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Abstract

Kernel methods have been successfully applied to many ma-
chine learning problems. Nevertheless, since the performance
of kernel methods depends heavily on the type of kernels be-
ing used, identifying good kernels among a set of given ker-
nels is important to the success of kernel methods. A straight-
forward approach to address this problem is cross-validation
by training a separate classifier for each kernel and choos-
ing the best kernel classifier out of them. Another approach is
Multiple Kernel Learning (MKL), which aims to learn a sin-
gle kernel classifier from an optimal combination of multiple
kernels. However, both approaches suffer from a high com-
putational cost in computing the full kernel matrices and in
training, especially when the number of kernels or the num-
ber of training examples is very large. In this paper, we tackle
this problem by proposing an efficient online kernel selection
algorithm. It incrementally learns a weight for each kernel
classifier. The weight for each kernel classifier can help us to
select a good kernel among a set of given kernels. The pro-
posed approach is efficient in that (i) it is an online approach
and therefore avoids computing all the full kernel matrices
before training; (ii) it only updates a single kernel classifier
each time by a sampling technique and therefore saves time
on updating kernel classifiers with poor performance; (iii)it
has a theoretically guaranteed performance compared to the
best kernel predictor. Empirical studies on image classifica-
tion tasks demonstrate the effectiveness of the proposed ap-
proach for selecting a good kernel among a set of kernels.

Introduction
Kernel methods have attracted a significant amount of in-
terest in machine learning, computer vision, and bioinfor-
matics due to their superior empirical performance. For a
specific task in hand, many kernels can be applied based on
the special characteristics of certain objects. For example,
in image classification, various types of features can be ex-
tracted (e.g. invariant SIFT features, bag-of-word features
for images) and various types of kernels (e.g. chi-square,
RBF, etc) can be used. As a result, the performance of kernel
methods may depend on the kernel that is being used. It is
empirically observed that in image classification, chi-square
kernel is one of the most effective kernels (Zhang et al.
2007) and in text categorization, probability product kernel
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is a commonly used kernel which usually gives better per-
formance than other kernels (Jebara, Kondor, and Howard
2004). Therefore, in the absence of prior experience, it is
important to select an appropriate kernel for a specific task
for the success of the kernel methods.

A straightforward approach for kernel selection is by
cross-validation, i.e. training a separate kernel classifier for
each individual kernel on a training data set and testing it on
a separate validation data set, and then choosing the kernel
classifier that gives the best performance on the validation
data set. This approach wastes a lot of time on training, es-
pecially for those very bad kernels.

An approach to avoid training individual kernel classifier
for each kernel is by MKL, which aims to efficiently learn
a single kernel classifier from a combination of the multiple
kernels, where the combination weights are learned by min-
imizing some empirical loss on a training data. However,
MKL still suffers from a high computational cost in train-
ing, and current algorithms for MKL do not scale very well
to a large number of kernels or a large number of training
examples. In addition, both approaches need to compute all
the full kernel matrices before training.

In this work, we present an efficient online approach for
kernel selection. It incrementally learns a weight for each
kernel, which measures the relative importance of each ker-
nel classifier for prediction, and selects a good kernel based
on the weights. The proposed approach is computationally
efficient because it avoids computing all the full kernel ma-
trices and updates a single kernel classifier each time by a
sampling technique. The proposed approach also has a theo-
retic guarantee in performance for the selected kernel com-
pared to the best kernel. We refer to the proposed online
leaning approach for selecting a good kernel asOnline Ker-
nel Selection (OKS).

