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Abstract

Error bound, an inherent property of an optimization problem, has recently revived
in the development of algorithms with improved global convergence without strong
convexity. The most studied error bound is the quadratic error bound, which
generalizes strong convexity and is satisfied by a large family of machine learning
problems. Quadratic error bound have been leveraged to achieve linear convergence
in many first-order methods including the stochastic variance reduced gradient
(SVRG) method, which is one of the most important stochastic optimization
methods in machine learning. However, the studies along this direction face the
critical issue that the algorithms must depend on an unknown growth parameter (a
generalization of strong convexity modulus) in the error bound. This parameter is
difficult to estimate exactly and the algorithms choosing this parameter heuristically
do not have theoretical convergence guarantee. To address this issue, we propose
novel SVRG methods that automatically search for this unknown parameter on the
fly of optimization while still obtain almost the same convergence rate as when this
parameter is known. We also analyze the convergence property of SVRG methods
under Hölderian error bound, which generalizes the quadratic error bound.

1 Introduction

Finite-sum optimization problems have broad applications in machine learning, including regres-
sion by minimizing the (regularized) empirical square losses and classification by minimizing the
(regularized) empirical logistic losses. In this paper, we consider the following finite-sum problem:

min
x∈Ω

F (x) ,
1

n

n∑
i=1

fi(x) + Ψ(x), (1)

where fi(x) is a continuously differential convex function whose gradient is Lipschitz continuous
and Ψ(x) is a proper, lower-semicontinuous convex function [24]. Traditional proximal gradient (PG)
methods or accelerated proximal gradient (APG) methods for solving (1) become prohibited when
the number of components n is very large, which has spurred many studies on developing stochastic
optimization algorithms with fast convergence [4, 8, 25, 1].

An important milestone among several others is the stochastic variance reduced gradient (SVRG)
method [8] and its proximal variant [26]. Under the strong convexity of the objective function F (x),
linear convergence of SVRG and its proximal variant has been established. Many variations of SVRG
have also been proposed [2, 1]. However, the key assumption of strong convexity limits the power of
SVRG for many interesting problems in machine learning without strong convexity. For example, in
regression with high-dimensional data one is usually interested in solving the least-squares regression
with an `1 norm regularization or constraint (known as the LASSO-type problem). A common
practice for solving non-strongly convex finite-sum problems by SVRG is to add a small strongly
convex regularizer (e.g., λ

2 ‖x‖
2
2) [26]. Recently, a variant of SVRG (named SVRG++ [2]) was
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designed that can cope with non-strongly convex problems without adding the strongly convex
term. However, these approaches only have sublinear convergence (e.g., requiring a O(1/ε) iteration
complexity to achieve an ε-optimal solution).

Promisingly, recent studies on optimization showed that leveraging the quadratic error bound (QEB)
condition can open a new door to the linear convergence without strong convexity [9, 20, 6, 30, 5, 3].
The problem (1) obeys the QEB condition if the following holds:

‖x− x∗‖2 ≤ c(F (x)− F (x∗))
1/2,∀x ∈ Ω, (2)

where x∗ denotes the closest optimal solution to x and Ω is usually a compact set. Indeed, the
aforementioned LASSO-type problems satisfy the QEB condition. It is worth mentioning that the
above condition (or similar conditions) has been explored extensively and has different names in
the literature, e.g., the second-order growth condition, the weak strong convexity [20], essential
strong convexity [13], restricted strong convexity [31], optimal strong convexity [13], semi-strong
convexity [6]. Interestingly, [6, 9] have showed that SVRG can enjoy a linear convergence under the
QEB condition. However, the issue is that SVRG requires to know the parameter c (analogous to the
strong convexity parameter) in the QEB for setting the number of iterations of inner loops, which is
usually unknown and difficult to estimate. A naive trick for setting the number of iterations of inner
loops to a certain multiplicative factor (e.g., 2) of the number of components n is usually sub-optimal
and worrisome because it may not be large enough for bad conditioned problems or it could be too
large for good conditioned problems. In the former case, the algorithm may not converge as the
theory indicates and in the latter case, too many iterations may be wasted for inner loops.

To address this issue, we develop a new variant of SVRG that embeds an efficient automatic search
step for c into the optimization. The challenge for developing such an adaptive variant of SVRG is
that one needs to develop an appropriate machinery to check whether the current value of c is large
enough. One might be reminded of some restarting procedure for searching the unknown strong
convexity parameter in APG methods [21, 11]. However, there are several differences that make
the development of such a search scheme much more daunting for SVRG than for APG. The first
difference is that, although SVRG has a lower per-iteration cost than APG, it also makes smaller
progress towards the optimality after each iteration, which provides less information on the correctness
of the current c. The second difference lies at that the SVRG is inherently stochastic, making the
analysis for bounding the number of search steps much more difficult. To tackle this challenge, we
propose to perform the proximal gradient updates occasionally at the reference points in SVRG where
the full gradient is naturally computed. The normal of the proximal gradient provides a probabilistic
“certificate" for checking whether the value of c is large enough. We then provide a novel analysis to
bound the expected number of search steps with a consideration that the probabilistic “certificate"
might fail with some probability. The final result shows that the new variant of SVRG enjoys a linear
convergence under the QEB condition with unknown c and the corresponding complexity is only
worse by a logarithmic factor than that in the setting where the parameter c is assumed to be known.

