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Abstract

In this paper, we focus on improving the performance of
the Nyström based kernel SVM. Although the Nyström
approximation has been studied extensively and its ap-
plication to kernel classification has been exhibited in
several studies, there still exists a potentially large gap
between the performance of classifier learned with the
Nyström approximation and that learned with the orig-
inal kernel. In this work, we make novel contributions
to bridge the gap without increasing the training costs
too much by proposing a refined Nyström based ker-
nel classifier. We adopt a two-step approach that in the
first step we learn a sufficiently good dual solution and
in the second step we use the obtained dual solution to
construct a new set of bases for the Nyström approx-
imation to re-train a refined classifier. Our approach
towards learning a good dual solution is based on a
sparse-regularized dual formulation with the Nyström
approximation, which can be solved with the same time
complexity as solving the standard formulation. We jus-
tify our approach by establishing a theoretical guarantee
on the error of the learned dual solution in the first step
with respect to the optimal dual solution under appro-
priate conditions. The experimental results demonstrate
that (i) the obtained dual solution by our approach in the
first step is closer to the optimal solution and yields im-
proved prediction performance; and (ii) the second step
using the obtained dual solution to re-train the model
further improves the performance.

Kernel method (Scholkopf and Smola, 2001; Shawe-Taylor
and Cristianini, 2004) (e.g., Support Vector Machine (SVM)
) is one of the most effective learning methods widely used
in classification and regression. Thanks to the kernel trick,
low dimension features in the original space are mapped
into high dimension features without explicitly computing
inner product between high dimensional features. However,
as the scale of data continues to grow, the kernel method
suffers from the severe problem of computing and main-
taining a tremendously large kernel matrix, rendering it pro-
hibitive even impossible to learn a kernel classifier in real
applications with big data. To speed up the training of a
kernel classifier for big data, several fast kernel approxima-
tion methods have been developed, including the Nyström
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method (Williams and Seeger, 2001; Drineas and Mahoney,
2005) and the random Fourier features (Rahimi and Recht,
2007) among others (Le et al., 2013; Yang et al., 2015b).
Recently, the authors in (Yang et al., 2012) studied the two
approximation schemes in a unified framework and demon-
strated that the Nyström method could achieve a better per-
formance than random Fourier features in certain scenar-
ios (e.g., when there is a large eigen-gap in the kernel ma-
trix (Yang et al., 2012) or the eigen-values follow a power-
law distribution (Jin et al., 2013)). In this work, we focus
on further improving the performance of the Nyström based
kernel classifier with the training time increased by a factor
of two.

The Nyström method for approximating a kernel matrix
works by constructing a set of bases referred to as landmark
points and then constructing an approximation based on the
kernel similarities between the landmark points and all data
points (including the landmark points). It has been observed
that the selection of the landmark points affects the perfor-
mance of the Nyström method (Kumar et al., 2009a). Nev-
ertheless, there still exists a gap between the performance of
the Nyström based kernel classifier and that of the optimal
kernel classifier. It remains an important problem to bridge
the performance gap while maintaining the efficiency. Re-
cently, there emerges a refined Nyström based kernel SVM
that first learns an approximate dual solution close enough
to the optimal dual solution to the original kernel SVM and
then uses the approximate dual solution to construct a set of
landmark points to improve the performance of the Nyström
based kernel classifier (Hsieh et al., 2014b).

In this paper, we propose an improved method to obtain
a good dual solution in the first step. Our approach is mo-
tivated by the fact that the original kernel classifier usually
has a small number of support vectors, indicating the op-
timal dual solution is a sparse vector. However, when ex-
ploring a Nyström approximation, the number of support
vectors could increase due to that some examples become
difficult to be classified, leading to an increased number of
support vectors, i.e., a denser dual solution. Therefore, in
order to improve the quality of the dual solution, we in-
troduce a sparsity-inducing regularizer into the dual forma-
tion defined with the Nyström approximation. We justify
the proposed approach by a theoretical analysis of the er-
ror bound of the obtained dual solution under the incoher-



ence and restricted eigen-value conditions. Empirically, we
observe that the proposed approach achieves better perfor-
mance than the original Nyström based kernel classifier and
the refined Nyström based kernel classifier using divide-and-
conquer approach for obtaining an approximate dual solu-
tion.

The main contributions of the paper are summarized as:
(i) we study a refined Nyström based kernel SVM and pro-
pose a new pipeline that first solves a sparse-regularized
dual formulation with the approximated kernel and then uti-
lizes the obtained dual solution to re-train a refined Nyström
based kernel classifier; and (ii) we justify the proposed ap-
proach by a theoretical analysis and extensive empirical
studies.

Related Work
In this section, we review some related work on approximate
kernel methods, the Nyström method, sparse learning and
randomized dimensionality reduction.

