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Abstract

Alternating direction method of multipliers (ADMM) has received tremendous
interest for solving numerous problems in machine learning, statistics and signal
processing. However, it is known that the performance of ADMM and many of its
variants is very sensitive to the penalty parameter of a quadratic penalty applied
to the equality constraints. Although several approaches have been proposed for
dynamically changing this parameter during the course of optimization, they do not
yield theoretical improvement in the convergence rate and are not directly applica-
ble to stochastic ADMM. In this paper, we develop a new ADMM and its linearized
variant with a new adaptive scheme to update the penalty parameter. Our methods
can be applied under both deterministic and stochastic optimization settings for
structured non-smooth objective function. The novelty of the proposed scheme lies
at that it is adaptive to a local sharpness property of the objective function, which
marks the key difference from previous adaptive scheme that adjusts the penalty
parameter per-iteration based on certain conditions on iterates. On theoretical side,
given the local sharpness characterized by an exponent θ ∈ (0, 1], we show that the
proposed ADMM enjoys an improved iteration complexity of Õ(1/ε1−θ)1 in the
deterministic setting and an iteration complexity of Õ(1/ε2(1−θ)) in the stochastic
setting without smoothness and strong convexity assumptions. The complexity in
either setting improves that of the standard ADMM which only uses a fixed penalty
parameter. On the practical side, we demonstrate that the proposed algorithms
converge comparably to, if not much faster than, ADMM with a fine-tuned fixed
penalty parameter.

1 Introduction

Our problem of interest is the following convex optimization problem that commonly arises in
machine learning, statistics and signal processing:

min
x∈Ω

F (x) , f(x) + ψ(Ax) (1)

where Ω ⊆ Rd is a closed convex set, f : Rd → R and ψ : Rm → R are proper lower-semicontinuous
convex functions, and A ∈ Rm×d is a matrix. In this paper, we consider solving (1) by alternating
direction method of multipliers (ADMM) in two paradigms, namely deterministic optimization and
stochastic optimization. In both paradigms, ADMM has been employed widely for solving the
regularized statistical learning problems like (1) due to its capability of tackling the sophisticated
structured regularization term ψ(Ax) in (1) (e.g., the generalized lasso ‖Ax‖1), which is often an

1Õ() suppresses a logarithmic factor.
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obstacle for applying other methods such as proximal gradient method. As follows, we describe
the standard ADMM and its variants for solving (1) in different optimization paradigms. It is worth
mentioning that all algorithms presented in this paper can be easily extended to handle a more general
term ψ(A(x) + c), where A is a linear mapping.

To apply ADMM, the original problem (1) is first cast into an equivalent constrained optimization
problem via decoupling:

min
x∈Ω,y∈Rm

f(x) + ψ(y), s.t. y = Ax. (2)

An augmented Lagrangian function for (2) is defined as

L(x,y, λ) = f(x) + ψ(y)− λ>(Ax− y) +
β

2
‖Ax− y‖22, (3)

where β is a constant called penalty parameter and λ ∈ Rm is a dual variable. Then, the standard
ADMM solves problem (1) by executing the following three steps in each iteration:

xτ+1 = arg min
x∈Ω

L(x,yτ , λτ ) = arg min
x∈Ω

f(x) +
β

2

∥∥∥∥(Ax− yτ )− 1

β
λτ

∥∥∥∥2

2

, (4)

yτ+1 = arg min
x∈Ω

L(xτ+1,y, λτ ) = arg min
y∈Rm

ψ(y) +
β

2

∥∥∥∥(Axτ+1 − y)− 1

β
λτ

∥∥∥∥2

2

, (5)

λτ+1 = λτ − β(Axτ+1 − yτ+1). (6)

When A is not an identity matrix, solving the subproblem (4) above for xτ+1 might be difficult. To
alleviate the issue, linearized ADMM [33, 34, 8] has been proposed, which solves the following
problem instead of (4):

xτ+1 = arg min
x∈Ω

f(x) +
β

2

∥∥∥∥(Ax− yτ )− 1

β
λτ

∥∥∥∥2

2

+
1

2
‖x− xτ‖2G, (7)

where ‖x‖G =
√
x>Gx and G ∈ Rd×d is a positive semi-definite matrix. By setting G =

γI − βA>A � 0, the term x>A>Ax in (7) vanishes. It has been established that both standard
ADMM and linearized ADMM have an O(1/t) convergence rate for solving (2) [8] , where t is the
number of iterations. Under a minor condition, this result implies an O(1/ε) iteration complexity for
solving the original problem (1) (see Corollary 1).