Besides the QEB condition, we also consider more general error bound conditions (aka the Hölderian
error bound (HEB) conditions [3]) whose definition is given below, and develop adaptive variants of
SVRG under the HEB condition with θ ∈ (0, 1/2) to enjoy intermediate faster convergence rates
than SVRG under only the smoothness assumption (e.g, SVRG++ [2]). It turns out that the adaptive
variants of SVRG under HEB with θ < 1/2 are simpler than that under the QEB.

Definition 1 (Hölderian error bound (HEB)). Problem (1) is said to satisfy a Hölderian error bound
condition on a compact set Ω if there exist θ ∈ (0, 1/2] and c > 0 such that for any x ∈ Ω

‖x− x∗‖2 ≤ c(F (x)− F∗)θ, (3)

where x∗ denotes the closest optimal solution to x.

It is notable that the above inequality can always hold for θ = 0 on a compact set Ω. Therefore the
discussion in the paper regarding the HEB condition also applies to the case θ = 0. In addition, if
a HEB condition with θ ∈ (1/2, 1] holds, we can always reduce it to the QEB condition provided
that F (x)− F∗ is bounded over Ω. However, we are not aware of any interesting examples of (1) for
such cases. We defer several examples satisfying the HEB conditions with explicit θ ∈ (0, 1/2] in
machine learning to Section 5. We refer the reader to [29, 28, 27, 14] for more examples.
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2 Related work

The use of error bound conditions in optimization for deriving fast convergence dates back to [15, 16,
17], where the (local) error bound condition bounds the distance of a point in the local neighborhood
of the optimal solution to the optimal set by a multiple of the norm of the proximal gradient at the
point. Based on their local error bound condition, they have derived local linear convergence for
descent methods (e.g., proximal gradient methods). Several recent works have established the same
local error bound conditions for several interesting problems in machine learning [7, 32, 33].

Hölderian error bound (HEB) conditions have been studied extensively in variational analysis [10]
and recently revived in optimization for developing fast convergence of optimization algorithms.
Many studies have leveraged the QEB condition in place of strong convexity assumption to develop
fast convergence (e.g., linear convergence) of many optimization algorithms (e.g., the gradient
method [3], the proximal gradient method [5], the accelerated gradient method [20], coordinate
descent methods [30], randomized coordinate descent methods [9, 18], subgradient methods [29, 27],
primal-dual style of methods [28], and etc.). This work is closely related to several recent studies that
have shown that SVRG methods can also enjoy linear convergence for finite-sum (composite) smooth
optimization problems under the QEB condition [6, 9, 12]. However, these approach all require
knowing the growth parameter in the QEB condition, which is unknown in many practical problems.
It is worth mentioning that several recent studies have also noticed the similar issue in SVRG-type
of methods that the strong convexity constant is unknown and suggested some practical heuristics
for either stopping the inner iterations early or restarting the algorithm [2, 22, 19]. Nonetheless, no
theoretical convergence guarantee is provided for the suggested heuristics.

Our work is also related to studies that focus on searching for unknown strong convexity parameter
in accelerated proximal gradient (APG) methods [21, 11] but with striking differences as mentioned
before. Recently, Liu & Yang [14] considered the HEB for composite smooth optimization problems
and developed an adaptive restarting accelerated gradient method without knowing the c constant in
the HEB. As we argued before, their analysis can not be trivially extended to SVRG.

3 SVRG under the HEB condition in the oracle setting

In this section, we will present SVRG methods under the HEB condition in the oracle setting
assuming that the c parameter is given. We first give some notations. Denote by Li the smoothness
constant of fi, i.e., for all x, y ∈ Ω fi(x) − fi(y) ≤ 〈∇fi(y), x − y〉 + Li

2 ‖x − y‖
2
2. It implies

that f(x) , 1
n

∑n
i=1 fi(x) is also continuously differential convex function whose gradient is Lf -

Lipschitz continuous, where Lf ≤ 1
n

∑n
i=1 Li. For simplicity, we can take Lf = 1

n

∑n
i=1 Li. In the

sequel, we let L , maxi Li and assume that it is given or can be estimated for the problem. Denote
by Ω∗ the optimal set of the problem (1), and by F∗ = minx∈Ω F (x). The detailed steps of SVRG
under the HEB condition are presented in Algorithm 1. The formal guarantee of SVRGHEB is given
in the following theorem.
Theorem 2. Suppose problem (1) satisfies the HEB condition with θ ∈ (0, 1/2] and F (x0)−F∗ ≤ ε0,
where x0 is an initial solution. Let η = 1/(36L), and T1 ≥ 81Lc2 (1/ε0)

