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1 Proof of Theorem

Theorem 2. Assume that the problem (1) satisfies the HEB condition with 6 € (0,1/2] and F(xq) —

F, < €, where xq is an initial solution. Let ) = 1/(36L), and Ty > 81Lc* (1/0)' 2. Then
Algorithm I ensures

E[F(@™) - F,] < (1/2)" «. (11)

In particular, by running Algorithm 1 with R = [log, €, we have E[F(z®)) — F,] < ¢, and

€
the computational complexity for achieving an e-optimal solution in expectation is O(nlog(eg/€) +

Lc? max{ 157, log(eo /€)}).
We need the following lemma to prove Theorem [2] which has been established in previous work [2].
Lemma 3. For the r-th outer loop of Algorithm 1, for any x, € Q. we have

(1 — AL TE[F (@) - F(a,)] < Ella" — . ]3] + 8Ly’ (T + DE[F(" V) - F(.)]
(12)

Proof of Theorem 2] Denote by €, = €y/2". We will prove by induction. Assume that
E[F(z"~Y) — F(2.)] < €._1, which is true for » = 1. Let x, in Lemma [3| be the closest
optimal solution to Z("~1). Taking expectation over all random variables on both sides of , we get

. 1 (r— ALn(Tr + 1) (e
E[F(z") - F,] < E|z"Y — 2,2 E[F(z" V) - F,
1 (o 4In(T,. + 1) (e
< = PRE[FECY 20 R T I pipzr-y
= 2n(1— 4Ly)T; ) = BT (1 —4Ln)T, @) = R
1 ALn(T, + 1)

GE[F@ECY) — R + E[F(z"Y) - R,

< T 7
~ (1 —4Ln)T, (1 —4Ln)T,

where the second inequality uses the HEB condition and the last inequality uses the concavity of 22
for x > 0 and 260 < 1. By noting the values of n = 36% and T, > 81Lc2ef9:11,

1 9 29 €—1  4Ln(T.+1) €1
————c € | < , €1 < .
2n(1 —4Ln)T. 4 (1 —4Ln)T, 4

Thus E[F(z(") — F,] < “5* £ ¢,. We can complete the proof in light of R = [log, <. O
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2 Proof of Lemma[3

() (r)

= argminega & [z — (2"} — ng{”) 3 +7¥(z), and

we know that 1 ||z — (@7, = ng"™))|12 + nT(x) is 1-strongly convex w.r.t. || - || in terms of 2. By
the first-order optimilaty condition, for any x we get

Proof. First, we can write the update of z;

Sz — 0y — gV + () > Sl — @~ mgl B+ m ) + Sl ol
Rewrite above inequality, then
()~ @) <z e — ol - Slal” — ald - 3 el 213+ 0ol z — o)
=Ll — o3 = L) = 2l + nial” — V1) = )
VA0, 20— 2f) = Sl — 23
+ (V). e — aiy). (13)
Since f is L-smooth and 0 < 7 < 1
£ = ) (VA2 — 200 + 2l - 213
< F ). =) + 5ol — 2
That is,
MV, — el = el — e <nlfED) - S A
By the convexity of f, we get
(V™). z = a)) < fz) = ). (15)
Plugging in inequalities (]E) and (T3) into inequality (T3), we get
Fa{") - F(z) < Hx“) — a3 - %Hw,ﬁ” —al3 — (gt — V(@) 2l — )
—Hm“) I8 = 5ot = ol = (6 = V(). 37~ o)
— (" - wu% " —3")
<gllel™s = ol - gllel” — 1 — (ol ~ V). 7 - 2)
- Hg"") V) el = 77
<orlal® = ol - 3-llel” — i — (o — V). 7" ~2)
+ Hg‘” VD lallz”y = ng” = @) = gV (@)l
=gl = ol = 51l = ol = (6 = V2.5 ~2)
- nug“ VDI, (16)
where z") = arg min, cga L R (@ =V £(27))|2 + n¥(z). Please notice that the update of
§ ™) is not used in the Algorithm, but only for analysis. Letting x = x., and taking expectation over

both sides, we have

2E[F (") — F(z.)] <|la{”) — 2.]2 — El|l2{"” — 2.]3] + 20E[|g\” — V f(z")]3]
(r)

— z.J[3]

+8Lp?[F(a{”)) — F(z.) + F(z" V) — F(a.)),

<[la{7) - z.|3 — E[|l«}



where we use the fact that B[(g\”) — V f(2!",),2"”) — 2)] = 0 and use Corollary 3.5 in [2] to upper
bound the expected variance E[]|g{"”) — V f(x",)||2]. Then

Ef||z” — z.|3] <[|={") — 2|3 — 20E[F(2{") - F(a.)]

+ 8Ly [F(a"y) = F(a.) + F(#"Y) = F(.)) a7
For a fixed r, by summing the previous inequality over ¢t = 1,...,T and taking expectation with
respect to the history of random variables sequence 1, i2, . . . , i, We obtain

n(1—4Ly) ZE (af”) = F(x.)]

< — w.lI3 - B2} — 2.][3) — 2BlF () -
+ 8L [F(x)) — F(x,) + T(F(z") - <x*>>]
( 1

]

<lla” — w3 + 8Ly (F(ag”) = F(a.) + T(F(@CV) = F(a.))]