Related Work
The present work is closely related to model selection prob-
lem. Model selection is the task of selecting a statisti-
cal model from a set of candidate models, given training
data. Many criteria and approaches have been proposed
for model selection. Examples include AIC (Akaike 1974),
BIC (Schwarz 1978), and Mallows’ Cp (Mallows 1973). Us-
ing these criteria for model selection, one needs to train a
model for each function class, computes the value of the



chosen criterion, and then selects the model that gives the
best value. Another common practice for model selection
is by cross-validation. The problem of these approaches
is their high computational cost, i.e. one needs to learn a
model completely for all function classes even though some
classes may have very poor performance. Recently, Agarwal
et al. (Agarwal et al. 2011) proposed an algorithm for model
selection under a computational budget and proved its theo-
retical guarantee. However, it makes an explicit assumption
on the hierarchical structure of the functional classes. Inour
setting, we are facing a set of Reproducing Kernel Hilbert
Spaces (RKHS), which do not satisfy the hierarchical struc-
ture.

Our work is also related to kernel methods and kernel
learning. Kernel methods have been used extensively in
bioinformatics (Schölkopf, Guyon, and Weston 2000), ma-
chine learning (Schölkopf and Smola 2001), and computer
vision (Lampert 2009). An interesting question is to find the
best kernel among a set of kernels for a specific task. A com-
mon practice as we discussed before is by cross-validation.
MKL is another approach to avoid training a separate model
for each kernel. Many MKL algorithms have been pro-
posed (Lanckriet et al. 2004; Rakotomamonjy et al. 2008;
Xu et al. 2008; Cortes, Mohri, and Rostamizadeh 2010), to
learn an optimal combination of kernels and the correspond-
ing kernel classifier. However, these algorithms still suffer
from high computational cost of computing the full kernel
matrices and training as well.

The ideas used in the present paper draw on online learn-
ing. In online learning, one needs to update the predictor
incrementally given the examples are coming sequentially.
Staring from Perceptron algorithm (Rosenblatt 1958), many
online learning algorithms have been proposed (Crammer
et al. 2006; Freund and Schapire 1997; Auer et al. 2003).
Recently, several online MKL algorithms have been pro-
posed (Orabona, Luo, and Caputo 2010; Jin, Hoi, and Yang
2010). Our work differs from these works in that we are
not aiming to optimize multiple kernel learning in an online
fashion. Instead, we are interested in quickly finding a good
kernel among a set of kernels for prediction. Finally, we note
that the our online kernel selection algorithm for classifica-
tion (i.e. Algorithm 2) is similar to the single stochastic up-
date algorithm in (Jin, Hoi, and Yang 2010), however, our
framework (i) updates the weight vector based on exponen-
tial weighted average algorithm, and (ii) uses an unbiased
trick in updating the weight vector and the predictors, which
together allow us to derive additive (rather than multiplica-
tive) regret bound or mistake bound, and therefore to better
compare with the performance of the best kernel.

We can summarize our contributions as follows: (i) we
present a general online kernel selection algorithm for a pre-
diction task with any convex loss function; (ii) we present
an online kernel selection algorithm for classification with
hinge loss; (iii) we present a theoretical analysis of the pro-
posed algorithms for selecting a good kernel; (iv) we con-
duct empirical evaluations on the proposed online kernel se-
lection algorithms on image classification.

Online Kernel Selection
In this section, we present several online learning algorithms
for online kernel selection. We first present a general on-
line algorithm for any convex loss function, state its regret
bound, and analyze its performance in selecting the best
kernel. Then we present an algorithm for classification by
adapting the general algorithm to hinge loss.

Before jumping to detailed algorithms, we first introduce
some notations that will be used throughout the paper. We
let (xt, yt) denote thetth example with feature representa-
tion xt ∈ R

d and labelyt, and letKm = {κ1, · · · , κm}
denote the givenm kernels.Hκj

denotes the Reproducing
Kernel Hilbert Space endowed byκj , f t

j ∈ Hκj
denotes the

jth kernel predictor learned up totth trial,f t
j(xt) denotes its

evaluation on examplext, andft = (f t
1, · · · , f t

m). We use
wt = (wt

1, · · · , wt
m) ∈ R

m
+ to denote the weights for the

m kernel predictors learned up totth trial,qt = wt/
∑

j w
t
j

to denote the normalized vector, andpt ∈ R
m
+ to denote a

probability vector, i.e.
∑m

j=1 p
t
j = 1. Let ℓ(z, y) denote a

convex loss function with respect toz, and∇ℓ(z, y) denote
the (sub)gradient with respect toz. Finally, [m] denotes the
set{1, · · · ,m}, andMulti(pt) denotes multinomial distri-
bution with parameterspt.