1−2θ. Algorithm 1 ensures

E[F (x̄(R))− F∗] ≤ (1/2)
R
ε0. (4)

In particular, by running Algorithm 1 with R = dlog2
ε0
ε e, we have E[F (x̄(R)) − F∗] ≤ ε, and

the computational complexity for achieving an ε-optimal solution in expectation is O(n log(ε0/ε) +
Lc2 max{ 1

ε1−2θ , log(ε0/ε)}).

Remark: We make several remarks about the Algorithm 1 and the results in Theorem 2. First, the
constant factors in η and T1 should not be treated literally, because we have made no effort to optimize
them. Second, when θ = 1/2 (i.e, the QEB condition holds), the Algorithm 1 reduces to the standard
SVRG method under strong convexity, and the iteration complexity becomesO((n+Lc2) log(ε0/ε)),
which is the same as that of the standard SVRG with Lc2 mimicking the condition number of the
problem. Third, when θ = 0 (i.e., with only the smoothness assumption), the Algorithm 1 reduces
to SVRG++ [2] with one difference, where in SVRGHEB the initial point and the reference point
for each outer loop are the same but are different in SVRG++, and the iteration complexity of
SVRGHEB becomes O(n log(ε0/ε)+ Lc2

ε ) that is similar to that of SVRG++. Fourth, for intermediate
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Algorithm 1 SVRG method under HEB (SVRGHEB(x0, T1, R, θ))
1: Input: x0 ∈ Ω, the number of inner initial iterations T1, and the number of outer loops R.
2: x̄(0) = x0

3: for r = 1, 2, . . . , R do
4: ḡr = ∇f(x̄(r−1)), x(r)

0 = x̄(r−1)

5: for t = 1, 2, . . . , Tr do
6: Choose it ∈ {1, . . . , n} uniformly at random.
7: g

(r)
t = ∇fit(x

(r)
t−1)−∇fit(x̄(r−1)) + ḡr.

8: x
(r)
t = arg minx∈Ω〈g(r)

t , x− x(r)
t−1〉+ 1

2η‖x− x
(r)
t−1‖22 + Ψ(x).

9: end for
10: x̄(r) = 1

Tr

∑Tr
t=1 x

(r)
t

11: Tr+1 = 21−2θTr
12: end for
13: Output: x̄(R)

Algorithm 2 SVRG method under HEB with Restarting: SVRGHEB-RS

1: Input: x(0) ∈ Ω, a small value c0 > 0, and θ ∈ (0, 1/2).

2: Initialization: T (1)
1 = 81Lc20 (1/ε0)

1−2θ

3: for s = 1, 2, . . . , S do
4: x(s)=SVRGHEB (x(s−1), T (s)

1 , R, θ)
5: T

(s+1)
1 = 21−2θT

(s)
1

6: end for

θ ∈ (0, 1/2) we can obtain faster convergence than SVRG++. Lastly, note that the number of
iterations for each outer loop depends on the c parameter in the HEB condition. The proof the
Theorem 2 is simply built on previous analysis of SVRG and is deferred to the supplement.

4 Adaptive SVRG under the HEB condition in the dark setting

In this section, we will present adaptive variants of SVRGHEB that can be run in the dark setting, i.e,
without assuming c is known. We first present the variant for θ < 1/2, which is simple and can help
us understand the difficulty for θ = 1/2.

4.1 Adaptive SVRG for θ ∈ (0, 1/2)

An issue of SVRGHEB is that when c is unknown the initial number of iterations T1 in Algorithm 1
is difficult to estimate . A small value of T1 may not guarantee SVRGHEB converges as Theorem 2
indicates. To address this issue, we can use the restarting trick, i.e, restarting SVRGHEB with an
increasing sequences of T1. The steps are shown in Algorithm 2. We can start with a small value of
c0, which is not necessarily larger than c. If c0 is larger than c, the first call of SVRGHEB will yield
an ε-optimal solution as Theorem 2 indicates. Below, we assume that c0 ≤ c.
Theorem 3. Suppose problem (1) satisfies the HEB with θ ∈ (0, 1/2) and F (x0)− F∗ ≤ ε0, where
x0 is an initial solution. Let c0 ≤ c, ε ≤ ε0

2 , R = dlog2
ε0
ε e and T (1)

1 = 81Lc20 (1/ε0)
1−2θ. Then

with at most a total number of S =
⌈

1
1
2−θ

log2

(
c
c0

)⌉
+ 1 calls of SVRGHEB in Algorithm 2, we find

a solution x(S) such that E[F (x(S)) − F∗] ≤ ε. The computaional complexity of SVRGHEB-RS for

obtaining such an ε-optimal solution is O
(
n log(ε0/ε) log(c/c0) + Lc2

ε1−2θ

)
.

