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1. Proof of Proposition 1
Proposition 1. Let ε > 0 be fixed, H0 = γI ,
γ ≥ maxt ‖gt‖∞, E[F (w1) − F (w∗)] ≤
ε0 and iteration number T satisfies T ≥
2
ε max

{
ε0(γ+maxi ‖g1:T,i‖2 )

ηλ , η
∑d
i=1 ‖g1:T,i‖2

}
. Algo-

rithm 1 gives a solution ŵT such that E[F (ŵT )− F∗] ≤ ε.

Proof. Let ψ0(w) = 0 and ‖x‖H =
√
x>Hx. First, we

can see that ψt+1(w) ≥ ψt(w) for any t ≥ 0. Define
zt =

∑t
τ=1 gt and ∆τ = (∂F (wt)− gt)

>(wt −w). Let
ψ∗t be defined by

ψ∗t (g) = sup
x∈Ω

g>x− 1

η
ψt(x)

Taking the summation of objective gap in all iterations, we
have

T∑
t=1

(F (wt)− F (w)) ≤
T∑
t=1

∂F (wt)
>(wt −w)

=

T∑
t=1

g>t (wt −w) +

T∑
t=1

∆t

=

T∑
t=1

g>t wt −
T∑
t=1

g>t w −
1

η
ψT (w) +

1

η
ψT (w)

+

T∑
t=1

∆t

≤ 1

η
ψT (w) +

T∑
t=1

g>t wt +

T∑
t=1

∆t

+ sup
x∈Ω

{
−

T∑
t=1

g>t x−
1

η
ψT (x)

}

=
1

η
ψT (w) +

T∑
t=1

g>t wt + ψ∗T (−zT ) +

T∑
t=1

∆t

Note that

ψ∗T (−zT ) = −
T∑
t=1

g>t wT+1 −
1

η
ψT (wT+1)

≤ −
T∑
t=1

g>t wT+1 −
1

η
ψT−1(wT+1)

≤ sup
x∈Ω
−z>T x−

1

η
ψT−1(x) = ψ∗T−1(−zT )

≤ ψ∗T−1(−zT−1)− g>T∇ψ∗T−1(−zT−1) +
η

2
‖gT ‖2ψ∗T−1

where the last inequality uses the fact that ψt(w) is 1-
strongly convex w.r.t ‖ · ‖ψt = ‖ · ‖Ht and consequentially
ψ∗t (w) is η-smooth wr.t. ‖ · ‖ψ∗t = ‖ · ‖H−1

t
. Thus, we have

T∑
t=1

g>t wt + ψ∗T (−zT )

≤
T∑
t=1

g>t wt + ψ∗T−1(−zT−1)− g>T∇ψ∗T−1(−zT−1)

+
η

2
‖gT ‖2ψ∗T−1

=

T−1∑
t=1

g>t wt + ψ∗T−1(−zT−1) +
η

2
‖gT ‖2ψ∗T−1

By repeating this process, we have

T∑
t=1

g>t wt + ψ∗T (−zT )

≤ ψ∗0(−z0) +
η

2

T∑
t=1

‖gt‖2ψ∗t−1

=
η

2

T∑
t=1

‖gt‖2ψ∗t−1

Then
T∑
t=1

(F (wt)− F (w)) ≤1

η
ψT (w) +

η

2

T∑
t=1

‖gt‖2ψ∗t−1

+

T∑
t=1

∆t (1)
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Following the analysis in (Duchi et al., 2011), we have

T∑
t=1

‖gt‖2ψ∗t−1
≤ 2

d∑
i=1

‖g1:T,i‖2

Thus

T∑
t=1

(F (wt)− F (w))

≤ γ‖w −w1‖22
2η

+
(w −w1)>diag(sT )(w −w1)

2η

+ η

d∑
i=1

‖g1:T,i‖2 +

T∑
t=1

∆t

≤ γ + maxi ‖g1:T,i‖2
2η

‖w −w1‖22 + η

d∑
i=1

‖g1:T,i‖2

+

T∑
t=1

∆t

Now by the value of T ≥
2
ε max

{
ε0(γ+maxi ‖g1:T,i‖2 )

ηλ , η
∑d
i=1 ‖g1:T,i‖2

}
, we

have

(γ + maxi ‖g1:T,i‖2)

2ηT
≤ λε

4ε0

η
∑d
i=1 ‖g1:T,i‖2

T
≤ ε

2

Dividing by T on both sides and setting w = w∗, following
the inequality (3) and the convexity of F (w) we have

