expensive convex optimization,
leading to a high computational cost per iteration and consequently making SGD unappealing for
large-scale optimization problems over such domains. For instance, projecting a matrix into a PSD
cone requires computing the full eigen-decomposition of the matrix, whose complexity is cubic in
the size of the matrix.

The central theme of this paper is to develop a SGD based method that does not require projection
at each iteration. This problem was first addressed in a very recent work [10], where the authors
extended Frank-Wolfe algorithm [7] for online learning. But, one main shortcoming of the algo-



rithm proposed in [10] is that it has a slower convergence rate (i.e., O(T~'/3)) than a standard
SGD algorithm (i.e., O(Tﬁl/ 2)). In this work, we demonstrate that a properly modified SGD algo-

rithm can achieve the optimal convergence rate of O (T -1/ 2) using only ONE projection for general
stochastic convex optimization problem. We further develop an SGD based algorithm for strongly
convex optimization that achieves a convergence rate of O(InT'/T), which is only a logarithmic
factor worse than the optimal rate [9]. The key idea of both algorithms is to appropriately penalize
the intermediate solutions when they are outside the domain. With an appropriate design of penal-
ization mechanism, the average solution X7 obtained by the SGD after T iterations will be very
close to the domain K, even without intermediate projections. As a result, the final feasible solution
X7 can be obtained by projecting X into the domain /C, the only projection that is needed for the
entire algorithm. We note that our approach is very different from the previous efforts in developing
projection free convex optimization algorithms (see [8, 12, 11] and references therein), where the
key idea is to develop appropriate updating procedures to restore the feasibility of solutions at every
1teration.

We close this section with a statement of contributions and main results made by the present work:

e We propose a stochastic gradient descent algorithm for general convex optimization that in-
troduces a Lagrangian multiplier to penalize the solutions outside the domain and performs
primal-dual updating. The proposed algorithm achieves the optimal convergence rate of
O(1/+/T) with only one projection;

e We propose a stochastic gradient descent algorithm for strongly convex optimization that
constructs the penalty function using a smoothing technique. This algorithm attains an
O(InT'/T) convergence rate with only one projection.

2 Related Works

Generally, the computational complexity of the projection step in SGD has seldom been taken into
account in the literature. Here, we briefly review the previous works on projection free convex op-
timization, which is closely related to the theme of this study. For some specific domains, efficient
algorithms have been developed to circumvent the high computational cost caused by projection
step at each iteration of gradient descent methods. The main idea is to select an appropriate direc-
tion to take from the current solution such that the next solution is guaranteed to stay within the
domain. Clarkson [5] proposed a sparse greedy approximation algorithm for convex optimization
over a simplex domain, which is a generalization of an old algorithm by Frank and Wolfe [7] (a.k.a
conditional gradient descent [3]). Zhang [21] introduced a similar sequential greedy approximation
algorithm for certain convex optimization problems over a domain given by a convex hull. Hazan [8]
devised an algorithm for approximately maximizing a concave function over a trace norm bounded
PSD cone, which only needs to compute the maximum eigenvalue and the corresponding eigenvec-
tor of a symmetric matrix. Ying et al. [20] formulated the distance metric learning problems into
eigenvalue maximization and proposed an algorithm similar to [8].

Recently, Jaggi [11] put these ideas into a general framework for convex optimization with a gen-
eral convex domain. Instead of projecting the intermediate solution into a complex convex domain,
Jaggi’s algorithm solves a linearized problem over the same domain. He showed that Clark’s algo-
rithm , Zhang’s algorithm and Hazan’s algorithm discussed above are special cases of his general
algorithm for special domains. It is important to note that all these algorithms are designed for batch
optimization, not for stochastic optimization, which is the focus of this work.

Our work is closely related to the online Frank-Wolfe (OFW) algorithm proposed in [10]. Itis a
projection free online learning algorithm, built on the the assumption that it is possible to efficiently
minimize a linear function over the complex domain. One main shortcoming of the OFW algorithm
is that its convergence rate for general stochastic optimization is O(T~1/3), significantly slower than
that of a standard stochastic gradient descent algorithm (i.e., O(T~'/2)). It achieves a convergence

rate of O(T~'/2) only when the objective function is smooth, which unfortunately does not hold
for many machine learning problems where either a non-smooth regularizer or a non-smooth loss
function is used. Another limitation of OFW is that it assumes a linear optimization problem over
the domain /C can be solved efficiently. Although this assumption holds for some specific domains
as discussed in [10], but in many settings of practical interest, this may not be true. The proposed
algorithms address the two limitations explicitly. In particular, we show that how two seemingly
different modifications of the SGD can be used to avoid performing expensive projections with
similar convergency rates as the original SGD method.