Remark: The proof is in the supplement. We can see that Algorithm 2 cannot be applied to θ = 1/2,
which gives a constant sequence of T (s)

1 and therefore cannot provide any convergence guarantee
for a small value of c0 < c. We have to develop a different variant for tackling θ = 1/2. A minor
point of worth mentioning is that if necessary we can stop Algorithm 2 appropriately by performing
a proximal gradient update at x(s) (whose full gradient will be computed for the next stage) and
checking if the proximal gradient’s Euclidean norm square is less than a predefined level (c.f. (7)).
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Algorithm 3 SVRG method under QEB with Restarting and Search: SVRGQEB-RS

1: Input: x̃(0) ∈ Ω, an initial value c0 > 0, ε > 0, ρ = 1/ log(1/ε) and ϑ ∈ (0, 1).
2: x̄(0) = arg minx∈Ω〈∇f(x̃0), x− x̃0〉+ L

2 ‖x− x̃
0‖22 + Ψ(x), s = 0

3: while ‖x̄(s) − x̃(s)‖22 > ε do
4: Set Rs and Ts = d81Lc2se as in Lemma 2
5: x̃(s+1)=SVRGHEB(x̄(s), Ts, Rs, 0.5)
6: x̄(s+1) = arg minx∈Ω〈∇f(x̃(s+1)), x− x̃(s+1)〉+ L

2 ‖x− x̃
(s+1)‖22 + Ψ(x)

7: cs+1 = cs
8: if ‖x̄(s+1) − x̃(s+1)‖2 ≥ ϑ‖x̄(s) − x̃(s)‖2 then
9: cs+1 =

√
2cs, x̄(s+1) = x̄(s), x̃(s+1) = x̃(s)

10: end if
11: s = s+ 1
12: end while
13: Output: x̄(s)

4.2 Adaptive SVRG for θ = 1/2

In light of the value of T1 in Theorem 2 for θ = 1/2, i.e., T1 = d81Lc2e, one might consider to start
with a small value for c and then increase its value by a constant factor at certain points in order to
increase the value of T1. But the challenge is to decide when we should increase the value of c. If
one follows a similar procedure as in Algorithm 2, we may end up with a worse iteration complexity.
To tackle this challenge, we need to develop an appropriate machinery to check whether the value of
c is already large enough for SVRG to decrease the objective value. However, we cannot afford the
cost for computing the objective value due to large n. To this end, we develop a “certificate” that can
be easily verified and can act as signal for a sufficient decrease in the objective value. The developed
certificate is motivated by a property of proximal gradient update under the QEB as shown in (5).
Lemma 1. Let x̄ = arg minx∈Ω〈∇f(x̃), x−x̃〉+ L

2 ‖x−x̃‖
2
2 +Ψ(x). Then under the QEB condition

of the problem (1), we have
F (x̄)− F∗ ≤ (L+ Lf )2c2‖x̄− x̃‖22. (5)

The above lemma indicates that we can perform a proximal gradient update at a point x̃ and use
‖x̄ − x̃‖2 as a gauge for monitoring the decrease in the objective value. However, the proximal
gradient update is too expensive to compute due to the computation of full gradient ∇f(x̃). Luckily,
SVRG allows to compute the full gradient at a small number of reference points. We propose to
leverage these full gradients to conduct the proximal gradient updates and develop the certificate for
searching the value of c. The detailed steps of the proposed algorithm are presented in Algorithm 3
to which we refer as SVRGQEB-RS. Similar to SVRGHEB-RS, SVRGQEB-RS also calls SVRGHEB for
multiple stages. We conduct the proximal gradient update at the returned solution of each SVRGHEB,
which also serves as the initial solution and the initial reference point for the next stage of SVRGHEB

when our check in Step 7 fails. At each stage, at most Rs + 1 full gradients are computed, where
Rs is a logarithmic number as revealed later. Step 7 - Step 11 in Algorithm 3 are considered as our
search step for searching the value of c. We will show that, if cs is larger than c, the condition in Step
7 is true with small probability. This can be seen from the following lemma.
Lemma 2. Suppose problem (1) satisfies the QEB condition. Let G0 ⊆ G1 . . . ⊆ Gs . . . be a filtration
with the sigma algebra Gs generated by all random events before line 4 of stage s of Algorithm 3.
Let η = 1

36L , Ts = d81Lc2se, Rs =
⌈
log2

(
2c2s(L+Lf )2

ϑ2ρL

)⌉
. Then for any ϑ ∈ (0, 1), we have

Pr
(
‖x̄(s+1) − x̃(s+1)‖2 ≥ ϑ‖x̄(s) − x̃(s)‖2

∣∣∣Gs, cs ≥ c) ≤ ρ.