F (ŵ)− F∗ ≤
λε

4ε0
‖w∗ −w1‖22 +

ε

2
+

1

T

T∑
t=1

∆t

Let {Ft} be the filtration associated with Algorithm 1 in the
paper. Noticing that T is a random variable with respect to
{Ft}, we cannot get rid of the last term directly. Define the
Sequence {Xt}t∈N+

as

Xt =
1

t

t∑
i=1

∆i =
1

t

t∑
i=1

〈gi − E[gi],wi −w∗〉 (2)

where E[gi] ∈ ∂F (wi). Since E [gt+1 − E[gt+1]] = 0 and
wt+1 = arg min

w∈Ω
ηw>

(
1
t

∑t
τ=1 gτ

)
+ 1

tψt(w), which

is measurable with respect to g1, . . . ,gt and w1, . . . ,wt,
it is easy to see {∆t}t∈N is a martingale difference se-
quence with respect to {Ft}, e.g. E[∆t|Ft−1] = 0. On
the other hand, since ‖gt‖2 is upper bounded (e.g., by G),
following the statement of T in the theorem, T ≤ N =
4
ε2 max{( 2Gε0

θλ )2, θ2d2G2} < ∞ always holds. Then fol-
lowing Lemma 1 below we have that E[XT ] = 0.

Now taking the expectation we have that

E[F (ŵ)− F∗]

≤ E

[
λε

4ε0
‖w −w1‖22

]
+
ε

2
+ E

[
1

T

T∑
t=1

∆t

]
≤ ε

2ε0
E [F (w1)− F (w∗)] +

ε

2
+ 0 = ε

Then we finish the proof.

Lemma 1. Let {∆t}t∈N+ be a martingale difference se-
quence w.r.t the filtration {Ft}t∈N, T is a stopping time
such that {T = t} ∈ Ft for all t ∈ N. If 0 < T ≤ N <∞,
then we have

E

[
1

T

T∑
t=1

∆t

]
= 0.

Proof.

E

[
1

T

T∑
t=1

∆t

]
= E

[
E[

1

T

T∑
t=1

∆t|FN ]

]

= E

[ T∑
n=1

I(T = n)E[
1

T

T∑
t=1

∆t|Fn]

]

= E

[ T∑
n=1

E[
I(T = n)

T

T∑
t=1

∆t|Fn]

]

= E

[ T∑
n=1

E[
I(T = n)

n

n∑
t=1

∆t|Fn]

]

= E

[ T∑
n=1

I(T = n)

n
E[

n∑
t=1

∆t|Fn]

]

= E

[ T∑
n=1

I(T = n)

n

n∑
t=1

E[∆t|Fn]

]

= E

[ T∑
n=1

I(T = n)

n

n∑
t=1

E
[
E[∆t|Fn]

∣∣Ft−1

]]

= E

[ T∑
n=1

I(T = n)

n

n∑
t=1

E[∆t

∣∣Ft−1]

]
= 0

where I(T = n) is the indicator function. The first equation
follows from the definition of conditional expectation and
T ≤ N ; the second equation follows from the fact that∑T
n=1 I(T = n) = 1; the third and fifth equations follow

from the definition of stopping time ((T = n) ∈ Fn); the
seventh and last equations follow from the definition of
martingale difference sequence; and eighth equation follows
from Theorem 5.1.6 in (Durrett, 2010).
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2. Proof of Theorem 1
Theorem 1. Consider SCO (1) with a property (3)
and a given ε > 0. Assume H0 = γI in Algo-
rithm 1 and γ ≥ maxk,τ ‖gkτ‖∞, F (w0) − F∗ ≤
ε0 and tk is the minimum number such that tk ≥

2√
λεk

max

{
2(γ+maxi ‖gk1:tk,i‖2)

θ , θ
∑d
i=1 ‖gk1:tk,i

‖2
}

. With

K = dlog2(ε0/ε)e, we have E[F (wK)− F∗] ≤ ε.

Proof of Theorem 1. We will show by induction that
E[F (wk) − F∗] ≤ εk , ε0

2k
for k = 0, 1, . . . ,K, which

leads to our conclusion when k = K = dlog(ε0/ε)e.

