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1. Proof of Proposition 1|

Proposition 1. Let ¢ > 0 be fixed Hy = ~I,

v > maxillgille BIF(wi) - F(w.)] <

€0 and iteration number T  satisfies T >
+max; T

%max{eo(’v manA\Im T, ||2),772?=1 ||91:T,i||2}~ Algo-

rithm 1 gives a solution W such that E[F (wr) — F,] < e.

Proof. Let ¢¥o(w) = 0 and ||x||g = Vx" Hx. First, we
can see that ;11(w) > t(w) for any ¢ > 0. Define
z, = Zizl giand A, = (OF (wy) —g¢) " (wy — w). Let
1} be defined by
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Taking the summation of objective gap in all iterations, we
have
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where the last inequality uses the fact that ¢ (w) is 1-
strongly convex w.r.t || - ||y, = || - ||, and consequentially
¥y (w) is n-smooth wr.t. || - [ = || - ||H71. Thus, we have
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By repeating this process, we have
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Following the analysis in (Duchi et al., 2011), we have
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Now by the value of T >
+ i :T,i
%max { oy ma);)\Hgl T, Hz)’nzsl:l ”gl:T,i”Z}, we
have
(v + max; [|g1:7,i|2) < Ae
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Dividing by 7" on both sides and setting w = w,, following
the inequality (3) and the convexity of F'(w) we have
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Let {F; } be the filtration associated with Algorithm 1 in the
paper. Noticing that 7" is a random variable with respect to
{F:}, we cannot get rid of the last term directly. Define the
Sequence {X;}ien, as

t t

Xe= 1A= Y la - Blglwi-w.) @

where E[g;] € OF (w;). Since E [g1+1 — E[gt+1]] = 0 and
Wi = arg mel?2 na %23:1 g:) + +¢u(w), which
is measurable with respect to g1,...,g; and wy, ..., Wy,
it is easy to see {A;}+cn is a martingale difference se-
quence with respect to {F;}, e.g. E[A(|F;—1] = 0. On
the other hand, since ||g; || is upper bounded (e.g., by G),
following the statement of 7" in the theorem, 7' < N =
4 max{ (2552 62d>G?} < oo always holds. Then fol-
lowing Lemma|l|below we have that E[Xr] = 0.

Now taking the expectation we have that

Then we finish the proof. O

Lemma 1. Let {A}ien, be a martingale difference se-
quence w.rt the filtration {F;}ien, T is a stopping time
suchthat {T =t} € Fyforallt e N.If 0 <T < N < o0,
then we have
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where [(T" = n) is the indicator function. The first equation
follows from the definition of conditional expectation and
T < N, the second equation follows from the fact that
S I(T = n) = 1; the third and fifth equations follow
from the definition of stopping time ((T' = n) € F,); the
seventh and last equations follow from the definition of
martingale difference sequence; and eighth equation follows

from Theorem 5.1.6 in (Durrettl, [2010). O
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2. Proof of Theorem 1]

Theorem 1. Consider SCO (1) with a property (3)
and a given ¢ > 0. Assume Hy = ~I in Algo-
rithm 1 and v > maxg, ||g]le, F(wo) — F. <
€0 and tp is the minimum number such that t, >

2(y+max; l|lgf.,, ;ll2) d .
2 Tity i k
mmax ] 7021‘:1 ”gl:tk,iHQ . With

K = [logy(eg/€)], we have E[F (wk) — Fi] < e.

Proof of Theorem[l] We will show by induction that
E[F(wy) — F] < e £ & for k = 0,1,..., K, which
leads to our conclusion when k = K = [log(eg/€)].

The inequality holds obviously for £ = 0. Conditioned on
E[F(wg_1) — Fi] < €;_1, we will show that E[F(wy,) —
F,] < €. We will modify Proposition 1} then use it to
the k-th epoch of Algorithm 2 conditioned on randomness
in previous epoches. Let E; denotes the expectation over
all randomness before the last iteration of the k-th epoch
and Ey,1.;—1 denotes the expectation over the randomness
in the k-th epoch given the randomness before k-th epoch.
Given wy_1, we let wj,_; denote the optimal solution that
is closest to w1 []_1 According to the proof of Propostion
‘We have
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Thus
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'Since we only assume the condition (3) that does not neces-
sarily imply the uniqueness of the optimal solutions.

