Supplementary Materials "Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter"

Yi Xu[†], Qihang Lin[‡], Tianbao Yang[†]

†Department of Computer Science, The University of Iowa, Iowa City, IA 52242, USA ‡Department of Management Sciences, The University of Iowa, Iowa City, IA 52242, USA {yi-xu, qihang-lin, tianbao-yang}@uiowa.edu

1 Proof of Theorem 2

Theorem 2. Assume that the problem (1) satisfies the HEB condition with $\theta \in (0, 1/2]$ and $F(x_0) - F_* \leq \epsilon_0$, where x_0 is an initial solution. Let $\eta = 1/(36L)$, and $T_1 \geq 81Lc^2 (1/\epsilon_0)^{1-2\theta}$. Then Algorithm 1 ensures

$$E[F(\bar{x}^{(R)}) - F_*] \le (1/2)^R \epsilon_0. \tag{11}$$

In particular, by running Algorithm 1 with $R = \lceil \log_2 \frac{\epsilon_0}{\epsilon} \rceil$, we have $\mathrm{E}[F(\bar{x}^{(R)}) - F_*] \leq \epsilon$, and the computational complexity for achieving an ϵ -optimal solution in expectation is $O(n\log(\epsilon_0/\epsilon) + Lc^2 \max\{\frac{1}{\epsilon^{1-2\theta}}, \log(\epsilon_0/\epsilon)\})$.

We need the following lemma to prove Theorem 2, which has been established in previous work [2]. **Lemma 3.** For the r-th outer loop of Algorithm 1, for any $x_* \in \Omega_*$ we have

$$2\eta(1-4L\eta)T_r \mathbf{E}[F(\bar{x}^{(r)}) - F(x_*)] \le \mathbf{E}[\|\bar{x}^{(r-1)} - x_*\|_2^2] + 8L\eta^2(T_r + 1)\mathbf{E}[F(\bar{x}^{(r-1)}) - F(x_*)]. \tag{12}$$

Proof of Theorem 2. Denote by $\epsilon_r=\epsilon_0/2^r$. We will prove (11) by induction. Assume that $\mathrm{E}[F(\bar{x}^{(r-1)})-F(x_*)]\leq \epsilon_{r-1}$, which is true for r=1. Let x_* in Lemma 3 be the closest optimal solution to $\bar{x}^{(r-1)}$. Taking expectation over all random variables on both sides of (12), we get

$$\begin{split} & \mathbf{E}[F(\bar{x}^{(r)}) - F_*] \leq \frac{1}{2\eta(1 - 4L\eta)T_r} \mathbf{E} \|\bar{x}^{(r-1)} - x_*\|_2^2 + \frac{4L\eta(T_r + 1)}{(1 - 4L\eta)T_r} \mathbf{E}[F(\bar{x}^{(r-1)}) - F_*] \\ & \leq \frac{1}{2\eta(1 - 4L\eta)T_r} c^2 \mathbf{E}[F(\bar{x}^{(r-1)}) - F_*]^{2\theta} + \frac{4L\eta(T_r + 1)}{(1 - 4L\eta)T_r} \mathbf{E}[F(\bar{x}^{(r-1)}) - F_*] \\ & \leq \frac{1}{2\eta(1 - 4L\eta)T_r} c^2 (\mathbf{E}[F(\bar{x}^{(r-1)}) - F_*])^{2\theta} + \frac{4L\eta(T_r + 1)}{(1 - 4L\eta)T_r} \mathbf{E}[F(\bar{x}^{(r-1)}) - F_*], \end{split}$$

where the second inequality uses the HEB condition and the last inequality uses the concavity of $x^{2\theta}$ for $x \geq 0$ and $2\theta \leq 1$. By noting the values of $\eta = \frac{1}{36L}$ and $T_r \geq 81Lc^2\epsilon_{r-1}^{2\theta-1}$,

$$\frac{1}{2\eta(1-4L\eta)T_r}c^2\epsilon_{r-1}^{2\theta} \le \frac{\epsilon_{r-1}}{4}, \quad \frac{4L\eta(T_r+1)}{(1-4L\eta)T_r}\epsilon_{r-1} \le \frac{\epsilon_{r-1}}{4}.$$