The inequality holds obviously for k = 0. Conditioned on
E[F (wk−1)− F∗] ≤ εk−1, we will show that E[F (wk)−
F∗] ≤ εk. We will modify Proposition 1, then use it to
the k-th epoch of Algorithm 2 conditioned on randomness
in previous epoches. Let Ek denotes the expectation over
all randomness before the last iteration of the k-th epoch
and Ek|1:k−1 denotes the expectation over the randomness
in the k-th epoch given the randomness before k-th epoch.
Given wk−1, we let w∗k−1 denote the optimal solution that
is closest to wk−1

1. According to the proof of Propostion 1,
We have

Ek|1:k−1[F (wk)− F (w∗k−1)]

≤ Ek|1:k−1

[
γ + maxi ‖gk1:tk,i

‖2
2ηktk

‖wk−1 −w∗k−1‖22

+
ηk
∑d
i=1 ‖gk1:tk,i

‖2
tk

+

tk∑
t=1

〈E[gkt ]− gkt ,w
k
t −w∗k−1〉

]

By the value of ηk = θ
√
εk/λ and tk ≥

max

{
4(γ+maxi ‖gk1:tk,i‖2)

θ
√
λεk

,
2θ

∑d
i=1 ‖g

k
1:tk,i

‖2√
λεk

}
, we have

(γ + maxi ‖gk1:tk,i
‖2)

2ηktk
≤ λ

8

ηk
∑d
i=1 ‖gk1:tk,i

‖2
tk

≤ εk
2

Thus

Ek|1:k−1[F (wk)− F (w∗k−1)]

≤ Ek|1:k−1

[
λ

8
‖wk−1 −w∗k−1‖22 +

εk
2

+

tk∑
t=1

〈E[gkt ]− gkt ,w
k
t −w∗k−1〉

]
1Since we only assume the condition (3) that does not neces-

sarily imply the uniqueness of the optimal solutions.

Then following the similar arguments in Proposition 1, we
have

Ek|1:k−1[F (wk)− F (w∗k−1)]

≤ Ek|1:k−1

[
λ

8
‖wk−1 −w∗k−1‖22 +

εk
2

]

Taking expectation over randomness in stages 1, . . . , k − 1,
we have

E[F (wk)− F (w∗k−1)] ≤ E

[
λ

8
‖wk−1 −w∗k−1‖22

]
+
εk
2

≤ 1

4
E[F (wk−1)− F∗] +

εk
2

≤ εk−1

4
+
εk
2

= εk

Therefore by induction, we have E[F (wK)− F∗] ≤ εK ≤
ε.

3. Proof of Theorem 2
Lemma 2. Consider SCO (4) with the property (3). Let
H0 = γI in Algorithm 3 and γ ≥ maxt ‖gt‖∞. For any
w ∈ Ω and its closest optimal solution w∗, we have

F (w̃T )− F (w) ≤ G‖w1 −wT+1‖2
T

+
1

T

T∑
t=1

(E[gt]− gt)
>(wt −w)

+

[
η
∑d
i=1 ‖g1:T,i‖2

T
+
γ + maxi ‖g1:T,i‖2

2ηT
‖w −w1‖22

]

where w̃T =
∑T+1
t=2 wt/T .

Proof. This proof is similar to the proof of Proposition 1,
but we do not take expectation here. For completeness, we
give the proof here. Throughout the whole proof, we set
the notation gt as the stochastic gradient of f(wt) and as
a result E[gt] ∈ ∂f(wt). Let ψ0(w) = 0 and ‖x‖H =√
x>Hx. First, we can see that ψt+1(w) ≥ ψt(w) for

any t ≥ 0. Define zt =
∑t
τ=1 gt and ∆τ = (∂f(wt) −

gt)
>(wt −w). Let ψ∗t be defined by

ψ∗t (g) = sup
x∈Ω

g>x− 1

η
ψt(x)− tφ(x)

Taking the summation of objective gap in all iterations, we
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have

T∑
t=1

(f(wt)− f(w) + φ(wt)− φ(w))

≤
T∑
t=1

(∂f(wt)
>(wt −w) + φ(wt)− φ(w))

=

T∑
t=1

g>t (wt −w) +

T∑
t=1

∆t +

T∑
t=1

(φ(wt)− φ(w))

=

T∑
t=1

g>t wt −
T∑
t=1

g>t w −
1

η
ψT (w)− Tφ(w)

+
1

η
ψT (w) +

T∑
t=1

∆t +

T∑
t=1

φ(wt)

≤ 1

η
ψT (w) +

T∑
t=1

g>t wt +

T∑
t=1

∆t +

T∑
t=1

φ(wt)