Then following the similar arguments in Proposition[I]} we
have
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8 2
Taking expectation over randomness in stages 1, ...,k — 1,

we have
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Therefore by induction, we have E[F(wg) — Fy] < ek
€.
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3. Proof of Theorem

Lemma 2. Consider SCO (4) with the property (3). Let
Hy = ~I in Algorithm 3 and v > maxy ||g¢t||co- For any
w € Q and its closest optimal solution w ., we have

F(srr) — F(w) < SIM1 _TWT“H2

o> (Fle] g0 (wi — w)
t=1

d
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where Wy = ZZ:; w/T.

Proof. This proof is similar to the proof of Proposition [I]
but we do not take expectation here. For completeness, we
give the proof here. Throughout the whole proof, we set
the notation g; as the stochastic gradient of f(w;) and as
a result E[g;] € 0f(w:). Let ¢¥o(w) = 0 and ||x||g =
vxT Hx. First, we can see that ;11 (w) > ;(w) for
any t > 0. Define z; = >-_, g and A, = (f(w;) —
g:) " (w; — w). Let 1} be defined by

W (9) = sup g Tx — “ohy(x) — té(x)
xeN n

Taking the summation of objective gap in all iterations, we
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have Pi(w)i

= ||H;1. Thus, we have
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1 inequality and using the fact that F'(w) = f(w) + ¢(w),
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strongly convex w.r.t || - ||y, = || - ||, and consequentially i=1
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Thus
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where the last inequality hold using Cauchy-Schwartz In-
equality and the fact that |0f(wr11)|| < G. Dividing
by T on both sides, then we finish the proof by using the
convexity of F'(w). O

Theorem 2. For a given ¢ > 0, let K = [logy(€o/€)].
Assume Hy = I and v > maxy ; ||g¥| s, F(Wo) —

F, < € and t, is the minimum number such
VAG|wF—wE
3 1 tp+1112
that t, > \/HmaX{Ak’\/a , where
2(y+max; Hglf:t 1,”2) d k
A, = max i 03 i1 97, ill2 ¢ AL

gorithm 4 guarantees that E[F (wg ) — Fi] < e.

Proof. This result is proved by revising Lemmal2to hold for
a bounded stopping time ¢, of the supermartingale sequence

Xt in @

Taking the expectation of Lemma[2] we have that
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Then following the same arguments to Proposition [T} we

have that
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T
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Similar to the induction of Theorem |1} let nx, = 04/€ /A
and the iteration number ¢, in k-th epoch to be the smallest
number satisfying following inequalities
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Thus conditioned on 1, ...,k — 1-th epoches, we have that
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Taking expectation over randomness in stages 1,...,k — 1,
we have
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BIF(wi) — Flwi )] < B | 75w - wi i3]+ 5
2e
< ZE[F(wy-1) — B + =
6 3
€h—1 | 2€g
— =€
=75 3 )2

Therefore by induction, we have E[F(wg) — Fy] < ex
€.
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4. Proof of Theorem

Theorem 3. Under the same assumptions as Theorem
and F(wo) — F. < e, where wq is an initial solu-
tion. Let \y > )\ € < %‘J K = 10g2% and t,(:) >
2(y+max; |97, ill2) d
2 ity ,i k
e {2 g5 gt e

Then with at most a total number of S = ﬂogg (%)] +1
calls of SADAGRAD and a worse-cast iteration complexity
of O(1/(Xe)), Algorithm 5 finds a solution w'S) such that
E[F(w®)) - F] <e

Proof. Since A\1/\ > 1, then F(wq) — Fi. < (A1/N)eo.

Following the proof of Theorem[I] we can show that
1 (M/Neo (M

with K = log, %‘) and t,(:) >

2(y+ illghe ill2)
)max{ vemai oy lls) gd |g’f}
€L
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k = 1,...,K. Next, since ¢ < %’ then we have
E[F(wl) - F] < (&) % = (%)e. By running
SADAGRAD from w(!), Theorem|[l]ensures that

(A2/N)eo
QK

E[F(w)) - F,]

BF(w®) - F] <

A2
== e
A
By continuing the process, with S = [log, ()] + 1, we
have

<

E[F(w®)) - F] < ({f) e<e )

The total number of iterations for the S calls of SADAGRAD
is upper bounded by

Tow =3 D47 <303 ok

s=1 k=1 s= 0 k=1
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for some C > 0. O

S K S K
1

Acknowledgement

We thank Prof. Qihe Tang from University of Iowa for his
help on the proof of Lemma 1.

References

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12
(Jul):2121-2159, 2011.

Durrett, Rick. Probability: theory and examples. Cambridge
university press, 2010.



	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