Proof. By Lemma 1, we have F (x̄(s)) − F∗ ≤ (L+ Lf )
2
c2‖x̄(s) − x̃(s)‖22 for all s. Below we

consider stages such that cs ≥ c. Following Theorem 2 and the above inequality, when Ts =
d81Lc2se ≥ d81Lc2e, we have

E[F (x̃(s+1))− F∗|Gs] ≤ 0.5Rs(F (x̄(s))− F∗) ≤ 0.5Rs (L+ Lf )
2
c2‖x̄(s) − x̃(s)‖22. (6)

Moreover, the smoothness of f(x) and the definition of x̄(s+1) imply (see Lemma 4 in the supplemnt).

F (x̃(s+1))− F∗ ≥
L

2
‖x̄(s+1) − x̃(s+1)‖22. (7)
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By combining (7) and (6) and using Markov inequality, we have

Pr

(
L

2
‖x̄(s+1) − x̃(s+1)‖22 ≥ ε|Gs

)
≤ 0.5Rs (L+ Lf )

2
c2‖x̄(s) − x̃(s)‖22
ε

.

If we choose ε = ϑ2L‖x̄(s)−x̃(s)‖2
2 in the inequality above and let Rs defined as in the assumption, the

conclusion follows.

Theorem 4. Under the same conditions as in Lemma 2 with ρ = 1/ log(1/ε), the expected computa-
tional complexity of SVRGQEB-RS for finding an ε-optimal solution is at most

O

(
(Lc2 + n) log2

(
c2(L+ Lf )2

ϑ2L
log

(
1

ε

))(
log1/ϑ2

(
‖x̄(0) − x̃(0)‖22

ε

)
+ log2

(
c

c0

)))
.

Proof. We call stage s with s = 0, 1, . . . a successful stage if ‖x̄(s+1)− x̃(s+1)‖2 < ϑ‖x̄(s)− x̃(s)‖2;
otherwise, the stage s is called an unsuccessful stage. The condition ‖x̄(s) − x̃(s)‖22 ≤ ε will hold

after S1 := log1/ϑ2

(
‖x̄(0)−x̃(0)‖22

ε

)
successful stages and then Algorithm 3 will stop. Let S denote

the total number of stages when the algorithm stops. Although stage s = S − 1 is the last stage,
for the convenience in the proof, we still define stage s = S as a post-termination stage where no
computation is performed.

In stage s with 0 ≤ s ≤ S − 1, the computational complexity is proportional to the number of
stochastic gradient computations (#SGC), which is TsRs + n(Rs + 1) ≤ (Ts + 2n)Rs. If stage s
is successful, then Rs+1 = Rs and Ts+1 = Ts. If stage s is unsuccessful, then Rs+1 = Rs + 1 ≤
2Rs and Ts+1 = 2Ts so that Rs+1Ts+1 ≤ 4RsTs. In either case, Rs and Ts are non-decreasing.

Note that, after S2 := d2 log2(c/c0)e unsuccessful stages, we will have cs ≥ c. We will consider two
scenarios: (I) the algorithm stops with cS < c and (I) the algorithm stops with cS ≥ c.
In the first scenario, we have S1 successful stages and at most S2 unsuccessfully stages so that
S ≤ S1 +S2 and cS < c. The #SGC of all stages can be bounded by (S1 +S2)(TS−1 + 2n)RS−1 ≤
O
([

log2( cc0 ) + log1/ϑ2

(
‖x̄(0)−x̃(0)‖22

ε

)]
log2

(
2c2(L+Lf )2

ϑ2ρL

)
(Lc2 + n)

)
.

Then, we consider the second scenario. Let ŝ be the first stage with cs ≥ c, i.e., ŝ := min{s|cs ≥
c}. It is easy to see that cŝ <

√
2c and there are S2 unsuccessful and less than S1 successful

stages before stage ŝ. Since the #SGC in any stage before ŝ is bounded by (Tŝ + 2n)Rŝ ≤
O
(

(Lc2 + n) log2

(
8c2(L+Lf )2

ϑ2ρL

))
, the total #SGC in stages 0, 1, . . . , ŝ−1 is at most (S1 +S2)(Tŝ+

2n)Rŝ ≤ O
([

log2( cc0 ) + log1/ϑ2

(
‖x̄(0)−x̃(0)‖22

ε

)]
log2

(
2c2(L+Lf )2

ϑ2ρL

)
(Lc2 + n)

)
.