Thus $\mathrm{E}[F(\bar{x}^{(r)}) - F_*] \leq \frac{\epsilon_{r-1}}{2} \triangleq \epsilon_r$. We can complete the proof in light of $R = \lceil \log_2 \frac{\epsilon_0}{\epsilon} \rceil$.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2 Proof of Lemma 3

Proof. First, we can write the update of $x_t^{(r)} = \arg\min_{x \in \mathbb{R}^d} \frac{1}{2} \|x - (x_{t-1}^{(r)} - \eta g_t^{(r)})\|_2^2 + \eta \Psi(x)$, and we know that $\frac{1}{2} \|x - (x_{t-1}^{(r)} - \eta g_t^{(r)})\|_2^2 + \eta \Psi(x)$ is 1-strongly convex w.r.t. $\|\cdot\|_2$ in terms of x. By the first-order optimilaty condition, for any x we get

$$\frac{1}{2}\|x - (x_{t-1}^{(r)} - \eta g_t^{(r)})\|_2^2 + \eta \Psi(x) \ge \frac{1}{2}\|x_t^{(r)} - (x_{t-1}^{(r)} - \eta g_t^{(r)})\|_2^2 + \eta \Psi(x_t^{(r)}) + \frac{1}{2}\|x_t^{(r)} - x\|_2^2.$$

Rewrite above inequality, then

$$\eta \Psi(x_{t}^{(r)}) - \eta \Psi(x) \leq \frac{1}{2} \|x_{t-1}^{(r)} - x\|_{2}^{2} - \frac{1}{2} \|x_{t}^{(r)} - x\|_{2}^{2} - \frac{1}{2} \|x_{t}^{(r)} - x_{t-1}^{(r)}\|_{2}^{2} + \eta \langle g_{t}^{(r)}, x - x_{t}^{(r)} \rangle
= \frac{1}{2} \|x_{t-1}^{(r)} - x\|_{2}^{2} - \frac{1}{2} \|x_{t}^{(r)} - x\|_{2}^{2} + \eta \langle g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)}), x - x_{t}^{(r)} \rangle
+ \eta \langle \nabla f(x_{t-1}^{(r)}), x_{t-1}^{(r)} - x_{t}^{(r)} \rangle - \frac{1}{2} \|x_{t}^{(r)} - x_{t-1}^{(r)}\|_{2}^{2}
+ \eta \langle \nabla f(x_{t-1}^{(r)}), x - x_{t-1}^{(r)} \rangle.$$
(13)

Since f is L-smooth and $0 < \eta \le \frac{1}{L}$,

$$f(x_t^{(r)}) - f(x_{t-1}^{(r)}) \le \langle \nabla f(x_{t-1}^{(r)}), x_t^{(r)} - x_{t-1}^{(r)} \rangle + \frac{L}{2} \|x_t^{(r)} - x_{t-1}^{(r)}\|_2^2$$

$$\le \langle \nabla f(x_{t-1}^{(r)}), x_t^{(r)} - x_{t-1}^{(r)} \rangle + \frac{1}{2\eta} \|x_t^{(r)} - x_{t-1}^{(r)}\|_2^2.$$

That is,

$$\eta \langle \nabla f(x_{t-1}^{(r)}), x_{t-1}^{(r)} - x_t^{(r)} \rangle - \frac{1}{2} \|x_t^{(r)} - x_{t-1}^{(r)}\|_2^2 \le \eta [f(x_{t-1}^{(r)}) - f(x_t^{(r)})]. \tag{14}$$

By the convexity of f, we get

$$\langle \nabla f(x_{t-1}^{(r)}), x - x_{t-1}^{(r)} \rangle \le f(x) - f(x_{t-1}^{(r)}).$$
 (15)