3 Preliminaries

Throughout this paper, we consider the following convex optimization problem:
mi’rcl f(x), ()
x€

where K is a bounded convex domain. We assume that /C can be characterized by an inequality
constraint and without loss of generality is bounded by the unit ball, i.e.,

K={xeRl:g(x) <0} CB={xecR?: x|, <1}, (2)
where g(x) is a convex constraint function. We assume that C has a non-empty interior, i.e., there
exists x such that g(x) < 0 and the optimal solution x* to (1) is in the interior of the unit ball B, i.e.,
lx*|]2 < 1. Note that when a domain is characterized by multiple convex constraint functions, say
gi(x) <0,i=1,...,m, we can summarize them into one constraint g(x) < 0, by defining g(x) as
g(x) = maxi<j<m gi(X)-

To solve the optimization problem in (1), we assume that the only information available to the al-
gorithm is through a stochastic oracle that provides unbiased estimates of the gradient of f(x).
More precisely, let &1,...,&p be a sequence of independently and identically distributed (i.i.d)
random variables sampled from an unknown distribution P. At each iteration ¢, given solu-
tion x;, the oracle returns V f(x;;&;), an unbiased estimate of the true gradient V f(x;), i.e.,

Ee, [6 f(x¢,&)] = Vf(x¢). The goal of the learner is to find an approximate optimal solution
by making 7" calls to this oracle.

Before proceeding, we recall a few definitions from convex analysis [17].

Definition 1. A function f(x) is a G-Lipschitz continuous function w.r.t a norm || - ||, if
|f(x1) = f(x2)] < Gl[x1 — %2|, Vx1,%2 € B. 3)

In particular, a convex function f(x) with a bounded (sub)gradient ||0f(x)||. < G is G-Lipschitz
continuous, where || - || is the dual norm to || - ||.

Definition 2. A convex function f(x) is B-strongly convex w.r.t a norm || - || if there exists a constant
B > 0 (often called the modulus of strong convexity) such that, for any o € [0, 1], it holds:

Flaxs + (1 — a)xs) < af(x1) + (1 — ) f(x2) — %a(l — a)B||x1 — %[, Vx1, x5 € B,

When f(x) is differentiable, the strong convexity is equivalent to f(x1) > f(x2) + (V f(x2),x1 —
Xo) + §||x1 — XQ||2,VX1, x5 € B. In the sequel, we use the standard Euclidean norm to define
Lipschitz and strongly convex functions. Stochastic gradient descent method is an iterative algorithm
and produces a sequence of solutions x;,t =1,...,7T, by

X1 = (¢ — 1V f (%0, &), 4)
where {n;}1_, is a sequence of step sizes, [T (x) is a projection operator that projects x into the

domain /C, and V f(x, &;) is an unbiased stochastic gradient of f(x), for which we further assume
bounded gradient variance as

Ee, [exp([Vf(x,&) = Vf(x)[3/07)] < exp(1). (5)

For general convex optimization, stochastic gradient descent methods can obtain an O(1/+/T) con-
vergence rate in expectation or in a high probability provided (5) [16]. As we mentioned in the
Introduction section, SGD methods are computationally efficient only when the projection I (x)
can be carried out efficiently. The objective of this work is to develop computationally efficient
stochastic optimization algorithms that are able to yield the same performance guarantee as the
standard SGD algorithm but with only ONE projection when applied to the problem in (1).

4 Algorithms and Main Results

We now turn to extending the SGD method to the setting where only one projection is allowed to
perform for the entire sequence of updating. The main idea is to incorporate the constraint function
g(x) into the objective function to penalize the intermediate solutions that are outside the domain.
The result of the penalization is that, although the average solution obtained by SGD may not be
feasible, it should be very close to the boundary of the domain. A projection is performed at the end
of the iterations to restore the feasibility of the average solution.