A General Algorithm and its Regret Bound

In this section, we present an online kernel selection algo-
rithm for a general convex loss function, and state its regret
bound. The basic steps of the proposed algorithm are shown
in Algorithm 1. We explain the key steps of the algorithm in
the following:

• Step 1:It takes as input a set of reproducing kernelsKm,
and parametersδ, η, λ. δ is a smoothing parameter as ex-
plained later.η, λ are step sizes for updating the weights
wt and the kernel predictorsft.

• Step 5: In trial t, after receiving one example(xt, yt), it
samples one kernel out by following a multinomial distri-
bution parameterized bypt.

• Step 6:It updates the weight of the sampled kernel by ex-
ponential weighted average algorithm, similar to predic-
tion with expert advice (Cesa-Bianchi and Lugosi 2006).
If the sampled kernel predictor suffers a large loss on the
current example, its weight will be discounted by a large
factor. The difference between Algorithm 1 and (Cesa-
Bianchi and Lugosi 2006) is that in the exponential term,
the loss is divided by the sampling probability corre-
sponding to the sampled kernel. This trick is used to
obtain an unbiased estimate of the loss vector, which
has been used in many online learning algorithms, espe-
cially in the bandit settings (e.g. multi-armed bandit prob-
lems (Auer et al. 2003)), and is important for proving the
regret bound.

• Step 7: It updates the predictor of the sampled kernel by
gradient descent. Again, the gradient of the sampled pre-
dictor f t

it is divided by the sampling probabilityptit to
obtain an unbiased gradient vector forft.



Algorithm 1 Online Kernel Selection

1: INPUT : Km, δ ∈ (0, 1), η, λ
2: Initialization : f1 = 0,w1 = 1,p1 = 1/m
3: for t = 1, 2, . . . , T do
4: Receive an example(xt, yt)
5: Sample one kernel outit ∼Multi(pt)
6: Updatewt+1

it
= wt

it exp
(
−ηℓ(f t

it(xt), yt)/p
t
it

)

7: Updatef t+1
it

= f t
it − λ∇ℓ(f t

it(xt), yt)κit(xt, ·)/ptit
8: Updateqt = wt/

∑
j w

t
j , pt = (1− δ)qt + δ1/m

9: end for
10: OUTPUT: qT orwT

• Step 8: It updates the sampling probabilities by com-
bining the updated normalized weight vectorqt and
the uniform probability1/m, with a smoothing param-
eter δ. On one hand, the kernel predictors with small
weights, i.e. suffering large losses on the past data, will
have less chance to be sampled for future updating. On
the other hand, each kernel predictor has a chance (at
least δ/m) to be updated. This effect is similar to the
exploitation-exploration tradeoff in multi-armed bandit
algorithms (Auer et al. 2003).

The following theorem shows the expected regret bound
suffered by Algorithm 1. Its proof sketch is presented in the
appendix.

Theorem 1. Assuming the loss function is non-negative and
ℓ(f t

i (xt), yt) is bounded byL for all kernel predictors over
all trials, i.e.maxt=1,··· ,T ℓ(f t

i (xt), yt) ≤ L , its gradient is
bounded byG, i.e. ‖∇ℓ(z, y)‖ ≤ G, we have the expected
regret bound of Algorithm 1 given as follows:

E

[
T∑

t=1

m∑

i=1

qtiℓ(f
t
i (xt), yt)

]
≤ min

i∈[m]
min

f∈Hκi

T∑

t=1

ℓ(f(xt), yt)

+
‖f‖2

Hκi

2λ
+

λmTG2

2δ
+

ηmTL2

2(1− δ)
+

lnm

η

In particular, by assuming the optimal kernel predictor is
bounded and settingη, λ ∝ T−1/2, we can obtain a regret
bound in the order ofO(

√
T ), i.e.