Plugging in inequalities (14) and (15) into inequality (13), we get

$$F(x_{t}^{(r)}) - F(x) \leq \frac{1}{2\eta} \|x_{t-1}^{(r)} - x\|_{2}^{2} - \frac{1}{2\eta} \|x_{t}^{(r)} - x\|_{2}^{2} - \langle g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)}), x_{t}^{(r)} - x \rangle$$

$$= \frac{1}{2\eta} \|x_{t-1}^{(r)} - x\|_{2}^{2} - \frac{1}{2\eta} \|x_{t}^{(r)} - x\|_{2}^{2} - \langle g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)}), \hat{x}_{t}^{(r)} - x \rangle$$

$$- \langle g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)}), x_{t}^{(r)} - \hat{x}_{t}^{(r)} \rangle$$

$$\leq \frac{1}{2\eta} \|x_{t-1}^{(r)} - x\|_{2}^{2} - \frac{1}{2\eta} \|x_{t}^{(r)} - x\|_{2}^{2} - \langle g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)}), \hat{x}_{t}^{(r)} - x \rangle$$

$$+ \|g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)})\|_{2} \|x_{t}^{(r)} - \hat{x}_{t}^{(r)}\|_{2}$$

$$\leq \frac{1}{2\eta} \|x_{t-1}^{(r)} - x\|_{2}^{2} - \frac{1}{2\eta} \|x_{t}^{(r)} - x\|_{2}^{2} - \langle g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)}), \hat{x}_{t}^{(r)} - x \rangle$$

$$+ \|g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)})\|_{2} \|x_{t-1}^{(r)} - \eta g_{t}^{(r)} - (x_{t-1}^{(r)} - \eta \nabla f(x_{t-1}^{(r)}))\|_{2}$$

$$= \frac{1}{2\eta} \|x_{t-1}^{(r)} - x\|_{2}^{2} - \frac{1}{2\eta} \|x_{t}^{(r)} - x\|_{2}^{2} - \langle g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)}), \hat{x}_{t}^{(r)} - x \rangle$$

$$+ \eta \|g_{t}^{(r)} - \nabla f(x_{t-1}^{(r)})\|_{2}^{2}, \tag{16}$$

where $\widehat{x}_t^{(r)} = \arg\min_{x \in \mathbb{R}^d} \frac{1}{2} \|x - (x_{t-1}^{(r)} - \eta \nabla f(x_{t-1}^{(r)})\|_2^2 + \eta \Psi(x)$. Please notice that the update of $\widehat{x}_t^{(r)}$ is not used in the Algorithm, but only for analysis. Letting $x = x_*$ and taking expectation over both sides, we have

$$\begin{split} 2\eta \mathbf{E}[F(x_t^{(r)}) - F(x_*)] \leq & \|x_{t-1}^{(r)} - x_*\|_2^2 - \mathbf{E}[\|x_t^{(r)} - x_*\|_2^2] + 2\eta^2 \mathbf{E}[\|g_t^{(r)} - \nabla f(x_{t-1}^{(r)})\|_2^2] \\ \leq & \|x_{t-1}^{(r)} - x_*\|_2^2 - \mathbf{E}[\|x_t^{(r)} - x_*\|_2^2] \\ & + 8L\eta^2 [F(x_{t-1}^{(r)}) - F(x_*) + F(\bar{x}^{(r-1)}) - F(x_*)], \end{split}$$

where we use the fact that $\mathrm{E}[\langle g_t^{(r)} - \nabla f(x_{t-1}^{(r)}), \widehat{x}_t^{(r)} - x \rangle] = 0$ and use Corollary 3.5 in [2] to upper bound the expected variance $\mathrm{E}[\|g_t^{(r)} - \nabla f(x_{t-1}^{(r)})\|_2^2]$. Then

$$E[\|x_t^{(r)} - x_*\|_2^2] \le \|x_{t-1}^{(r)} - x_*\|_2^2 - 2\eta E[F(x_t^{(r)}) - F(x_*)] + 8L\eta^2 [F(x_{t-1}^{(r)}) - F(x_*) + F(\bar{x}^{(r-1)}) - F(x_*)].$$
(17)