=l = @l3 +8Ln* (T + D[F(x”) = Fa), (18)
where the last inequality uses the facts that —E[||x§,f) — /]3] <0and —277E[F(33¥)) —F(z,)] <0,
and the last equality uses a:ér) = z("=1)_ By the convexity of F'(z) and the defination of #(") and
x(()r) = ("1 we have

2n(1 — ALn)TE[F(2")) — F(x,)] < 2779 — ,]|2 + 8Ln*(T + 1)[F(z"V) — F(x*)](.lg)

3  Proof of Theorem

Theorem 3. Assume that the problem (1) satisfies the HEB with 6 € (0,1/2) and F'(z¢) — Fx < €,
where xq is an initial solution, and cy < c. Lete < 9, R = [log, ] and Tl(l) =81Lc2 (1/e0) .
Then with at most a total number of S = { 5 log, ( )—‘ + 1 calls of SVRG"EB in Algorithm 2, we
find a solution %) such that E[F (%)) — F,] < e. The computaional complexity of SVRGEE-RS
for obtaining such an e-optimal solution is O (n log(eg/€)log(c/co) + 611170229)

1—-260

Proof. Denote by c,1 = 2° 7" ¢c,. Since ¢ > ¢ and 25 > 2, wehave F(z)—F. < € (é)
Following the proof of Theorem 2] we can show that

N = =
E[F(:c“))F*]g(Q) € <CCO) 6(;) (20)

, 1-20
=81L2 | — L . Next, since € < <2,
EO<L) 1-26
)

2
then we have E[F(z(V) — F,] < ¢ (i) =g (£> ""*" By running SVRG™® from (1) with

Co C1

1-26
1-20
T1(2) = 81Lc:{ (é) = 81Lc? <1> , Theoremensures that

2
()

N .
EB[F(z?) — F] < (2> € (;) :e(;) . Q1)

with R = [log, ©] and T{") = 81Lc2 (i)




By continuing the process, with S = [ﬁ log, (é)—‘ + 1, we have
2 2
E[F() - F,] < <1> . € ( ¢ ) R ( ¢ ) e (22)
2 cs—1 Cs—1

The total number of iterations for the S calls of SVRG"® is upper bounded by

5—1 R 5—1 R

Tl = Z("R + Z T1(5+1)2(1—20)(r—1)) = nRS + Z Tl(s+1) Z 9(1-26)(r—1)
s=0 r=1 s=0 r=1

S—1 R
=nRS + Z T(Vg(1-26)s Z 9(1-26)(r—1)

s=0 r=1

<0 <n log(eo/€)log(c/co) + (CCO)Q (@)1—20 Tf”)

€

Lc?
< O [ nlog(en/e€)log(co) + 26 |-

4 Omitted Proof of Lemma 2

Lemmad. Let T = arg min,eq(Vf(2), 2 — &)+ £||z—&[|3+ U (x). Assume that f(x) is L-smooth,
we have

F@) - Fo2 Sl - #P. ©3)
Proof. Since f(x) is L-smooth, then we get
L
f(@) = f(@) < (VI@),2 - 2) + 5z - 2[5 24)

By the defination of Z and the strong convexity of L(z) = (Vf(&),z — @) + £ |z — &3 + ¥(z),
we have

- oL, _ . L, .
(VI@),2=3) + 57 =213+ ¥(@) < @) - 517 - 2[5, (25)
Combining inequalities and with the fact that F'(xz) = f(z) + U(z) yeilds
- oL
F(7) - F(z) > 3 |le - 2.
We complete the proof by using F(z) > F.. O

5 Proof of Lemmal[ll

Lemma 1. Let = arg min,co(V f(Z), 2 — )+ 2|z — |3+ ¥ (x). Then under the QEB condition
of the problem (1), we have

F(z) = F. < (L+ Ly)*c®||lz — 5. (26)

Before delving into the detailed analysis, we first present some lemmas.
Lemma 5 (Theorem 1 [1]). For a constant L > 0 and y € §, if

o= argmig { ) + (V7.2 = b+ 5= vl + () |

then for any x € €},
(F'(v),x —=v) = =(L+ Lg)[[v = yll2|lv = |- 27)



Proof. By the first order optimality condition, for any « € €2,
(VI(y)+ ¥ (v) + L(v =),z = v) >0,
where ¥’ (v) € O (v), the set of subgradient of ¥ at v. Then
(VF@)+ ¥ (v),0—2) < (Vf(0) = VI(y) = L(v = y),v —z)
= (Vf(v) =Vf(y),v—z) - L{v—y,v—x)

<Vf(w) = ViW)lallv = zlls + Lllv = yll2llv — [l
< (Lp+ Dlv =ylzllv — (2.

where the last inequality uses the smoothness of f. We complete the proof by using F’'(v) =
Vf(v)+ ¥ (v). O

Lemma 6. Suppose that the problem (1) satisfies the QEB condition (2) and then for any y, v defined
in Lemmal[d] we have

[v—villa < (Ly + L)|jv —yl|2, (28)

where v, is the closest optimal solution to v.

Proof. By the proof of Lemma[5] we have

(Ly+ D)o = yllallv = vell2 = (VF(0) + ¥ (0),0 = v.)

/ 1
= (F (v),v = 2.) 2 F(v) = F. > lv = v.l3,

where the second inequality uses the convexity of F' and the last inequality uses the quadratic error
bound condition (2). O

Lemma 7. ssume that the problem (1) satisfies the QEB. Let T = argmin,cq(Vf(Z),z — Z) +
Lz — (|3 + (). Then we have

F(z)— F. < (L+ L)z — &3 (29)

Proof. Let x, denote the closest optimal solution to z(**1). By Lemma|§|in the supplement, we have
|2 — 2.l < (L + L)z - 2.
By Lemma[j]in the supplement and the convexity of F, we have
F(z)— F. < —(F'(z),z. — %) < (L+ Ly) |z — Z|| ||z — 2|
Combining the two inequalities above together leads to

F(z) - F, < (L+Ly)* ||z — 2)°.
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