E

T∑

t=1

m∑

i=1

qtiℓ(f
t
i (xt), yt) ≤ min

i∈[m]
f∈Hκi

T∑

t=1

ℓ(f(xt), yt) +O(
√
T )

Note that the regret is compared to not only the best ker-
nel predictorf ∈ Hκi

, but also the best function classes
amongHκi

, i ∈ [m]. And, the expected regret bound of
Algorithm 1 is in the order ofO(

√
T ), the optimal regret

bound of gradient-based online learning algorithms for gen-
eral convex function (Abernethy et al. 2009).

Let us now discuss how the normalized weight vectorqT

can help us to select a good kernel. We assume the examples
(xt, yt) are i.i.d samples, and define the expected loss of a
predictorf as

ℓ(f) = E(x,y) [ℓ(f(x), y)]

The following corollary shows that the kernel predictorfT
k

wherek ∼ Multi(qT ) has a good performance guarantee.

Corrolary 2. Under the condition in Theorem 1, and let
k ∼ Multi(qT ), then with probability1− ǫ, we have

ℓ(fT
k ) ≤ min

i∈[m]
min

f∈Hκi

ℓ(f) +O

(
1

ǫ
√
T

)

Proof. By taking expectation over(xt, yt), t = 1, · · · , T on
the two sides in the last inequality in Theorem 1, we have

E

[
T∑

t=1

m∑

i=1

qtiℓ(f
t
i )

]
≤ min

i∈[m]
min

f∈Hκi

T ℓ(f) +O(
√
T )

Let τ be random index picked from[T ], andk ∼ qτ , we
have

E[ℓ(f τ
k )] ≤ min

i∈[m]
min

f∈Hκi

ℓ(f) +O

(
1√
T

)

By Markov inequality, we have with probability1− ǫ,

ℓ(f τ
k ) ≤ min

i∈[m]
min

f∈Hκi

ℓ(f) +O

(
1

ǫ
√
T

)

By consideringT as a random index from a large set
{1, · · · , T̂}, where T̂ > T , similar to the analysis
in (Shwartz, Singer, and Srebro 2007), we could also have

ℓ(fT
k ) ≤ min

i∈[m]
min

f∈Hκi

ℓ(f) +O

(
1

ǫ
√
T

)

wherek ∼ Multi(qT ).

We note that using that last vectorqT is more preferable
thanqτ , whereτ is a random indexτ ∈ [T ], because it has
less variance by learning from more examples. Corrolary 2
provides us a way to select a good kernel. In a stochastic
way, we can sample a kernel fromMulti(qT ), or in a deter-
ministic way we can select the kernel with the largest prob-
ability in qT .

Online Kernel Selection for Classification
In this section, we present an algorithm of online kernel
selection for binary classification with a hinge loss func-
tion. The problem itself is interesting because in classifi-
cation problem, we usually consider mistake bound rather
than regret bound, and the hinge loss function allows us de-
sign more efficient algorithm than the one presented in pre-
vious section. It is also interesting to compare the mistake
bound of the proposed algorithm to that of Perceptron algo-
rithm that uses only one fixed kernel. The steps are presented
in Algorithm 2. Different from Algorithm 1, Algorithm 2
first computes whether the sampled kernel classifier makes
wrong prediction or not, indicated byztit . If the answer is
yes, i.e.ztit = 1, then it proceeds to update the weight and
the classifier for the sampled kernel, along with the sampling
probabilities; otherwise it proceeds to next example. In up-
dating the weight and the classifier, the lossℓ(f t

it
(xt), yt)

and the gradient∇ℓ(f t
it
(xt), yt) in Algorithm 1 are replaced

by the indicator variablezit . It is therefore more efficient
than Algorithm 1. The following theorem shows the mistake
bound of Algorithm 2.