For a fixed r, by summing the previous inequality over t = 1, ..., T and taking expectation with respect to the history of random variables sequence $i_1, i_2, ..., i_T$, we obtain

$$2\eta(1-4L\eta)\sum_{t=1}^{T-1} \mathrm{E}[F(x_t^{(r)}) - F(x_*)]$$

$$\leq ||x_0^{(r)} - x_*||_2^2 - \mathrm{E}[||x_T^{(r)} - x_*||_2^2] - 2\eta \mathrm{E}[F(x_T^{(r)}) - F(x_*)]$$

$$+ 8L\eta^2 [F(x_0^{(r)}) - F(x_*) + T(F(\bar{x}^{(r-1)}) - F(x_*))]$$

$$\leq ||x_0^{(r)} - x_*||_2^2 + 8L\eta^2 [F(x_0^{(r)}) - F(x_*) + T(F(\bar{x}^{(r-1)}) - F(x_*))]$$

$$= ||x_0^{(r)} - x_*||_2^2 + 8L\eta^2 (T+1)[F(x_0^{(r)}) - F(x_*)], \tag{18}$$

where the last inequality uses the facts that $-\mathbb{E}[\|x_T^{(r)}-x_*\|_2^2] \leq 0$ and $-2\eta\mathbb{E}[F(x_T^{(r)})-F(x_*)] \leq 0$, and the last equality uses $x_0^{(r)}=\bar{x}^{(r-1)}$. By the convexity of F(x) and the defination of $\bar{x}^{(r)}$ and $x_0^{(r)}=\bar{x}^{(r-1)}$ we have

$$2\eta(1 - 4L\eta)TE[F(\bar{x}^{(r)}) - F(x_*)] \le \|\bar{x}^{(r-1)} - x_*\|_2^2 + 8L\eta^2(T+1)[F(\bar{x}^{(r-1)}) - F(x_*)]. \tag{19}$$

3 Proof of Theorem 3

Theorem 3. Assume that the problem (1) satisfies the HEB with $\theta \in (0,1/2)$ and $F(x_0) - F_* \leq \epsilon_0$, where x_0 is an initial solution, and $c_0 \leq c$. Let $\epsilon \leq \frac{\epsilon_0}{2}$, $R = \lceil \log_2 \frac{\epsilon_0}{\epsilon} \rceil$ and $T_1^{(1)} = 81Lc_0^2 (1/\epsilon_0)^{1-2\theta}$. Then with at most a total number of $S = \left\lceil \frac{1}{\frac{1}{2}-\theta} \log_2 \left(\frac{c}{c_0} \right) \right\rceil + 1$ calls of SVRG^{HEB} in Algorithm 2, we find a solution $x^{(S)}$ such that $\mathrm{E}[F(x^{(S)}) - F_*] \leq \epsilon$. The computational complexity of SVRG^{HEB-RS} for obtaining such an ϵ -optimal solution is $O\left(n\log(\epsilon_0/\epsilon)\log(c/c_0) + \frac{Lc^2}{\epsilon^{1-2\theta}}\right)$.

Proof. Denote by $c_{s+1} = 2^{\frac{1-2\theta}{2}}c_s$. Since $c \ge c_0$ and $\frac{2}{1-2\theta} > 2$, we have $F(x_0) - F_* \le \epsilon_0 \left(\frac{c}{c_0}\right)^{\frac{2}{1-2\theta}}$. Following the proof of Theorem 2, we can show that

$$E[F(x^{(1)}) - F_*] \le \left(\frac{1}{2}\right)^R \epsilon_0 \left(\frac{c}{c_0}\right)^{\frac{2}{1-2\theta}} = \epsilon \left(\frac{c}{c_0}\right)^{\frac{2}{1-2\theta}}$$
(20)

$$\text{with } R = \lceil \log_2 \tfrac{\epsilon_0}{\epsilon} \rceil \text{ and } T_1^{(1)} = 81 L c_0^2 \left(\tfrac{1}{\epsilon_0} \right)^{1-2\theta} = 81 L c^2 \left(\tfrac{1}{\epsilon_0 \left(\tfrac{c}{c_0} \right)^{\frac{2}{1-2\theta}}} \right)^{1-2\theta}. \text{ Next, since } \epsilon \leq \tfrac{\epsilon_0}{2},$$