In addition, we consider ADMM for solving (1) in stochastic optimization with

f(x) = Eξ[f(x; ξ)] (8)

where ξ is a random variable. This formulation captures many risk minimization problems in
machine learning where ξ denotes a data point sampled from a distribution and f(x; ξ) denotes a
loss function of the model x on the data ξ. It also covers as a special case the empirical loss where
f(x) = 1

n

∑n
i=1 f(x; ξi) with n is the number of samples. For these problems, computing f(x)

itself might be prohibitive (e.g., when n is very large) or even impossible. To address this issue,
one usually considers the stochastic optimization paradigm, where it is assumed that f(x; ξ) and
its subgradient ∂f(x; ξ) can be efficiently computed. To solve the stochastic optimization problem,
stochastic ADMM algorithms have been proposed [21, 23], which update yτ+1 and λτ+1 the same
to (5) and (6), respectively, but update xτ+1 as

xτ+1 = arg min
x∈Ω

f(xτ ; ξτ )+∂f(xτ ; ξτ )>(x−xτ )+
β

2

∥∥∥∥(Ax− yτ )− 1

β
λτ

∥∥∥∥2

2

+
‖x− xτ‖2Gτ

ητ
(9)

where ξτ is a random sample, ητ is a stepsize and Gτ = γI − βητA>A � I [23] or Gτ = I [21].
Other stochastic variants of ADMM for general convex optimization were also proposed in [23, 35].
These work have established an O(1/

√
t) convergence rate of stochastic ADMM for solving (2) with

f(x) being (8). Under a minor condition, we can also show that these stochastic ADMM algorithms
suffer from a higher iteration complexity of O(1/ε2) for finding an ε-optimal solution to the original
problem (1) (see Corollary 3).

Although the variants of ADMM with fast convergence rates have been developed under smoothness,
strong convexity and other regularity conditions (e.g., the matrix A has full rank), the best iteration
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complexities of deterministic ADMM and stochastic ADMM for general convex optimization remain
O(1/ε) and O(1/ε2), respectively. On the other hand, many studies have reported that the perfor-
mance of ADMM is very sensitive to the penalty parameter β. How to address or alleviate this issue
has attracted many studies and remains an active topic. In particular, it remains an open question
how to quantify the improvement in ADMM’s theoretical convergence by using adaptive penalty
parameters. Of course, the answer to this question depends on the adaptive scheme being used.
Almost all previous works focus on using self-adaptive schemes that update the penalty parameter
during the course of optimization according to the historical iterates (e.g., by balancing the primal
residual and dual residual). However, there is hitherto no quantifiable improvement in terms of
convergence rate or iteration complexity for these self-adaptive schemes.

In this paper, we focus on the design of adaptive penalization for both deterministic and stochastic
ADMM and show that, with the proposed adaptive updating scheme on the penalty parameter, the
theoretical convergence properties of ADMM can be improved without imposing any smoothness and
strong convexity assumptions on the objective function. The key difference between the proposed
adaptive scheme and previous self-adaptive schemes is that the proposed penalty parameter is adaptive
to an local sharpness property of the objective function, namely the local error bound (see Definition 1).
Given the exponent constant θ ∈ (0, 1] that characterizes this local sharpness property, we show that
the proposed deterministic ADMM enjoys an improved iteration complexity of Õ(1/ε1−θ)2 and the
proposed stochastic ADMM enjoys an iteration complexity of Õ(1/ε2(1−θ)), both of which improve
the complexity of their standard counterparts which only use a fixed penalty parameter. To the best of
our knowledge, this is the first evidence that an adaptive penalty parameter used in ADMM can lead
to provably lower iteration complexities. We call the proposed ADMM algorithms locally adaptive
ADMM because of its adaptivity to the problem’s local property.