Algorithm 2 Online Kernel Selection for Classification

1: INPUT : Km, δ ∈ (0, 1), η, λ
2: Initialization : f1 = 0,w1 = 1,p1 = 1/m
3: for t = 1, 2, . . . , T do
4: Receive an example(xt, yt)
5: Sample one kernel outit ∼Multi(pt)
6: Setztit = I(ytf

t
it(xt) ≤ 0)

7: Updatewt+1
it

= wt
it
exp(−ηztit/p

t
it
)

8: Updatef t+1
it

= f t
it + λytz

t
itκit(xt, ·)/ptit

9: Updateqt = wt/
∑

j w
t
j , pt = (1− δ)qt + δ1/m

10: end for
11: OUTPUT: qT orwT

Theorem 3. By running Algorithm 2 withT examples, we
have the expected number of mistakes bounded as follows:

E

[
T∑

t=1

m∑

i=1

qtiz
t
i

]
≤ min

i∈[m]
min

f∈Hκi

T∑

t=1

ℓ(f(xt), yt) +
‖f‖2

Hκi

2λ

+

(
λmT

2δ
+

ηmT

2(1− δ)
+

lnm

η

)

whereℓ(ŷ, y) = max(0, 1− yŷ).

The proof of Theorem 3 is similar to that of Theorem 1.
We omit the details due to the space limit. We next com-
pare the mistake bound in Theorem 3 to the mistake bound
of Perceptron using a single fixed kernelκi (Dekel, Shalev-
Shwartz, and Singer 2005), which is given by

MT ≤ 2 min
f∈Hκi

T∑

t=1

ℓ(f(xt), yt) +R

whereR is the bound on the norm of the optimal predictor
‖f‖2

Hκi
. We letλ, η ∝ T−1/2 in Algorithm 2, and we have

the expected mistake bound in Theorem 3 given by

E [MT ] ≤ min
i∈[m]

(
min

f∈Hκi

T∑

t=1

ℓ(f(xt), yt)

)
+O(

√
T )

We can see that the constant term in the mistake bound of
Perceptron is replaced byO(

√
T ) in the mistake bound of

Algorithm 2; however the tradeoff is that our mistake bound
compares to thebest function in thebest function space
among a set of function spaces, while Perceptron just com-
pares to the best function in afixedfunction space.

Empirical Studies
In this section, we present empirical studies to evaluate the
proposed online kernel selection algorithms. We choose two
image sets, i.e. Pascal07 and Corel5k for testingbed. We
construct three binary classification tasks on each data set,
i.e. animal vs. vehicle, animal vs. person, person vs. vehicle
on Pascal07, and sky vs. people, water vs tree, sky vs. grass
on Corel5k. These classes are the top classes (in terms of
number of examples) in the two data sets, respectively. We
use the INRIA features for both data sets, where 15 types of

feature are extracted from each image (e.g. Gist desciptor,
color histograms, etc). For more details about how to ex-
tract these features, please refer to (Guillaumin et al. 2009;
Guillaumin, Verbeek, and Schmid 2010). We construct 4
kernels (i.e. linear, polynomial of order 2, chi-square, and
Gaussian) for each type of feature, which results in 60 ker-
nels in total. We use the default training/testing splitting in
the data sets. Forbaselines, we compare to
• cross-validation approaches by running SVM and Percep-

tron for each kernel and select the one that gives the best
performance on the validation data set, to which we refer
asMuSVM andMuTron , respectively.

• a two-stage approach by first computing the alignment
between each kernel matrix with the target kernel matrix
based on the labels, and then training a kernel SVM using
the selected kernel with the largest alignment, to which
we refer asAlSVM (Cortes, Mohri, and Rostamizadeh
2010).