Next, we bound the total #SGC in stages ŝ, ŝ+ 1, . . . , S. In the rest of the proof, we consider stage s
with ŝ ≤ s ≤ S. We define C(x̃, x̄, i, j, s) as the expected #SGC in stages s, s+1, . . . , S, conditioning
on that the initial state of stage s are x̃(s) = x̃ and x̄(s) = x̄ and the numbers of successful and
unsuccessful stages before stage s are i and j, respectively. Note that s = i + j. Because stage s
depends on the historical path only through the state variables (x̃, x̄, i, j, s), C(x̃, x̄, i, j, s) is well
defined and (x̃, x̄, i, j, s) transits in a Markov chain with the next state being (x̃, x̄, i, j + 1, s+ 1) if
stage s does not succeed and being (x̃+, x̄+, i+1, j, s+1) if stage s succeeds, where x̃+=SVRGHEB(x̄,
Ts, Rs, 0.5) and x̄+ = arg minx∈Ω〈∇f(x̃+), x− x̃+〉+ L

2 ‖x− x̃+‖22 + Ψ(x).

In the next, we will use backward induction to derive an upper bound for C(x̃, x̄, i, j, s) that only
depends on i and j but not on s, x̃ and x̄. In particular, we want to show that

C(x̃, x̄, i, j, s) ≤ 4j−S2(Tŝ + 2n)Rŝ
1− 4ρ

Ai, for i ≥ 0, j ≥ 0, i+ j = s, s ≥ ŝ, (8)

where Ai :=
∑S1−i−1
r=0

(
1−ρ
1−4ρ

)r
if 0 ≤ i ≤ S1 − 1 and Ai := 0 if i = S1.

We start with the base case where i = S1. By definitions, the only stage with i = S1 is the post-
termination stage, namely, stage s = S. In this case, C(x̃, x̄, i, j, s) = 0 since stage S performs no
computation. Then, (8) holds trivially with Ai = 0.
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Suppose i < S1 and (8) holds for i+ 1, i+ 2, . . . , S1. We want to prove it also holds i. We define
X = X(x̃, x̄, i, j, s) as the random variable that equals the number of unsuccessful stages from stage
s (including stage s) to the first successful stage among stages s, s+ 1, s+ 2, . . . , S−1, conditioning
on s ≥ ŝ and the state variables at the beginning of stage s are (x̃, x̄, i, j, s). Note that X = 0 means
stage s is successful. For simplicity of notation, we use Pr(·) to represent the conditional probability
Pr(·|s ≥ ŝ, (x̃, x̄, i, j, s)). Since cs ≥ cŝ ≥ c for s ≥ ŝ, we can show by Lemma 2 that 1

Pr(X = r) =
[∏r−1

t=0 Pr(X ≥ t+ 1|X ≥ t)
]

Pr(X = r|X ≥ r),
Pr(X ≥ r + 1|X ≥ r) = Pr(s+ r fails |stages s, s+ 1, . . . , s+ r − 1 fail) ≤ ρ,

Pr(X = r|X ≥ r) = Pr(s+ r succeeds |stages s, s+ 1, . . . , s+ r − 1 fail),
= 1− Pr(X ≥ r + 1|X ≥ r) ≥ 1− ρ.

(9)

When X = r, the #SGC from stage s to the end of the algorithms will be
∑r
t=0(Ts+t + 2n)Rs+t +

EC(x̃+, x̄+, i+ 1, j+ r, s+ r+ 1), where E denotes the expectation over x̃+ and x̄+ conditioning on
(x̃, x̄) and x̃+=SVRGHEB(x̄, Ts+r, Rs+r, 0.5) and x̄+ = arg minx∈Ω〈∇f(x̃+), x− x̃+〉+ L

2 ‖x−
x̃+‖22 + Ψ(x). Since stages s, s+ 1, . . . , s+ r − 1 are unsuccessful, we have

(Ts+t + 2n)Rs+t ≤ 4t(Ts + 2n)Rs ≤ 4j+t−S2(Tŝ + 2n)Rŝ for t = 0, 1, . . . , r − 1.

Because (8) holds for i+ 1 and for any x̃+ and x̄+, we have

C(x̃+, x̄+, i+ 1, j + r, s+ r + 1) ≤ 4j+r−S2(Tŝ + 2n)Rŝ

1− 4ρ
Ai+1. (10)

Based on the above inequality and the connection between C(x̃, x̄, i, j, s) and C(x̃+, x̄+, i+ 1, j +
r, s+ r + 1), we will prove that (8) holds for i, j, s.