Algorithm 1 (SGDP-PD): SGD with ONE Projection by Primal Dual Updating

1: Input: a sequence of step sizes {7, }, and a parameter v > 0
2: Initialization: x; = 0and A\; =0

3: fort=1,2,...,T do

Compute x; | = x; — 0(Vf(x¢, &) + M Vg(xy))
Update X1 = {1/ max (ch 2. 1.

Update A\; 1 = [(1 — yme) A +1eg9(xe)] +

7: end for

8: Output: X7 = IIx (X7), where Xy = >/ x;/T.

AN AN

The key ingredient of proposed algorithms is to replace the projection step with the gradient com-
putation of the constraint function defining the domain /C, which is significantly cheaper than pro-
jection step. As an example, when a solution is restricted to a PSD cone, i.e., X > 0 where X
is a symmetric matrix, the corresponding inequality constraint is g(X) = Apax(—X) < 0, where
Amax (X)) computes the largest eigenvalue of X and is a convex function. In this case, Vg(X) only
requires computing the minimum eigenvector of a matrix, which is cheaper than a full eigenspectrum
computation required at each iteration of the standard SGD algorithm to restore feasibility.

Below, we state a few assumptions about f(x) and g(x) often made in stochastic optimization as:
Al [Vix)l2 <Gr, Vg2 < Gay g(x)[ <o, Vx € B, (6)

A2 Eelep([Vf(x,&) = V(x)[3/0°)] < exp(l), Vx € B. ()
We also make the following mild assumption about the boundary of the convex domain X as:

A3 there exists a constant p > 0 such that {n)ino IVg(x)||2 > p. (8)
9(x0)=

Remark 1. The purpose of introducing assumption A3 is to ensure that the optimal dual variable
for the constrained optimization problem in (1) is well bounded from the above, a key factor for our
analysis. To see this, we write the problem in (1) into a convex-concave optimization problem:
i A .

min max f (x) + Ag(x)
Let (X4, As) be the optimal solution to the above convex-concave optimization problem. Since we
assume g(x) is strictly feasible, x, is also an optimal solution to (1) due to the strong duality
theorem [4]. Using the first order optimality condition, we have V f(x,) = —\.Vg(x.). Hence,
Ao = 0 when g(x,) < 0, and A\, = |V f(x:)|l2/]|Vg(x4)||2 when g(x.) = 0. Under assumption
A3, we have )\, € [0,G1/p].

We note that, from a practical point of view, it is straightforward to verify that for many domains
including PSD cone and Polytope, the gradient of the constraint function is lower bounded on the
boundary and therefore assumption A3 does not limit the applicability of the proposed algorithms
for stochastic optimization. For the example of g(X) = A\pax(—X), the assumption A3 implies
ming(y)—o [[Vg(X)||r = [Jluu’ ||z = 1, where u is an orthonomal vector representing the corre-
sponding eigenvector of the matrix X whose minimum eigenvalue is zero.

We propose two different ways of incorporating the constraint function into the objective function,
which result in two algorithms, one for general convex and the other for strongly convex functions.

4.1 SGD with One Projection for General Convex Optimization

To incorporate the constraint function g(x), we introduce a regularized Lagrangian function,
L(x,\) = f(x) + Ag(x) — %X“, A> 0.

The summation of the first two terms in L(x, A) corresponds to the Lagrangian function in dual anal-
ysis and A corresponds to a Lagrangian multiplier. A regularization term —(v/2)A? is introduced in
L(x, A\) to prevent \ from being too large. Instead of solving the constrained optimization problem
in (1), we try to solve the following convex-concave optimization problem
min max L(x, A). )
xEB A>0
The proposed algorithm for stochastically optimizing the problem in (9) is summarized in Algo-
rithm 1. It differs from the existing stochastic gradient descent methods in that it updates both the
primal variable x (steps 4 and 5) and the dual variable A (step 6), which shares the same step sizes.



We note that the parameter p is not employed in the implementation of Algorithm 1 and is only
required for the theoretical analysis. It is noticeable that a similar primal-dual updating is explored
in [15] to avoid projection in online learning. Our work differs from [15] in that their algorithm
and analysis only lead to a bound for the regret and the violation of the constraints in a long run,
which does not necessarily guarantee the feasibility of final solution. Also our proof techniques
differ from [16], where the convergence rate is obtained for the saddle point; however our goal is to
attain bound on the convergence of the primal feasible solution.