• a multiple kernel learning approach by Simple
MKL (Rakotomamonjy et al. 2008), to which we
refer asSIPMKL , a deterministic online multiple kernel
learning algorithm (Algorithm 1) by Jin et al. (Jin,
Hoi, and Yang 2010), to which we refer asOM-1, and
an online multiple kernel learning algorithm by Jie et
al. (Orabona, Luo, and Caputo 2010), to which we refer
asOM-2.

• a stochastic online multiple kernel learning algorithm (Al-
gorithm 3) by Jin et al. (Jin, Hoi, and Yang 2010), to
which we refer asSOM. Comparing to SOM allows us
to verify whether the proposed algorithm is better for on-
line kernel selection.

About the implementation details:
• We use LibSVM1 that is implemented in C language to

train kernel SVM. We use the SimpMKL toolbox2 for
simple multiple kernel learning. We implement OKS, Per-
ceptron, OM-1, OM-2, and SOM in Matlab.

• The parameters (e.g. the regularization parameterC in
SVM, SIPMKL, the stepsizeλ in OKS, Perceptron3, and
the discount factorβ in OM-1 and SOM) are tuned in a
range (e.g.2[−10:1:10] for C, λ, and[0.1 : 0.04 : 0.9] for β
) on a validation data set, which is a10% random sample
from the training data.

• We run OKS , SOM, and OM-2 with two epochs (i.e. two
passes over the training data). The smoothing parameter
δ of OKS is set to0.5 in the first epoch and0.2 in the
second epoch. We run both MuTron and OM-1 with one
epoch due to their high computational cost.

• The stepsizeη in OKS is set to its optimal value (e.g.η =√
2(1− δ) lnm/mT in Theorem 3). The best kernel of

OKS and SOM is selected deterministically, which gives
the largest value inqT .

1http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm/
2http://asi.insa-rouen.fr/enseignants/

˜ arakotom
3The original Perceptron used a fixed stepsize, we add a stepsize

with tunning for fair comparision.



Table 1: Performance of Algorithms on Pascal07(h: hour(s))
online batch online+batch

task Measure MuTron OM-1 OM-2 AlSVM MuSVM SIPMKL SOM-SVM OKS-SVM

RT 7.2h 4.7h 2.5h 0.56h 1.3h 53h 0.03h+0.02h 0.013h+0.02h
animal

vs vehicle
ACC 0.8502 0.8360 0.8279 0.8812 0.8818 0.8806 0.7603(±0.0732) 0.8675(±0.0155)

(n=3434) opt-K 11 13 NA 11 15 34 1,6,14,20,48 10,10,11,11,13

RT 5.5h 3.6h 2.4h 0.45h 0.9h 36h 0.02h+0.02h 0.010h+0.02h
animal

vs person ACC 0.8193 0.7783 0.8402 0.8285 0.8285 0.7435 0.7628(±0.0553) 0.8251(±0.0083)

(n=2776) opt-K 15 11 NA 11 11 10 1,13,25,36,50 10,11,13,14,16

RT 4.1h 2.7h 1.4h 0.43h 0.8h 31h 0.015h+0.01h 0.008h+0.01h
person

vs vehicle ACC 0.8773 0.7646 0.8562 0.9049 0.9064 0.8662 0.8678(±0.0332) 0.8954(±0.0098)
(n=2584) opt-K 16 15 NA 11 15 14 9,9,9,29,51 9,11,13,16,33
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Figure 1: Accuracy of the best and the worst 5 kernels on the testing data of Pascal07 (Good kernels 9∼12 and 13∼16 are
the 4 types of kernels defined on bag-of-words feature quantized from dense sift features at two layouts, respectively. Bad
kernels 45∼48 are the 4 types of kernels defined on color histogram in LAB representation. Note that the best kernel11 or 15
is chi-square kernel.)