2 Related Work

Since there is a tremendous amount of studies on ADMM, the review below mainly focuses on the
ADMMs with a variable penalty parameter. A convergence rate ofO(1/t) was first shown for both the
standard and linearized variants of ADMM [8, 19, 9] on general non-smooth and non-strongly convex
problems. Later, smoothness and strong convexity assumptions are introduced to develop faster
convergence rates of ADMMs [22, 3, 11, 6]. Stochastic ADMM was considered in [21, 23] with a
convergence rate of O(1/

√
t) for general convex problems and Õ(1/t) for strongly convex problems.

Recently, many variance reduction techniques have been borrowed into stochastic ADMM to achieve
improved convergence rates for finite-sum optimization problems where f(x) = 1

n

∑n
i=1 fi(x)

under the smoothness and strong convexity assumptions [37, 36, 24]. Nevertheless, most of these
aforementioned works focus on using a constant penalty parameter.

He et al. [10] analyzed ADMM with self-adaptive penalty parameters. The motivation for their
self-adaptive penalty is to balance the order of the primal residual and the dual residual. However,
the convergence of ADMM with self-adaptive penalty is not guaranteed unless the adaptive scheme
is turned off after a number of iterations. Additionally, their self-adaptive rule requires computing
the deterministic subgradient of f(x) so that is not appropriate for stochastic optimization. Tian
& Yuan [25] proposed a variant of ADMM with variable penalty parameters. Their analysis and
algorithm require the smoothness assumption of ψ(Ax) and full column rank of the A matrix. Zhou
et al. [15] focused on solving low-rank representation by linearized ADMM and also proposed a
non-decreasing self-adaptive penalty scheme. However, their scheme is only applicable to an equality
constraint Ax + By = c with c 6= 0. Recently, Xu et al. [31] proposed a self-adaptive penalty
scheme for ADMM based on the Barzilai and Borwein gradient methods. The convergence of their
ADMM relies on the analysis in He et al. [10] and thus requires the penalty parameter to be fixed after
a number of iterations. In contrast, our adaptive scheme fpr the penalty parameter is different from
the previous methods in the following aspects: (i) it is adaptive to the local sharpness property of the
problem; (ii) it allows the penalty parameter to increase to infinity as the algorithm proceeds; (iii) it
can be employed for both deterministic and stochastic ADMMs as well as their linearized versions.

It is also notable that the presented algorithms and their convergence theory share many similarities
with the recent developments leveraging the local error bound condition [32, 30, 29], where similar
iteration complexities have been established. However, we would like to emphasize that the newly

2Õ() suppresses a logarithmic factor.
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proposed ADMM algorithms are more effective to tackle problems with structured regularizers (e.g.,
generalized lasso) than the methods in [32, 30, 29], and have an additional unique feature of using
adaptive penalty parameter.

3 Preliminaries

Recall that the problem of our interest:

min
x∈Ω

F (x) , f(x) + ψ(Ax), (10)

where Ω ⊆ Rd is a closed convex set, f : Rd → (−∞,+∞] and ψ : Rm → (−∞,+∞] are proper
lower-semicontinuous convex functions, and A ∈ Rm×d is a matrix. Let Ω∗ and F∗ denote the
optimal set of (10) and the optimal value, respectively. We present some assumptions that will be
used in the paper.
Assumption 1. For the convex optimization problem (10), we assume (a) there exist known x0 ∈ Ω
and ε0 ≥ 0 such that F (x0)− F∗ ≤ ε0; (b) Ω∗ is a non-empty convex compact set; (c) there exists a
constant ρ such that ‖∂ψ(y)‖2 ≤ ρ for all y; (d) ψ is defined everywhere.

For a positive semi-definite matrix G, the G-norm is defined as ‖x‖G =
√
x>Gx. Let B(x, r) =

{u ∈ Rd : ‖u − x‖2 ≤ r} denote the Euclidean ball centered x with a radius r. We denote by
dist(x,Ω∗) the distance between x and the set Ω∗, i.e., dist(x,Ω∗) = minv∈Ω∗ ‖x − v‖2. We
denote by Sε the ε-sublevel set of F (x), respectively, i.e., Sε = {x ∈ Ω : F (x) ≤ F∗ + ε}.
Local Sharpness. Below, we introduce a condition, namely local error bound condition, to character-
ize the local sharpness property of the objective function.
Definition 1 (Local error bound (LEB)). A function F (x) is said to satisfy a local error bound
condition on the ε-sublevel set if there exist θ ∈ (0, 1] and c > 0 such that for any x ∈ Sε

dist(x,Ω∗) ≤ c(F (x)− F∗)θ. (11)