+ sup
x∈Ω

{
−

T∑
t=1

g>t x−
1

η
ψT (x)− Tφ(x)

}

=
1

η
ψT (w) +

T∑
t=1

g>t wt +

T∑
t=1

∆t +

T∑
t=1

φ(wt)

+ ψ∗T (−zT ) (3)

Note that

ψ∗T (−zT )

= −
T∑
t=1

g>t wT+1 −
1

η
ψT (wT+1)− Tφ(wT+1)

≤ −
T∑
t=1

g>t wT+1 −
1

η
ψT−1(wT+1)− (T − 1)φ(wT+1)

− φ(wT+1)

≤ sup
x∈Ω

{
−z>T x−

1

η
ψT−1(x)− (T − 1)φ(x)

}
− φ(wT+1)

= ψ∗T−1(−zT )− φ(wT+1)

≤ ψ∗T−1(−zT−1)− g>T∇ψ∗T−1(−zT−1) +
η

2
‖gT ‖2ψ∗T−1

− φ(wT+1)

where the last inequality uses the fact that ψt(w) is 1-
strongly convex w.r.t ‖ · ‖ψt = ‖ · ‖Ht and consequentially

ψ∗t (w) is η-smooth w.r.t. ‖ · ‖ψ∗t = ‖ · ‖H−1
t

. Thus, we have

T∑
t=1

g>t wt + ψ∗T (−zT )

≤
T∑
t=1

g>t wt + ψ∗T−1(−zT−1)− g>T∇ψ∗T−1(−zT−1)

+
η

2
‖gT ‖2ψ∗T−1

− φ(wT+1)

=

T−1∑
t=1

g>t wt + ψ∗T−1(−zT−1) +
η

2
‖gT ‖2ψ∗T−1

− φ(wT+1)

By repeating this process, we have

T∑
t=1

g>t wt + ψ∗T (−zT )

≤ ψ∗0(−z0) +
η

2

T∑
t=1

‖gt‖2ψ∗t−1
−

T∑
t=1

φ(wt+1)

=
η

2

T∑
t=1

‖gt‖2ψ∗t−1
−

T∑
t=1

φ(wt+1) (4)

Plugging inequality (4) in inequality (3), then

T∑
t=1

(F (wt)− F (w))

≤1

η
ψT (w) +

η

2

T∑
t=1

‖gt‖2ψ∗t−1
+

T∑
t=1

∆t + φ(w1)

− φ(wT+1)

By adding F (wT+1)− F (w1) on the both sides of above
inequality and using the fact that F (w) = f(w) + φ(w),
we get

T+1∑
t=2

(F (wt)− F (w))

≤1

η
ψT (w) +

η

2

T∑
t=1

‖gt‖2ψ∗t−1
+

T∑
t=1

∆t + f(wT+1)

− f(w1)

Following the analysis in (Duchi et al., 2011), we have

T∑
t=1

‖gt‖2ψ∗t−1
≤ 2

d∑
i=1

‖g1:T,i‖2
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Thus

T+1∑
t=2

(F (wt)− F (w))

≤ γ‖w −w1‖22
2η

+
(w −w1)>diag(sT )(w −w1)

2η

+ η

d∑
i=1

‖g1:T,i‖2 +

T∑
t=1

∆t + f(wT+1)− f(w1)

≤ γ + maxi ‖g1:T,i‖2
2η

‖w −w1‖22 + η

d∑
i=1

‖g1:T,i‖2

+

T∑
t=1

∆t + (∂f(wT+1))>(wT+1 −w1)

≤ γ + maxi ‖g1:T,i‖2
2η

‖w −w1‖22 + η

d∑
i=1

‖g1:T,i‖2

+

T∑
t=1

∆t +G‖wT+1 −w1‖2

where the last inequality hold using Cauchy-Schwartz In-
equality and the fact that ‖∂f(wT+1)‖ ≤ G. Dividing
by T on both sides, then we finish the proof by using the
convexity of F (w).

Theorem 2. For a given ε > 0, let K = dlog2(ε0/ε)e.
Assume H0 = γI and γ ≥ maxk,τ ‖gkτ‖∞, F (w0) −
F∗ ≤ ε0 and tk is the minimum number such

that tk ≥ 3√
λεk

max

{
Ak,

√
λG‖wk1−w

k
tk+1‖2√

εk

}
, where

Ak = max

{
2(γ+maxi ‖gk1:tk,i‖2)

θ , θ
∑d
i=1 ‖gk1:tk,i

‖2
}

. Al-

gorithm 4 guarantees that E[F (wK)− F∗] ≤ ε.