C(x̃, x̄, i, j, s) =

∞∑
r=0

Pr(X = r)

(
r∑

t=0

(Ts+t + 2n)Rs+t + EC(x̃+, x̄+, i+ 1, j + r, s+ r + 1)

)

≤
∞∑
r=0

Pr(X = r)

 r∑
t=0

(Ts+t + 2n)Rs+t +
4j+r−S2(Tŝ + 2n)Rŝ

1− 4ρ

(
[(1− ρ)/(1− 4ρ)]S1−i−1 − 1

)
((1− ρ)/(1− 4ρ)− 1)


≤

∞∑
r=0

Pr(X = r)

(
r∑

t=0

4j+t−S2(Tŝ + 2n)Rŝ +
4j+r−S2(Tŝ + 2n)Rŝ

1− 4ρ
Ai+1

)

≤ 4j−S2(Tŝ + 2n)Rŝ

∞∑
r=0

Pr(X = r)

(
r∑

t=0

4t +
4r

1− 4ρ
Ai+1

)

= 4j−S2(Tŝ + 2n)Rŝ

∞∑
r=0

[
r−1∏
t=0

Pr(X ≥ t+ 1|X ≥ t)

]
Pr(X = r|X ≥ r)

(
4r+1 − 1

3
+

4rAi+1

1− 4ρ

)
.

Since 1− ρ ≥ 1
4 , for any a ≥ 0 and any b ≥ a+ 1, we have(

4a+1 − 1

3
+

4aAi+1

1− 4ρ

)
≤ (1− ρ)

(
4a+2 − 1

3
+

4a+1Ai+1

1− 4ρ

)
≤ Pr(X = a+ 1|X ≥ a+ 1)

(
4a+2 − 1

3
+

4a+1Ai+1

1− 4ρ

)
≤

b∑
r=a+1

[
r−1∏

t=a+1

Pr(X ≥ t+ 1|X ≥ t)

]
Pr(X = r|X ≥ r)

(
4r+1 − 1

3
+

4rAi+1

1− 4ρ

)
:= Db

a,

which implies

Db
a−1 :=

b∑
r=a

[
r−1∏
t=a

Pr(X ≥ t+ 1|X ≥ t)

]
Pr(X = r|X ≥ r)

(
4r+1 − 1

3
+

4rAi+1

1− 4ρ

)
= Pr(X = a|X ≥ a)

(
4a+1 − 1

3
+

4aAi+1

1− 4ρ

)
+ Pr(X ≥ a+ 1|X ≥ a)Db

a

≤ (1− ρ)

(
4a+1 − 1

3
+

4aAi+1

1− 4ρ

)
+ ρDb

a.

1We follow the convention that
∏j

i = 1 if j < i.
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Applying this inequality for a = 0, 1, . . . , b− 1 and the fact Dbb−1 ≤ 4b+1−1
3 + 4bAi+1

1−4ρ gives

Db
−1 ≤ (1− ρ)

b−1∑
r=0

ρr
(

4r+1 − 1

3
+

4rAi+1

1− 4ρ

)
+ ρb

(
4b+1 − 1

3
+

4bAi+1

1− 4ρ

)
.

Since 4ρ < 1, letting b in the inequality above increase to infinity gives

C(x̃, x̄, i, j, s) ≤ 4j−S2(Tŝ + 2n)Rŝ(1− ρ)

∞∑
r=0

ρr
(

4r+1 − 1

3
+

4rAi+1

1− 4ρ

)
= 4j−S2(Tŝ + 2n)Rŝ

(
1

1− 4ρ
+
Ai+1(1− ρ)

(1− 4ρ)2

)
4j−S2(Tŝ + 2n)RŝAi

1− 4ρ
,

which is (8). Then by induction, (8) holds for any state (x̃, x̄, i, j, s) with s ≥ ŝ. At the moment
when the algorithm enters stage ŝ, we must have j = S2 and i = ŝ− S2. By (8) and the facts that

ŝ ≥ S2 and that Ai =
∑S1−i−1
r=0

(
1−ρ
1−4ρ

)r
≤ (S1 + S2 − ŝ)

(
1−ρ
1−4ρ

)S1+S2−ŝ
, the expected #SGC

from stage ŝ to the end of algorithm is

C(x̃, x̄, ŝ− S2, S2, ŝ) ≤ (Tŝ + 2n)Rŝ

1− 4ρ
(S1 + S2 − ŝ)

(
1− ρ
1− 4ρ

)S1+S2−ŝ

≤ O

(
(Lc2 + n) log2

(
8c2(L+ Lf )2

ϑ2ρL

)
S1

(
1− ρ
1− 4ρ

)S1
)
.

In light of the value of ρ, i.e., ρ = 1
log(1/ε) , we have

(
1−ρ
1−4ρ

)S1

=
(
‖x̄(0)−x̃(0)‖22

ε

) log( 1−ρ
1−4ρ )

log 1/ϑ2 ≤(
‖x̄(0)−x̃(0)‖2

ε

) 3ρ
(1−4ρ) log 1/ϑ

= O
((

1
ε

)3ρ) ≤ O(1). Therefore, by adding the #SGC be-
fore and after the ŝ stages in the second scenario, we have the expected total #SGC is
O
((

log
(
c
c0

)
+ log

(
‖x̄(0)−x̃(0)‖22

ε

))
log
(
c2(L+Lf )2

ρL

)
(Lc2 + n)

)
.