Remark 2. The convex-concave optimization problem in (9) is equivalent to the following mini-

mization problem:
2
x
o )+ 90

xeB 2y

(10)

where 2]+ outputs z if z > 0 and zero otherwise. It thus may seem attractive to directly optimize
the penalized function f(x) + [g(x)]3 /(2v) using the standard SGD method, which unfortunately
does not yield a regret of O(v/T). This is because, in order to obtain a regret of O(v/T), we need

to set vy = Q(\/T), which unfortunately will lead to a blowup of the gradients and consequently a
poor regret bound. Using a primal-dual updating schema allows us to adjust the penalization term

more carefully to obtain an O(1/v/T) convergence rate.

Theorem 1. For any general convex function f(x), if we set 9y = v/(2G3%),t = 1,---, T, and

v = G3/\/(G? + C3 + (1 +1n(2/6))02)T in Algorithm 1, under assumptions A1-A3, we have,
with a probability at least 1 — 0,

) < mip ) +0 (=),

where O(-) suppresses polynomial factors that depend on In(2/0), Gy, Ga, Ca, p, and o.

4.2 SGD with One Projection for Strongly Convex Optimization

We first emphasize that it is difficult to extend Algorithm 1 to achieve an O(In7T'/T") convergence
rate for strongly convex optimization. This is because although —L(x, \) is strongly convex in A,
its modulus for strong convexity is -y, which is too small to obtain an O(In T') regret bound.

To achieve a faster convergence rate for strongly convex optimization, we change assumptions A1l
and A2 to

A4 |[VI(x,&)2 <G, [IVg()l2 < Goo ¥x € B,

where we slightly abuse the same notation G;. Note that A1 only requires that ||V f(x)|2 is
bounded and A2 assumes a mild condition on the stochastic gradient. In contrast, for strongly

convex optimization we need to assume a bound on the stochastic gradient |V f(x,&)|2. Al-
though assumption A4 is stronger than assumptions Al and A2, however, it is always possible
to bound the stochastic gradient for machine learning problems where f(x) usually consists of
a summation of loss functions on training examples, and the stochastic gradient is computed by

sampling over the training examples. Given the bound on |V f(x,&)||2, we can easily have
IVf(x)lz = IEVf(x,&)ll2 < E[Vf(%x,&)]l2 < G1, which is used to set an input parameter

Ao > G1/p to the algorithm. According to the discussion in the last subsection, we know that the
optimal dual variable A, is upper bounded by G1 /p, and consequently is upper bounded by Ag.

Similar to the last approach, we write the optimization problem (1) into an equivalent convex-
concave optimization problem:
i =mi A = mi A .

in f(x) = min max f (%) + Ag(x) = min £(x) + Aolg(x)]+
To avoid unnecessary complication due to the subgradient of [-] 1, following [18], we introduce a
smoothing term H (\/)\g), where H(p) = —plnp — (1 — p) In(1 — p) is the entropy function, into
the Lagrangian function, leading to the optimization problem mirBl F(x), where F'(x) is defined as

xE

Fx) = £+ . M) +9H0) = ) + 91 (14 exp (2220 )

where v > 0 is a parameter whose value will be determined later. Given the smoothed objective
function F'(x), we find the optimal solution by applying SGD to minimize F'(x), where the gradient



Algorithm 2 (SGDP-ST): SGD with ONE Projection by a Smoothing Technique

1: Input: a sequence of step sizes {n: }, Ao, and
: Initialization: x; = 0.
cfort=1,...,Tdo

2
3
= exp (Aog(x
4 Compute Xj ; = X; — 1) <Vf(xt7§t) + xp (Aog(xt)/7) )\ng(xt)>
5
6
7

1+ exp(Aog(x:t)/7)
Update x¢+1 = X1/ max(||x; |2, 1)
: end for -
: Output: X7 = Il (X7), where Xp = >, x¢/T.

of F(x) is computed by
SFG0 ) 4+ 2 0g(9/7)

1+ exp (Aog(x)/7)
Algorithm 2 gives the detailed steps. Unlike Algorithm 1, only the primal variable x is updated in
each iteration using the stochastic gradient computed in (11).