Proof. This result is proved by revising Lemma 2 to hold for
a bounded stopping time tk of the supermartingale sequence
Xt in (2).

Taking the expectation of Lemma 2, we have that

E[F (w̃T )− F (w)] ≤ E

[
G‖w1 −wT+1‖2

T

]
+ E

[
1

T

T∑
t=1

(E[gt]− gt)
>(wt −w)

]

+ E

[
η
∑d
i=1 ‖g1:T,i‖2

T

+
γ + maxi ‖g1:T,i‖2

2ηT
‖w −w1‖22

]

Then following the same arguments to Proposition 1, we

have that

E

[
1

T

T∑
t=1

(E[gt]− gt)
>(wt −w)

]
= 0

Similar to the induction of Theorem 1, let ηk = θ
√
εk/λ

and the iteration number tk in k-th epoch to be the smallest
number satisfying following inequalities

(γ + maxi ‖gk1:tk,i
‖2)

2ηktk
≤ λ

12

ηk
∑d
i=1 ‖gk1:tk,i

‖2
tk

≤ εk
3

G‖wk
1 −wk

tk+1‖
tk

≤ εk
3

Thus conditioned on 1, . . . , k − 1-th epoches, we have that

Ek|1:k−1[F (wk)− F (w∗k−1)]

≤ Ek|1:k−1

[
λ

12
‖wk−1 −w∗k−1‖22 +

2εk
3

]
Taking expectation over randomness in stages 1, . . . , k − 1,
we have

E[F (wk)− F (w∗k−1)] ≤ E

[
λ

12
‖wk−1 −w∗k−1‖22

]
+

2εk
3

≤ 1

6
E[F (wk−1)− F∗] +

2εk
3

≤ εk−1

6
+

2εk
3

= εk

Therefore by induction, we have E[F (wK)− F∗] ≤ εK ≤
ε.

4. Proof of Theorem 3
Theorem 3. Under the same assumptions as Theorem 1
and F (w0) − F∗ ≤ ε0, where w0 is an initial solu-
tion. Let λ1 ≥ λ, ε ≤ ε0

2 , K = log2
ε0
ε and t

(s)
k ≥

2√
λsεk

max

{
2(γ+maxi ‖gk1:tk,i‖2)

θ , θ
∑d
i=1 ‖gk1:tk,i

‖2
}

.

Then with at most a total number of S =
⌈
log2

(
λ1

λ

)⌉
+ 1

calls of SADAGRAD and a worse-cast iteration complexity
of O(1/(λε)), Algorithm 5 finds a solution w(S) such that
E[F (w(S))− F∗] ≤ ε.

Proof. Since λ1/λ > 1, then F (w0) − F∗ ≤ (λ1/λ)ε0.
Following the proof of Theorem 1, we can show that

E[F (w(1))− F∗] ≤
(λ1/λ)ε0

2K
=

(
λ1

λ

)
ε

with K = log2
ε0
ε and t

(1)
k ≥

2√
λ(
λ1
λ εk)

max

{
2(γ+maxi ‖gk1:tk,i‖2)

θ , θ
∑d
i=1 ‖gk1:tk,i

‖2
}

,
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k = 1, . . . ,K. Next, since ε ≤ ε0
2 , then we have

E[F (w(1)) − F∗] ≤
(
λ1

λ

)
ε0
2 =

(
λ2

λ

)
ε0. By running

SADAGRAD from w(1), Theorem 1 ensures that

E[F (w(2))− F∗] ≤
E[F (w(1))− F∗]

2K
≤ (λ2/λ)ε0

2K

=

(
λ2

λ

)
ε

By continuing the process, with S =
⌈
log2

(
λ1

λ

)⌉
+ 1, we

have

E[F (w(S))− F∗] ≤
(
λS
λ

)
ε ≤ ε (5)

The total number of iterations for the S calls of SADAGRAD
is upper bounded by

Ttotal =

S∑
s=1

K∑
k=1

t
(s)
k ≤

S∑
s=1

C

λsε0

K∑
k=1

2k−1

=
C

λ1ε0

S∑
s=1

2s−1
K∑
k=1

2k−1

= O

(
1

λε

)
for some C > 0.
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