Remark: We will refer to θ as the local sharpness parameter. A recent study [1] has shown that the
local error bound condition is equivalent to the famous Kurdyka - Łojasiewicz (KL) property [13],
which characterizes that under a transformation of ψ(s) = csθ, the function F (x) can be made sharp
around the optimal solutions, i.e, the norm of subgradient of the transformed function ψ(F (x)− F∗)
is lowered bounded by a constant 1. Note that by allowing θ = 0 in the above condition we can
capture a full spectrum of functions. However, a broad family of functions can have a sharper upper
bound, i.e., with a non-zero constant θ in the above condition. For example, for functions that are
semi-algebraic and continuous, the above inequality is known to hold on any compact set (c.f. [1] and
references therein). The value of θ has been revealed for many functions (c.f. [18, 14, 20, 1, 32]).

4 Locally Adaptive ADMM for Deterministic Optimization

Since the proposed locally adaptive ADMM algorithm builds upon the standard ADMM, we first
present the detailed steps of ADMM in Algorithm 1. Note that if we set G = 0 ∈ Rd×d, it gives
the standard ADMM; and if we use G = γI − βA>A � 0, it gives the linearized variant, which
can make the computation of xτ+1 easier. To ensure G � 0, the minimum valid value for γ in the
linearized variant is β‖A‖22. To present the convergence result of ADMM (Algorithm 1), we first
introduce some notations.

u =

(
x
y
λ

)
, F(u) =

 −A>λ
λ

Ax− y

 ,

ût =
1

t

t∑
τ=1

uτ , x̂t =
1

t

t∑
τ=1

xτ , ŷt =
1

t

t∑
τ=1

yτ , λ̂t =
1

t

t∑
τ=1

λτ .

We recall the convergence result of [8] for the equality constrained problem (2), which does not
assume any smoothness, strong convexity and other regularity conditions.
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Algorithm 1 ADMM(x0, β, t)
1: Input: x0 ∈ Ω, the penalty parameter β, the number

of iterations t
2: Initialize: x1 = x0,y1 = Ax1, λ1 = 0, γ = β‖A‖22

and G = γI − βA>A or G = 0.
3: for τ = 1, . . . , t do
4: Update xτ+1 by (7), yτ+1 by (5),
5: Update λτ+1 by (6)
6: end for
7: Output: x̂t =

∑t
τ=1 xτ/t

Algorithm 2 LA-ADMM (x0, β1,K, t)
1: Input: x0 ∈ Ω, the number of stages
K, and the number of iterations t per
stage, initial value of penalization pa-
rameter β1

2: for k = 1, . . . ,K do
3: Let xk = ADMM(xk−1, βk, t)
4: Update βk+1 = 2βk
5: end for
6: Output: xK

Proposition 1 (Theorem 4.1 in [8]). For any x ∈ Ω, y ∈ Rm and λ ∈ Rm, we have

f(x̂t) + ψ(ŷt)− [f(x) + ψ(y)] + (ût − u)>F(u) ≤ ‖x− x1‖2G
2t

+
β‖y − y1‖22

2t
+
‖λ− λ1‖22

2βt
.

Remark: The above result establishes a convergence rate for the variational inequality pertained
to (2). When t→∞, (x̂t, ŷt) converges to the optimal solutions of (2) in a rate of O(1/t).

Since our goal is to solve the problem (1), next we present a corollary exhibiting the convergence of
ADMM for solving the original problem (1). All omitted proofs can be found in the supplement.
Corollary 1. Suppose Assumption 1.c and 1.d hold. Let x̂t be the output of ADMM. For any x ∈ Ω,
we have

F (x̂t)− F (x) ≤ ‖x− x0‖2G
2t

+
β‖A‖22‖x− x0‖22

2t
+

ρ2

2βt
.

Remark: For the standard ADMM withG = 0 the first term in the R.H.S vanishes. For the linearized
ADMM with G = γI − βA>A � 0, we can bound ‖x− x0‖2G ≤ γ‖x− x0‖22. One can also derive
a theoretically optimal value of β by setting x = x∗ ∈ Ω∗ and minimizing the upper bound, which
results in β = ρ

‖A‖2‖x∗−x0‖2 for the standard ADMM or β = ρ√
2‖A‖2‖x∗−x0‖2

for the linearized
ADMM. Finally, the above result implies that the iteration complexity of standard and linearized
ADMM for finding an ε-optimal solution of (1) is O

(
ρ‖A‖2‖x−x0‖2

ε

)
.