5 Applications and Experiments

In this section, we consider some applications in machine learning and present some experimental
results. We will consider finite-sum problems in machine learning where fi(x) = `(x>ai, bi)
denotes a loss function on an observed training feature and label pair (ai, bi), and Ψ(x) denotes a
regularization on the model x. Let us first consider some examples of loss functions and regularizers
that satisfy the QEB condition. More examples can be found in [29, 28, 27, 14].

Piecewise convex quadratic (PCQ) problems. According to the global error bound of piecewise
convex polynomials by Li [10], PCQ problems satisfy the QEB condition. Examples of such problems
include empirical square loss, squared hinge loss or Huber loss minimization with `1 norm, `∞ norm
or `1,∞ norm regularization or constraint.

A family of structured smooth composite functions. This family include functions of the form
F (x) = h(Ax) + Ψ(x), where Ψ(x) is a polyhedral function or an indicator function of a polyhedral
set and h(·) is a smooth and strongly convex function on any compact set. Accoding to studies
in [6, 20], the QEB holds on any compact set or the involved polyhedral set. Examples of interesting
loss functions include the aforementioned square loss and the logisitc loss as well.

For examples satisfying the HEB condition with intermediate values of θ ∈ (0, 1/2), we can
consider `1 constrained `p norm regression, where the objective f(x) = 1/n

∑n
i=1(x>ai− bi)p with

p ∈ 2N+ [23]. According to the reasoning in [14], the HEB condition holds with θ = 1/p.

Before presenting the experimental results, we would like to remark that in many regularized machine
learning formulations, no constraint in a compact domain x ∈ Ω is included. Nevertheless, we can
explicitly add a constraint Ψ(x) ≤ B into the problem to ensure that intermediate solutions generated
by the proposed algorithms always stay in a compact set, where B can be set to a large value without
affecting the optimal solutions. The proximal mapping of Ψ(x) with such an explicit constraint can
be efficiently handled by combining the proximal mapping and a binary search for the Lagrangian
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Figure 1: Comparison of different algorithms for solving different problems on different datasets.

multiplier. In practice, as long as B is sufficiently large, the constraint remains inactive and the
computational cost remains the same.

Next, we conduct some experiments to demostrate the effectiveness of the proposed algorithms
on several tasks, including `1 regularized squared hinge loss minimization, `1 regularized logistic
loss minimization for linear classification problems; and `1 constrained `p norm regression, `1
regularized square loss minimization and `1 regularized Huber loss minimization for linear regression
problems. We use three datasets from libsvm website: Adult (n = 32561, d = 123), E2006-tfidf
(n = 16087, d = 150360), and YearPredictionMSD (n = 51630, d = 90). Note that we use the
testing set of YearPredictionMSD data for our experiment because some baselines need a lot of
time to converge on the large training set. We set the regularization parameter of `1 norm and the
upper bound of `1 constraint to be 10−4 and 100, respectively. In each plot, the difference between
objective value and optimum is presented in log scale.

Our first experiment is to justify the proposed SVRGQEB-RS algorithm by comparing it with SVRGHEB

with different estimations of c (corresponding to the different initial values of T1). We try four
different values of T1 ∈ {1000, 2000, 8000, 2n}. The result is plotted in the top left of Figure 1.
We can see that SVRGHEB with some underestimated values of T1 (e.g, 1000, 2000) converge very
slowly. However, the performance of SVRGQEB-RS is not affected too much by the initial value of T1,
which is consistent with our theory showing the log dependence on the initial value of c. Moreover,
SVRGQEB-RS with different values of T1 perform always better than their counterparts of SVRGHEB.

Then we compare SVRGQEB-RS and SVRGHEB-RS to other baselines for solving different problems
on different data sets. We choose SAGA, SVRG++ as the baselines. We also notice that a heuristic
variant of SVRG++ was suggested in [2] where epoch length is automatically determined based on the
change in the variance of gradient estimators between two consecutive epochs. However, according
to our experiments we find that this heuristic automatic strategy cannot always terminate one epoch
because their suggested criterion cannot be met. This is also confirmed by our communication
with the authors of SVRG++. To make it work, we manually add an upper bound constraint of
each epoch length equal to 2n following the suggestion in [8]. The resulting baseline is denoted
by SVRG-heuristics. For all algorithms, the step size is best tuned. The initial epoch length of
SVRG++ is set to n/4 following the suggestion in [2], and the same initial epoch length is also
used in our algorithms. The comparison with these baselines are reported in remaining figures of
Figure 1. We can see that SVRGQEB-RS (resp. SVRGHEB-RS) always has superior performance, while
SVRG-heuristics sometimes performs well sometimes bad.
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