then we have $\mathrm{E}[F(x^{(1)})-F_*] \leq \frac{\epsilon_0}{2} \left(\frac{c}{c_0}\right)^{\frac{2}{1-2\theta}} = \epsilon_0 \left(\frac{c}{c_1}\right)^{\frac{2}{1-2\theta}}$. By running SVRGheb from $x^{(1)}$ with $T_1^{(2)} = 81Lc_1^2 \left(\frac{1}{\epsilon_0}\right)^{1-2\theta} = 81Lc^2 \left(\frac{1}{\epsilon_0\left(\frac{c}{c_1}\right)^{\frac{2}{1-2\theta}}}\right)^{1-2\theta}$, Theorem 2 ensures that

$$E[F(x^{(2)}) - F_*] \le \left(\frac{1}{2}\right)^R \epsilon_0 \left(\frac{c}{c_1}\right)^{\frac{2}{1-2\theta}} = \epsilon \left(\frac{c}{c_1}\right)^{\frac{2}{1-2\theta}}.$$
 (21)

By continuing the process, with $S = \left[\frac{2}{1-2\theta}\log_2\left(\frac{c}{c_0}\right)\right] + 1$, we have

$$E[F(x^{(S)}) - F_*] \le \left(\frac{1}{2}\right)^R \epsilon_0 \left(\frac{c}{c_{S-1}}\right)^{\frac{2}{1-2\theta}} = \epsilon \left(\frac{c}{c_{S-1}}\right)^{\frac{2}{1-2\theta}} \le \epsilon.$$
 (22)

The total number of iterations for the S calls of SVRGheb is upper bounded by

$$T_{\text{total}} = \sum_{s=0}^{S-1} (nR + \sum_{r=1}^{R} T_1^{(s+1)} 2^{(1-2\theta)(r-1)}) = nRS + \sum_{s=0}^{S-1} T_1^{(s+1)} \sum_{r=1}^{R} 2^{(1-2\theta)(r-1)}$$

$$= nRS + \sum_{s=0}^{S-1} T_1^{(1)} 2^{(1-2\theta)s} \sum_{r=1}^{R} 2^{(1-2\theta)(r-1)}$$

$$\leq O\left(n \log(\epsilon_0/\epsilon) \log(c/c_0) + \left(\frac{c}{c_0}\right)^2 \left(\frac{\epsilon_0}{\epsilon}\right)^{1-2\theta} T_1^{(1)}\right)$$

$$\leq O\left(n \log(\epsilon_0/\epsilon) \log(c_0) + \frac{Lc^2}{\epsilon^{1-2\theta}}\right).$$

4 Omitted Proof of Lemma 2

Lemma 4. Let $\bar{x} = \arg\min_{x \in \Omega} \langle \nabla f(\tilde{x}), x - \tilde{x} \rangle + \frac{L}{2} \|x - \tilde{x}\|_2^2 + \Psi(x)$. Assume that f(x) is L-smooth, we have

$$F(\tilde{x}) - F_* \ge \frac{L}{2} \|\bar{x} - \tilde{x}\|^2.$$
 (23)

Proof. Since f(x) is L-smooth, then we get

$$f(\bar{x}) - f(\tilde{x}) \le \langle \nabla f(\tilde{x}), \bar{x} - \tilde{x} \rangle + \frac{L}{2} \|\bar{x} - \tilde{x}\|_2^2.$$
 (24)

By the defination of \bar{x} and the strong convexity of $L(x) = \langle \nabla f(\tilde{x}), x - \tilde{x} \rangle + \frac{L}{2} \|x - \tilde{x}\|_2^2 + \Psi(x)$, we have

$$\langle \nabla f(\tilde{x}), \bar{x} - \tilde{x} \rangle + \frac{L}{2} \|\bar{x} - \tilde{x}\|_2^2 + \Psi(\bar{x}) \le \Psi(\tilde{x}) - \frac{L}{2} \|\bar{x} - \tilde{x}\|_2^2.$$
 (25)

Combining inequalities (24) and (25) with the fact that $F(x) = f(x) + \Psi(x)$ yields

$$F(\tilde{x}) - F(\bar{x}) \ge \frac{L}{2} \|\bar{x} - \tilde{x}\|^2.$$

We complete the proof by using $F(\bar{x}) \geq F_*$.