Next, we present our locally adaptive ADMM and our main result in this section regarding its iteration
complexity. The proposed algorithm is described in Algorithm 2, which is referred to as LA-ADMM.
The algorithm runs with multiple stages by calling ADMM at each stage with a warm start and a
constant number of iterations t. The penalty parameter βk is increased by a constant factor larger
than 1 (e.g., 2) after each stage and has an initial value dependent on ρ, ‖A‖2, ε0, θ and the targeted
accuracy ε. The convergence result of LA-ADMM employing G = γI − βA>A is established below.
A slightly better result in terms of a constant factor can be established for employing G = 0.
Theorem 2. Suppose Assumption 1 holds and F (x) obeys a local error bound condition on the ε-

sublevel. Let β1 = 2ρε1−θ

‖A‖2ε0 , K = dlog2(ε0/ε)e and t =
⌈

8ρ‖A‖2 max(1,c2)
ε1−θ

⌉
, we have F (xK)− F∗ ≤

2ε. The iteration complexity of LA-ADMM for achieving an 2ε-optimal solution is Õ(1/ε1−θ).

Remark: There are two levels of adaptivity to the local sharpness of the penalty parameter. First,
the initial value β1 in Algorithm 3 depends on the local sharpness parameter θ. Second, the time
interval to increase the penalty parameter is determined by the value of t which is also dependent on
θ. Compared to the iteration complexity O(1/ε) of vanilla ADMM, LA-ADMM can enjoy a lower
iteration complexity.

5 Locally Adaptive ADMM for Stochastic Optimization

In this section, we consider stochastic optimization problem as the following:

min
x∈Ω

F (x) , Eξ[f(x; ξ)] + ψ(Ax), (12)

where ξ is a random variable and f(x; ξ) : Rd → (−∞,+∞] is a proper lower-semicontinuous
convex function for each realization of ξ. For this problem, in addition to Assumption 1, we make
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Algorithm 3 SADMM(x0, η, β, t,Ω )
1: Input: x0 ∈ Rd, a step size η, penalty

parameter β, the number of iterations t
and a domain Ω.

2: Initialize: x1 = x0,y1 = Ax1, λ1 = 0
3: for τ = 1, . . . , t do
4: Update xτ+1 by (9) and yτ+1 by (5)
5: Update λτ+1 by (6)
6: end for
7: Output: x̂t =

∑t
τ=1 xτ/t

Algorithm 4 LA-SADMM (x0, η1, β1, D1,K, t)
1: Input: x0 ∈ Rd, the number of stages K, the num-

ber of iterations t per stage, the initial step size η1,
the initial parameter β1 and the initial radius D1.

2: for k = 1, . . . ,K do
3: Let xk = SADMM(xk−1, ηk, βk, t,Bk ∩ Ω)
4: Update ηk+1 = ηk/2 and βk+1 = 2βk, Dk+1 =

Dk/2.
5: end for
6: Output: xK

the following assumption for our development, which is a standard assumption for many previous
stochastic gradient methods.

Assumption 2. For the stochastic optimization problem (12), we assume that there exists a constant
R such that ‖∂f(x; ξ)‖2 ≤ R almost surely for any x ∈ Ω.

We present a framework of stochastic ADMM (SADMM) in Algorithm 3. The convergence results
for solving the equivalent constrained optimization problem of stochastic ADMM with different
choices of Gτ have been established in [21, 23, 35].

Below, we will focus on Gτ = γI − ηβA>A � I because it leads to computationally more efficient
update for xτ+1 than other two choices for high-dimensional problems. Using Gτ = I will yield a
similar convergence bound except for a constant term and using the idea of AdaGrad for computing
Gτ will lead to the same order of convergence in the worst-case, which we will postpone to future
work for exploration. The corollary below will be used in our analysis.