AoVg(x). (11)

The following theorem shows that Algorithm 2 achieves an O(InT/T") convergence rate if the cost
functions are strongly convex.

Theorem 2. For any [3-strongly convex function f(x), if we set ny = 1/(26t),t = 1,...,T, v =
InT/T, and Ao > G1/p in Algorithm 2, under assumptions A3 and A4, we have with a probability
at least 1 — 6,

i) < mip £+ 0 (7).

where O(+) suppresses polynomial factors that depend on 1n(1/6), 1/, G1, G2, p, and Xo.

It is well known that the optimal convergence rate of SGD for strongly convex optimization is
O(1/T) [9] which has been proven to be tight in stochastic optimization setting [1]. According to
Theorem 2, Algorithm 2 achieves an almost optimal convergence rate except for the factor of InT'.
It is worth mentioning that although it is not explicitly given in Theorem 2, the detailed expression
for the convergence rate of Algorithm 2 exhibits a tradeoff in setting Ay (more can be found in the

proof of Theorem 2). Finally, under assumptions A1-A3, Algorithm 2 can achieve an O(1/v/T)
convergence rate for general convex functions, similar to Algorithm 1.

S Convergence Rate Analysis

We here present the proofs of main theorems. The omitted proofs are provided in the Appendix. We
use O(+) notation in a few inequalities to absorb constants independent from 7" for ease of exposition.

5.1 Proof of Theorem 1

To pave the path for the proof, we present a series of lemmas. The lemma below states two key
inequalities, which follows the standard analysis of gradient descent.

Lemma 1. Under the bounded assumptions in (6) and (7), for any x € B and A > 0, we have
1
(xt — %) TV L(x, Ar) < n (I = xel13 = lIx = xe41113) + 20:GT + 0 G3A?
t
+ 2 [V F(xe,&) — V)3 + (x —x0) T (VF(xe, &) — V(1))
=4 =(i(x)

1
(A= X\)VaL(x, \) < o (A = Al = A = A1) + 2m,C5.

An immediate result of Lemma 1 is the following which states a regret-type bound.

Lemma 2. For any general convex function f(x), if we set n, = 'y/(QG%) t= 1 T we have
T T
Doimgx)li _G3 (GI+C3) Cz
— * et=l I T L A T A

where x* = arg minyex f(x).



Proof of Therorem 1. First, by martingale inequality (e.g., Lemma 4 in [13]), with a probability
1 —§6/2, we have Zthl G(x*) < 20+/31n(2/6)V/T. By Markov’s inequality, with a probability
1 —§/2, we have ZZ;I Ay < (1 +1n(2/6))o?T. Substituting these inequalities into Lemma 2,
plugging the stated value of y, we have with a probability 1 — §

T T

1 2
x¢) — f(x*)) + —= X <OWT ,

;(f( D)= f(x") Cﬁ[;m 1], <O(T)
where C' = 2G3(1/y/G? + C3 + (1 +1n(2/8))0? + 24/G3 + C3 + (1 +1n(2/0))o2) and O(-)
suppresses polynomial factors that depend on In(2/94), G1, G2, Cs, 0.

Recalling the definition of X7 = Zthl x;/T and using the convexity of f(x) and g(x), we have

s~ )+ T ol <0 (=) (12
Assume g(Xr) > 0, otherwise X7 = X7 and we easily have f(Xr) < mineex f(x) + O(1/VT).
Since X7 is the projection of X7 into K, i.e., X7 = argming(x)<o [|x — X7 2, then by first order
optimality condition, there exists a positive constant s > 0 such that
g(SET) = 0, and iT - )NCT = ng(SiT)
which indicates that X7 — X is in the same direction to Vg(xr). Hence,

9(xr) = 9(Xr) — 9(Xr) 2 (X —X7) Vg(Xr) = X1 — X1 |2 V(1) ]2 > pl|XT — iT'P’

13)
where the last inequality follows the definition of min (o [[Vg(x)|l2 > p. Additionally, we have
fOE) = f&r) < F(XF) = f(Xr) + f(Xr) = f(Xr) < Gul[xr —Xr|2, (14)

dueto f(x*) < f(Xr) and Lipschitz continuity of f(x). Combining inequalities (12), (13), and (14)
yields