5 Proof of Lemma 1

Lemma 1. Let $\bar{x} = \arg\min_{x \in \Omega} \langle \nabla f(\tilde{x}), x - \tilde{x} \rangle + \frac{L}{2} ||x - \tilde{x}||_2^2 + \Psi(x)$. Then under the QEB condition of the problem (1), we have

$$F(\bar{x}) - F_* \le (L + L_f)^2 c^2 \|\bar{x} - \tilde{x}\|_2^2. \tag{26}$$

Before delving into the detailed analysis, we first present some lemmas.

Lemma 5 (Theorem 1 [1]). For a constant L > 0 and $y \in \Omega$, if

$$v = \arg\min_{z \in \Omega} \left\{ f(y) + \langle \nabla f(y), z - y \rangle + \frac{L}{2} ||z - y||_2^2 + \Psi(z) \right\},$$

then for any $x \in \Omega$,

$$\langle F'(v), x - v \rangle \ge -(L + L_f) \|v - y\|_2 \|v - x\|_2.$$
 (27)

Proof. By the first order optimality condition, for any $x \in \Omega$,

$$\langle \nabla f(y) + \Psi'(v) + L(v-y), x-v \rangle \ge 0,$$

where $\Psi'(v) \in \partial \Psi(v)$, the set of subgradient of Ψ at v. Then

$$\begin{split} \langle \nabla f(v) + \Psi^{'}(v), v - x \rangle & \leq \langle \nabla f(v) - \nabla f(y) - L(v - y), v - x \rangle \\ & = \langle \nabla f(v) - \nabla f(y), v - x \rangle - L \langle v - y, v - x \rangle \\ & \leq \| \nabla f(v) - \nabla f(y) \|_2 \| v - x \|_2 + L \| v - y \|_2 \| v - x \|_2 \\ & \leq (L_f + L) \| v - y \|_2 \| v - x \|_2. \end{split}$$

where the last inequality uses the smoothness of f. We complete the proof by using $F'(v) = \nabla f(v) + \Psi'(v)$.

Lemma 6. Suppose that the problem (1) satisfies the QEB condition (2) and then for any y, v defined in Lemma 5, we have

$$||v - v_*||_2 \le (L_f + L)c^2 ||v - y||_2, \tag{28}$$

where v_* is the closest optimal solution to v.

Proof. By the proof of Lemma 5, we have

$$(L_f + L)\|v - y\|_2 \|v - v_*\|_2 \ge \langle \nabla f(v) + \Psi'(v), v - v_* \rangle$$

$$= \langle F'(v), v - x_* \rangle \ge F(v) - F_* \ge \frac{1}{c^2} \|v - v_*\|_2^2,$$

where the second inequality uses the convexity of F and the last inequality uses the quadratic error bound condition (2).

Lemma 7. ssume that the problem (1) satisfies the QEB. Let $\bar{x} = \arg\min_{x \in \Omega} \langle \nabla f(\tilde{x}), x - \tilde{x} \rangle + \frac{L}{2} ||x - \tilde{x}||_2^2 + \Psi(x)$. Then we have

$$F(\bar{x}) - F_* \le (L + L_f)^2 c^2 \|\bar{x} - \tilde{x}\|_2^2.$$
(29)

Proof. Let x_* denote the closest optimal solution to $\bar{x}^{(s+1)}$. By Lemma 6 in the supplement, we have

$$\|\bar{x} - x_*\| \le (L + L_f)c^2 \|\bar{x} - \tilde{x}\|.$$

By Lemma 5 in the supplement and the convexity of F, we have

$$F(\bar{x}) - F_* \le -\langle F'(\bar{x}), x_* - \bar{x} \rangle \le (L + L_f) \|\bar{x} - \tilde{x}\| \|\bar{x} - x_*\|.$$

Combining the two inequalities above together leads to

$$F(\bar{x}) - F_* \le (L + L_f)^2 c^2 ||\bar{x} - \tilde{x}||^2.$$

References

[1] Y. Nesterov. Gradient methods for minimizing composite functions. *Mathematical Programming*, 140(1):125–161, 2013.

[2] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. *SIAM Journal on Optimization*, 24(4):2057–2075, 2014.