Corollary 3. Suppose Assumption 1.c, 1.d and Assumption 2 hold. Let Gτ = γI − ηβA>A � I in
Algorithm 3. For any x ∈ Ω,

F (x̂t)− F (x) ≤ηR
2

2
+
γ‖x1 − x‖22

2ηt
+

(
β‖A‖22‖x1 − x‖22

2t
+

ρ2

2βt

)
+
ρ‖A‖2‖x1 − xt+1‖2

t

+
1

t

t∑
τ=1

(E[gτ ]− gτ )>(xτ − x).

Remark: Taking expectation on both sides will yield the expectational convergence bound. We can
also use an analysis of large deviation to bound the last term to obtain the convergence with high
probability. In particular, by setting η ∝ 1/

√
τ , the above result implies an O(1/

√
t) convergence

rate, i.e., O(1/ε2) iteration complexity of stochastic ADMM.

Next, we discuss our locally adaptive stochastic ADMM (LA-SADMM) algorithm in Algorithm 4.
The key idea is similar to LA-ADMM, i.e., calling SADMM in multiple stages with warm start. The
step size ηk in each call of SADMM is fixed and decreases by a certain fraction after one stage. The
penalty parameter is updated similarly to that in LA-ADMM but with a different initial value. A key
difference from LA-ADMM is that we employ a domain shrinking approach to modify the domain
of the solutions xτ+1 at each stage. For the k-th stage, the domain for x is the intersection of Ω
and Bk = B(xk−1, Dk), where the latter is a ball with a radius of Dk centered at xk−1 (the initial
solution of the k-th stage). The radius Dk will decrease geometrically between stages. The purpose
of using the domain shrinking approach is to tackle the last term of the upper bound in Corollary 3 so
that it can decrease geometrically as the stage number increases. A similar idea has been adopted
in [29, 7, 5]. Note that during each SADMM, we can use the three choices of Gτ as mentioned before.
Below we only present the convergence result of the variant with Gτ = γI − ηkβkA>A.

Theorem 4. Suppose Assumptions 1 and 2 hold and F (x) obeys the local error bound condition
on Sε. Given δ ∈ (0, 1), let δ̃ = δ/K, K = dlog2( ε0ε )e, η1 = ε0

6R2 , β1 = 6R2

‖A‖22ε0
, D1 ≥ cε0

ε1−θ
,

t be the smallest integer such that t ≥ max{ 6912R2 log(1/δ̃)D2
1

ε20
, 12ρ‖A‖2D1

ε0
,
ρ2‖A‖22
R2 } and Gτ =

2I − η1β1A
>A � I . Then LA-SADMM guarantees that, with a probability 1− δ, we have F (xK)−

F∗ ≤ 2ε. The iteration complexity of LA-SADMM for achieving an 2ε-optimal solution with a high
probability 1− δ is Õ(log(1/δ)/ε2(1−θ)), provided D1 = O( cε0

ε(1−θ)
).
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Algorithm 5 LA-ADMM with Restarting

1: Input: t1, β(1)
1

2: Initialization: x(0)

3: for s = 1, 2, . . . , do
4: x(s) =LA-ADMM(x(s−1), β

(s)
1 ,K, ts)

5: ts+1 = ts2
1−θ, β(s+1)

1 = β
(s)
1 /21−θ

6: end for
7: Output: x(S)

Algorithm 6 LA-SADMM with Restarting

1: Input: t1, D(1)
1 and ε ≤ ε0/2

2: Initialization: x(0), η1 = ε0
6R2 , β1 = 6R2

‖A‖22ε0
3: for s = 1, 2, . . . , do
4: x(s) =LA-SADMM(x(s−1), η1, β1, D

(s)
1 ,K, ts)

5: ts+1 = ts2
2(1−θ), D(s+1)

1 = D
(s)
1 21−θ

6: end for
7: Output: x(S)

Remark: Interestingly, unlike that in LA-ADMM, the initial value β1 does not depend on θ. The
adaptivity of the penalty parameters lies on the time interval t which determines when the value of β
is increased. The difference comes from the first two terms in Corollary 3.