We report the results on the two data sets of different al-
gorithms in Table 1, and 2, respectively, whereSOM-SVM
and OKS-SVM refer to the approaches by running SOM
and OKS first to select the best kernel and then running
SVM with the selected kernel, respectively. We report three
measures evaluated on different algorithms, i.e. the running
time (RT)4, the accuracy on testing data (ACC) of the re-
turned kernel classifier5, and the returned optimal kernel id
(opt-K)6. Since SOM and OKS are stochastic algorithms, we
therefore run both algorithms with 5 different random seed-
ings, and report the selected best kernel in each trial and the
averaged ACC over the 5 random trials. Note that the run-
ning time of SOM/OKS-SVM includes the running time of
SOM/OKS for selecting one kernel plus the running time of
LibSVM for training a kernel classifier using the selected
kernel. We did not report the results using the corresponding
kernel classifier for the selected kernel by OKS, since we are

4The running time includes the cross validation time for tun-
ing the parameters, and the preprocessing time for computing the
kernel matrices for MuSVM, AlSVM.

5For MuTron, AlSVM, and MuSVM, the returned kernel clas-
sifier is the selected best kernel classifier, for OM-1, OM-2 and
SIPMKL, the returned classifier is the combined kernel classifier.

6The optimal kernels for OM-1 and SIPMKL shown in the Ta-
bles are the ones that have the largest weight. OM-2 does not output
any weight vector corresponding to kernels.

using OKS for selecting a good kernel. It is worth noting that
by running OKS followed by Perceptron on the selected ker-
nel we are able to obtain a good performance, which might
be useful when training data is too huge to run batch kernel
SVM. We also plot in Figure 1, 2 the accuracy of the best and
the worst 5 kernel classifiers, which are trained by LibSVM
and selected based on their performance on the testing data,
which can be seen as the groundtruth to tell the performance
of the best and the worst 5 kernels.

From these results, we can see that OKS can quickly iden-
tify a good kernel, and the performance of OKS-SVM is
comparable to MuSVM and MKL. Compared to SOM, the
proposed OKS can select better kernels, which verifies the
important extensions we made to SOM for online kernel se-
lection.

Conclusions

In this paper, we propose online kernel selection algorithms.
The empirical studies on image classification demonstrate
the effectiveness of the proposed algorithms. In the future,
we plan to extend the work in two dimensions: in algorith-
mic dimension, we plan to derive algorithms that have high
probability bounds in online setting, and in empirical dimen-
sion, we plan to evaluate the online kernel selection algo-
rithms on more prediction tasks and data sets.



Table 2: Performance of Algorithms on Corel5k(s: second(s))
online batch online+batch

task Measure MuTron OM-1 OM-2 AlSVM MuSVM SIPMKL SOM-SVM OKS-SVM

RT 1621s 997s 767s 924s 1187s 19493s 14s+18s 9s+18s
sky

vs people ACC 0.7126 0.8563 0.8683 0.8563 0.8922 0.8503 0.7856(±0.0292) 0.8874(±0.0155)

(n=1471) opt-K 10 16 NA 43 59 14 1,7,18,37,54 9,10,11,16,39

RT 2506s 1470s 915s 785s 1458s 25124s 17s+24s 12s+24s
water
vs tree

ACC 0.7351 0.7405 0.7676 0.7784 0.8108 0.8324 0.7589(±0.0293) 0.7892(±0.0220)
(n=1572) opt-K 15 15 NA 11 16 14 6,12,41,44,52 9,11,13,15,16

RT 817s 572s 447s 493s 725s 10808s 8s+12s 8s+12s
sky

vs grass ACC 0.8200 0.6933 0.8667 0.9067 0.8867 0.8800 0.8093(±0.0678) 0.8920(±0.0098)

(n=1187) opt-K 13 11 NA 11 10 14 7,28,28,38,43 11,12,13,15,16
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Figure 2: Accuracy of the best and the worst 5 kernels on the testing data of Corel5k (Bad kernels 21∼24 and 25∼28 are the 4
types of kernels defined on bag-of-words feature quantized from Hue descriptor extracted for Harris-Laplacian interest points
at two layouts. Bad kernels 1∼4 are the 4 types of kernels defined on bag-of-words feature quantized from Hue descriptor
extracted densely. )
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Appendix