2
%\/TIIQT —Xz[l3 < O(U/VT) + GilRr — Xz 2

By simple algebra, we have ||Xr — Xr||2 < pfi/% +0 (, / ;72%) Therefore
1 1

F&r) < fGer) — F(&r) + f(Rr) < Ga R —Frlla + F(x7) +O (ﬁ) < f(x")+0 (ﬁ) ,

where we use the inequality in (12) to bound f(X7) by f(x*) and absorb the dependence on p, Gy, C
into the O(-) notation. O

Remark 3. From the proof of Theorem 1, we can see that the key inequalities are (12), (13), and (14).
In particular, the regret-type bound in (12) depends on the algorithm. If we only update the primal
variable using the penalized objective in (10), whose gradient depends on 1/+, it will cause a blowup
in the regret bound with (1/ +~T + T /~y), which leads to a non-convergent bound.

5.2 Proof of Theorem 2

Our proof of Theorem 2 for the convergence rate of Algorithm 2 when applied to strongly convex
functions starts with the following lemma by analogy of Lemma 2.

Lemma 3. For any (3-strongly convex function f(x), if we set n; = 1/(2t), we have
T

S (P — Py < CEATIUERD) L 576 ) - 257 o —
t=1 t=1 t=1

where x* = arg minxex f(x).

In order to prove Theorem 2, we need the following result for an improved martingale inequality.

Lemma 4. For any fixed x € B, define Dy = ZZ;I lx: — x||3 Ar = ZZ;I (i (x), and m =
[log, T'|. We have

Pr <DT< ;{) +Pr <AT<4G1 DTln’;+4G11nT;) >1—34.



Proof of Theorem 2. We substitute the bound in Lemma 4 into the inequality in Lemma 3 with
X = x*. We consider two cases. In the first case, we assume D < 4/T. As a result, we have

T
Zg = (Vf(x) = VF(xe,&)) T (x* —x;) < 2G1/TDr < 4Gh,
t=1

which together with the inequality in Lemma 3 leads to the bound

T
(G? + )\2G2)(1+1InT)
F(x;) — F(x*)) < 4G, + .

>o(F(xi) = Flx") 2/3
In the second case, we assume

16G2
th <4G“/DTIHK—|—4G11H(S _iDT-i-( 61+4G1)ln7;,

where the last step uses the fact 2v/ab < a? + b?. We thus have

. . 16G? m  (GF+NG3)(1+1InT)
;(F(Xt) - F(x%)) < < 3 +4G1> In - + % .

Combing the results of the two cases, we have, with a probability 1 — ¢,

T 2 2 2,2
S (Flx) — Flx")) < (1“’1 +4cl) in % 446y 4 (CLENCHLET),

t=1

O(InT)
By convexity of F'(x), we have F(Xr) < F(x*) + O (InT/T). Noting that x* € K, g(x*) < 0,
we have F'(x*) < f(x*) 4+ «v1n 2. On the other hand,

F(&r) = f(&r) +7In (1 +exp (A(’“‘{(fﬂ» > f(&r) + max (0, Aog(Rr))

Therefore, with the value of v = InT'/T, we have

f&r) < F(x*) +0 (thT> : (1)
&) + gtz < ) +0 (1), a6

Applying the inequalities (13) and (14) to (16), and noting that v = In T'/T', we have
AopllXr — Xrll2 < Gif|xXr — Xrll2 + O (11;T> -

For \g > G1/p, we have || X7 — Xr|l2 < (1/(Aop — G1))O(InT/T). Therefore

&) < ()~ G+ (%) < Grllke el +1x7)+0 (7 ) < sy +0 (BT

where in the second inequality we use inequality (15). O

6 Conclusions

In the present paper, we made a progress towards making the SGD method efficient by proposing a
framework in which it is possible to exclude the projection steps from the SGD algorithm. We have
proposed two novel algorithms to overcome the computational bottleneck of the projection step in
applying SGD to optimization problems with complex domains. We showed using novel theoretical
analysis that the proposed algorithms can achieve an O(1/ \/T) convergence rate for general convex
functions and an O(InT'/T) rate for strongly convex functions with a overwhelming probability
which are known to be optimal (up to a logarithmic factor) for stochastic optimization.
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