Before ending this section, we discuss two points. First, both Theorem 2 and Theorem 4 exhibit the
dependence of the two algorithms on the c parameter (e.g., t in Algorithm 2 and D1 in Algorithm 4)
that is usually unknown. Nevertheless, this issue can be easily addressed by using another level of
restarting and increasing sequence of t and D1 similar to the practical variants in [29, 32]. Due to
the limit of space, we only present the algorithms in Algorithm 5 and Algorithm 6 with their formal
guarantee presented in supplement. The conclusion is that under mild conditions as long as β(1)

in Algorithm 5 is sufficiently small, t1 and D(1)
1 in Algorithm 6 are sufficiently large, the iteration

complexities remain Õ(1/ε1−θ) and Õ(1/ε2(1−θ)) when θ in LEB condition is known. Second, these
variants can be even employed when the local sharpness parameter θ is unknown by simply setting it
to 0, and still enjoy reduced iteration complexities in terms of a multiplicative factor compared to
vanilla ADMMs. Detailed results are included in the supplement.

6 Applications and Experiments

In this section, we present some experimental results of the proposed algorithms for solving three
tasks, namely generalized LASSO, robust regression with a low-rank regularizer (RR-LR) and
learning low-rank representation. For generalized lasso, our experiment focuses on comparing the
proposed LA-SADMM with SADMM. For the latter tasks, we focus on comparing the proposed
LA-ADMM with previous linearized ADMM with and without self-adaptive penalty parameters.

We first consider generalized LASSO, which can find applications in many problems in statistics and
machine learning [28]. The objective of generalized LASSO can be expressed as:

min
x∈Rd

F (x) =
1

n

n∑
i=1

`(x>ai, bi) + δ‖Ax‖1 (13)

where (ai, bi) is a set of pairs of training data, i = 1, . . . , n, δ ≥ 0 is a regularization parameter,
A ∈ Rm×d is a specified matrix, and `(z, b) is a convex loss function in terms of z. The above
formulation include many formulations as special cases, e.g., the standard LASSO where A = I ∈
Rd×d [26], fused LASSO that penalizes the `1 norm of both the coefficients and their successive
differences [27], graph-guided fused LASSO (GGLASSO) where A = F ∈ Rm×d encodes some
graph information about features [12], and sparse graph-guided fused LASSO (S-GGLASSO) where
‖Ax‖1 = δ2‖x‖1 + δ1‖Fx‖1 [21].

Let us first discuss the local sharpness parameter of generalized lasso with different loss
functions. For the loss function, let us first consider piecewise linear loss function such as
hinge loss `(z, b) = max(0, 1 − bz), absolute loss `(z, b) = |z − b| and ε-insensitive loss
`(z, b) = max(|z − b| − ε, 0). Then the objective is a polyhedral function. According to the
results in [32], the local sharpness parameter is θ = 1. It then implies that both LA-ADMM and
LA-SADMM enjoy linear convergence results for solving the problem (13) with a piecewise linear
loss function. To the best of our knowledge, these are the first linear convergence results of ADMM
without smoothness and strong convexity conditions. One can also consider piecewise quadratic loss
such as square loss `(z, b) = (z − b)2 for b ∈ R and squared hinge loss `(z, b) = max(0, 1− bz)2

for b ∈ {1,−1}. According to [14], the problem with convex piecewise quadratic loss has a local
sharpness parameter θ = 1/2, implying Õ(1/

√
ε) and Õ(1/ε) for LA-ADMM and LA-SADMM.
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Figure 1: Comparison of different algorithms for solving different tasks. RR + LR represents robust
regression with a low rank regularizer. LRR represents low-rank representation.

For more examples with different values of θ, we refer readers to [32, 30, 29, 17].

SVM Classification with GGLASSO and S-GGLASSO Regularizers To generate the A
matrix, we first need to construct a dependency graph of features. We follow [21] to generate a
dependency graph by sparse inverse covariance selection [4]. Specifically, we get the estimator
of the inverse covariance matrix denoted by Σ̂−1 via sparse inverse covariance estimation with
the graphical lasso [4]. For each nonzero entry Σ̂−1

ij , where i, j ∈ {1, . . . , d}, i 6= j, an edge
between i and j is created. If we denote by G ≡ {V, E} the resulting graph, where V is a set of
d vertices, which correspond to d features in the data, and E = {e1, . . . , em} denotes the set of
m edges between elements of V , where ei consists of a tuple of two elements, then the k-th row
of A has two non-zero elements corresponding to the k-th edge ek = (i, j) ∈ E with Ak,i = 1
and Ak,j = −1. We choose two medium-scale data sets from libsvm website, namely w8a data
(n = 49749, d = 300) and gisette data (n = 6000, d = 5000), to conduct the experiment. In
the process of estimating inverse covariance matrix, we choose a penalty parameter to be 0.01
that renders the percentage of non-zero elements of the A matrix to be around 3% for w8a
data and 1% for gisette data. We compare the performance of the LA-SADMM algorithm with
SADMM [23], where in SADMM we use Gτ = γI − βητA