Proof of Theorem 1

The proof is combining the proof of exponential weighted
average algorithm and that of the gradient descent algo-
rithm for online learning. Let us introduce the notations
mt

i = I(it = i) andm̃t
i = mt

i/p
t
i. It is easy to see that

Et[m
t
i] = pti andEt[m̃

t
i] = 1, whereEt is taken expec-

tation on random variablesit conditioned on all previous
random variables. Following the standard analysis of expo-
nential weighted average algorithm (e.g. (Auer et al. 2003)),
we first bound

∑T
t=1 ln

Wt+1

Wt
from below and above. With

m̃t
i, we can write the updating rule for the weights and

the kernel predictors bywt+1
i = wt

ie
−ηm̃t

iℓ(fi(xt),yt), and
f t+1
i = f t

i − λ∇ℓ(f t
i (xt), yt)κi(xt, ·). The summation is

bounded from below by the updating rule ofwt,

T∑

t=1

ln
Wt+1

Wt
= ln

WT+1

W1
= ln

∑m
i=1 w

T+1
i

m

≥ lnwT+1
i − lnm = −η

T∑

t=1

m̃t
iℓ(fi(xt), yt)− lnm

To bound the summation from above by using the inequality

e−x ≤ 1− x+
1

2
x2, ∀x ≥ 0 andln(1 + x) ≤ x,

ln
Wt+1

Wt
= ln

m∑

i=1

wt
i exp(−ηm̃t

iℓ(f
t
i (xt), yt))

Wt

≤ ln

m∑

i=1

qti

(
1− ηm̃t

iℓ(f
t
i (xt), yt) +

1

2
η2(m̃t

i)
2ℓ2(f t

i (xt), yt)

)

≤ −η

m∑

i=1

qtim̃
t
iℓ(f

t
i (xt), yt) +

1

2
η2

m∑

i=1

qti(m̃
t
iℓ(f

t
i (xt), yt))

2



Then taking summation on both sides we have
T∑

t=1

ln
Wt+1

Wt
≤ −η

T∑

t=1

m∑

i=1

qtim̃
t
iℓ(f

t
i (xt), yt)

+
1

2
η2

T∑

t=1

m∑

i=1

qti(m̃
t
iℓ(f

t
i (xt), yt))

2

Combing the lower bound and upper bound we have
T∑

t=1

m∑

i=1

qtim̃
t
iℓ(f

t
i (xt), yt) ≤

T∑

t=1

m̃t
iℓ(f

t
i (xt), yt)

+
1

2
η

T∑

t=1

m∑

i=1

qti
mt

i

(pti)
2
L2 +

lnm

η

where we use upper bound|ℓ(f t
i (xt), yt)| ≤ L to bound the

second order termℓ2(f t
i (xt), yt). Then we bound the first

order termℓ(f t
i (xt), yt) by ℓ(f(xt), yt), ∀f ∈ Hκi

, i ∈ [m]
using the standard analysis of the gradient descent algorithm
(e.g. (Nesterov 2004)),

m̃t
i(ℓ(f

t
i (xt), yt)− ℓ(f(xt), yt))

≤ 〈f t
i − f, m̃t

i∇ℓ(f t
i (xt), yt)κi(xt, ·)〉

≤ 1

2λ

(
‖f t

i − f‖2 − ‖f t+1
i − f‖2 + mt

i∇ℓ2(f t
i (xt), yt)λ

2

(pti)
2

)

≤ 1

2λ

(
‖f t

i − f‖2 − ‖f t+1
i − f‖2 + mt

iG
2λ2

(pti)
2

)

By combining the above inequalities, taking expectation
over randomness, and using simple algebra we can prove
the theorem.
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