>A � I with ητ ∝ η1/
√
τ . For

fairness, we set the same initial solution with all zero entries. We fix the value of regularization
parameters (δ in GGLASSO and δ1, δ2 in S-GGLASSO) to be 1

n , where n is the number of
samples. For SADMM, we tune both η1 and β from {10−5:1:5} . For LA-SADMM, we set the
initial step size and penalty parameter to their theoretical value in Theorem 4, and select D1 from
{100, 1000}. The values of t in LA-SADMM is set to 105 and 5× 104 for w8a and gisette, respec-
tively. The results of comparing the objective values versus the number of iterations are presented
in Figure 1 (a,b,d,e). We can see that LA-SADMM exhibits a much faster convergence than SADMM.

Robust Regression with a Low-rank Regularizer The objective function is F (X) =
λ‖X‖∗ + ‖AX − C‖1. We can form an equality constraint Y = AX − C and solve the problem
by linearized ADMM. The value of the local sharpness parameter of this problem is still an open
problem. We compare the proposed LA-ADMM, the vanilla linearized ADMM with a fixed
penalty parameter (ADMM), the linearized ADMM with self-adaptive penalty proposed in [15]
(ADMM-AP), and the linearized ADMM with residual balancing in [10, 2] (ADMM-RB). We
construct a synthetic data where A ∈ R1000×100 is generated following a Gaussian distribution with
mean 0 and standard deviation 1. To construct C ∈ R1000×50, we first generate X ∈ R100×50 and

8



retain only its top 20 components denoted by X̂ and then let C = AX̂ + ε, where ε is a Gaussian
noise matrix with mean zero and standard deviation 0.01. We set λ = 100. For the vanilla linearized
ADMM, we try different penalty parameters from {10−3:1:3} and report the best performance
(using β = 0.01) and worst performance (using β = 0.001). To demonstrate the capability of
adaptive ADMM, we choose β = 0.001 as the initial step size for LA-ADMM and ADMM-AP.
Other parameters of ADMM-AP is the same as suggested in the original paper. For LA-ADMM, we
implement its restarting variant (Algorithm 5), and start with the number of inner iterations t = 2 and
increase its value by a factor 2 after 10 stages, and also increase the value of β by 10 times after each
stage. The results are reported in Figure 1 (c), from which we can see that LA-ADMM performs
comparably with ADMM with the best penalty parameter and also better than ADMM-AP. We also
include the results in terms of running time in the supplement.

Low-rank Representation [16] The objective function is F (X) = λ‖X‖∗ + ‖AX −A‖2,1, where
A ∈ Rn×d is a data matrix. We used the shape image 3 and set λ = 10. For the vanilla linearized
ADMM, we try different penalty parameters from {10−3:1:3} and report the best performance (using
β = 0.1) and worst performance (using β = 0.01). To demonstrate the capability of adaptive
ADMM, we choose β = 0.01 as the initial step size for LA-ADMM and ADMM-AP. Other
parameters of ADMM-AP is the same as suggested in the original paper. For LA-ADMM, we
start with the number of inner iterations t = 20 and increase its value by a factor 2 after 2 stages,
and also increase the value of β by 2 times after each stage. The results are reported in Figure 1
(f), from which we can see that LA-ADMM performs comparably with ADMM with the best
penalty parameter and also better than ADMM-AP. We can see from the figure that the results of
ADMM-worst and ADMM-AP are quite similar. We also include the results in terms of running time
in the supplement.

7 Conclusion

In this paper, we have presented a new theory of (linearized) ADMM for both deterministic and
stochastic optimization with adaptive penalty parameters. The new adaptive scheme is different
from previous self-adaptive schemes and is adaptive to the local sharpness of the problem. We
have established faster convergence of the proposed algorithms of ADMM with penalty parameters
adaptive to the local sharpness parameter. Experimental results have demonstrated the superior
performance of the proposed stochastic and deterministic adaptive ADMM.
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