Due to the exceedingly high cost of computing and main-
taining a big kernel matrix for large-scale data, several fast
approximate kernel methods have been developed, includ-
ing random Fourier features (Rahimi and Recht, 2007), Fast-
food (Le et al., 2013) and the Nyström method (Drineas and
Mahoney, 2005) as representatives. Yang et al. (2012) stud-
ied the random Fourier features and the Nyström method
in a unified framework from the perspective of functional
approximation. They demonstrated that the random Fourier
features is equivalent to learning a predictive function using
a set of basis functions that are generated independent of the
data, while the Nyström method is equivalent to learning a
predictive function using a set of data-dependent basis func-
tions.

The Nyström method for approximating a positive semi-
definite (PSD) matrix has been studied extensively in re-
cent years (Drineas and Mahoney, 2005; Kumar et al.,
2009b; Yang et al., 2012; Zhang et al., 2008; Gittens, 2011;
Talwalkar and Rostamizadeh, 2010; Gittens and Mahoney,
2013; Jin et al., 2013). Nevertheless, when employed in ker-
nel methods for classification and regression, there still exits
a gap between the performance of the Nyström based kernel
classifier and the optimal kernel classifier. Recently, (Hsieh
et al., 2014b) proposed a refined Nyström based kernel clas-
sifier based on a two-step approach where in the first step an
approximate dual solution is learned and in the second step
a set of new landmark points are constructed using the ap-
proximate dual solution obtained in the first step. Our work
differentiates from this work in how to learn an approximate
dual solution as described in the introduction.

Sparse learning has been researched tremendously is ma-
chine learning and statistics. Almost all existing studies
are centered around imposing a sparsity-induced regularizer
(e.g., the `1 norm) on the model (i.e., the primal solution).
In this work, we impose a `1 norm on the dual solution
motivated by the fact that in kernel SVM many examples
could be non-support vectors, indicating their corresponding
dual variables are zeros. The most relevant work is presented
in (Xu et al., 2015), which studied a sparse kernel regression
with the Nyström approximation.

It was brought to our attention that the proposed approach
for learning a good dual solution in the first step is similar
to a recent work on the dual recovery analysis for random-
ized dimensionality reduction for solving high-dimensional
learning problems (Yang et al., 2015a) , which employed
the JL transform to reduce high-dimensional examples into
a low-dimensional space, then proposed to solve a sparse-
regularized dual formulation. Although the proposed ap-
proach share the same insight on the introduced sparsity-
inducing regularizer on the dual variables, we emphasize
that the present work makes non-trivial contributions in the
analysis since the Nyström method is not a JL transform,
therefore the analysis in (Yang et al., 2015a) based on the
JL lemma can not carry over to the Nyström based kernel
method.

The problem and Proposed Algorithm
Preliminaries and Motivation
Let (xi, yi), i = 1, · · · , n denote a set of training ex-
amples, where xi ∈ Rd denotes the feature vector, and
yi ∈ {+1,−1} denotes the class label. Let κ(·, ·) denote
a valid kernel function and Hκ denote a Reproducing Ker-
nel Hilbert Space endowed with κ(·, ·). The kernel SVM is
to solve the following optimization problem:

min
f∈Hκ

1

n

n∑
i=1

`(f(xi), yi) +
λ

2
||f ||2Hκ (1)

where `(z, y) = max(0, 1 − yz)p (p = 1 or 2) is the hinge
loss or the squared hinge loss. Using the convex conjugate
function, the above optimization problem can be turned into
a dual problem:

α∗ = arg max
α∈Ωn

− 1

n

n∑
i=1

`∗i (αi)−
1

2λn2
αTKα (2)

where Ωn is the domain of the dual solution, K ∈ Rn×n
is the kernel matrix, and `∗i (αi) is the convex conjugate of
`(z, yi) in terms of z. For example, if `(z, yi) = max(0, 1−
yiz), then `i(αi) = αiyi and Ωn = {α ∈ Rn : −1 ≤
α ◦ y ≤ 0}. When the number n of training examples is
large it is prohibitive to compute and maintain the kernel
matrix K. The Nyström method computes a low-rank ap-
proximation of K by sampling a small subset of columns of
K or constructing a set of landmark points to address the
computation and memory limitations. In particular, if we let
Lm = {c1, · · · , cm}, where ci ∈ Rd, denote a set of m
landmark points, K̃m ∈ Rm×m denote the sub-kernel ma-
trix between the points in Lm, and Kb ∈ Rn×m denote the
sub-kernel matrix between all examples and the landmark
points, then the Nyström approximation of K is computed
by

K̂ = KbK̃
†
mK

T
b (3)

where K̃†m denotes the pseudo-inverse of K̃m. When apply-
ing the Nyström approximation for solving the dual prob-
lem, we have the following optimization problem:

α̂∗ = arg max
α∈Ωn

− 1

n

n∑
i=1

`∗i (αi)−
1

2λn2
αT (KbK̃

†KT
b )α

(4)



which is equivalent to the dual problem of using a short fea-
ture representation of training examples

x̂i = (K̃†m)1/2(κ(xi, c1), · · · , κ(xi, cm))T , i = 1, . . . , n
(5)

Let X̂ = (x̂1, · · · , x̂n) ∈ Rm×n, it is straightforward to
verify K̂ = X̂T X̂ , and the problem (4) can be written as

max
α∈Ωn

− 1

n

n∑
i=1

`∗i (αi)−
1

2λn2
αT X̂T X̂α (6)

which can be solved efficiently using stochastic optimization
algorithms developed for linear methods (Shalev-Shwartz
and Zhang, 2013; Johnson and Zhang, 2013; Lin et al.,
2014). The overall running time of the Nyström based ker-
nel classifier consists of the running time of computing the
short feature representation of all training data, which is
O(m2n+m3), and the running time of optimization. Hence,
the Nyström based kernel classifier can be trained efficiently
when m is relatively small. On the other hand, the general-
ization performance of the Nyström based kernel classifier
is in the order of O(1/

√
m) for general data, though which

can be improved to O(1/m) for some special data (Yang
et al., 2012). Therefore, with a small value of m, there still
exists a potentially large gap between the performance of
the Nyström based kernel classifier and the optimal kernel
classifier. In this paper, we propose a refined Nyström based
kernel SVM to bridge the gap between the Nyström based
kernel classifier and the optimal kernel classifier. To moti-
vate the proposed approach, we first note that given the op-
timal dual solution α∗, the optimal kernel classifier can be
written as: f∗(·) = − 1

λn

∑n
i=1[α∗]iκ(xi, ·). If we know that

α∗ is m-sparse with m � n and choose the support vec-
tors as landmark points, i.e., L∗m = {c∗1, . . . , c∗m} = {xi :
[α∗]i 6= 0}, then we can solve the following optimization
problem

min
f∈Hmκ

1

n

n∑
i=1

`(f(xi), yi) +
λ

2
||f ||2Hκ (7)

where Hmκ = {f : f =
∑m
i=1 βiκ(c∗i , ·)}. As demonstrated

in (Yang et al., 2012), the problem in (7) is equivalent to us-
ing the Nyström approximation constructed with the land-
mark points in L∗m. It is not difficult to show that under
the discussed conditions the optimal solution to the above
problem is also the optimal solution to (1). The details are
shown in the supplement. From another perspective, follow-
ing the Theorem 2 in (Hsieh et al., 2014b), the error of α̂∗ is
bounded by

‖α̂∗ − α∗‖2 ≤
1

nλnnz
‖K̃m‖2(1 + ‖K̂‖2)∆,

where ∆ =

n∑
i=1

|[α∗]i|‖K̂∗i −K∗i‖2
(8)

where λnnz is the minimum nonzero eigen-value of K/n
and K∗i denotes the i-th column of K. It indicates that
the quality of α̂∗ is mostly affected by a small portion of

columns of K with larger |[α∗]i|. The above argument sug-
gests a two-step approach towards improving the perfor-
mance of the Nyström based kernel classifier: in the first step
we learn an approximate dual solution that is close to α∗ and
then in the second step we construct a set of landmark points
aiming to minimize ∆ using the approximate dual solution
in place of α∗. (Hsieh et al., 2014b) also implements the
two-step approach by learning an approximate dual solution
using the divide-and-conquer approach (Hsieh et al., 2014a)
that divides all examples into a number of groups and solves
a small kernel SVM for each group to obtain an approxi-
mate dual solution. However, there is no guarantee on the
quality of the obtained dual solution. Below, we propose a
more solid approach to learn a refined Nyström based kernel
SVM.

A Refined Nyström based kernel SVM
Our approach is inspired by the fact that in the optimal ker-
nel classifier the number of support vectors is usually rela-
tively small compared to the total number of examples, in-
dicating the optimal dual solution is a sparse vector. How-
ever, when exploring a Nyström approximation, the number
of support vectors could increase due to that some examples
become difficult to be classified, leading to increased num-
ber of support vectors, i.e., a denser dual solution. There-
fore, in order to improve the quality of the dual solution, we
introduce a sparsity-inducing regularizer into the dual for-
mation defined with the Nyström approximated kernel. In
particular, we solve the following formulation to obtain an
improved dual solution:

α̃∗ = arg max
α∈Ωn

− 1

n

n∑
i=1

`∗i (αi)−
1

2λn2
αT K̂α− τ

n
||α||1

(9)
It was shown in (Yang et al., 2015a) when the loss is the
hinge loss or the squared hinge loss, adding the `1 norm on
the dual variable α is equivalent to using a new loss function
with a reduced margin 1− τ as compared with 1 used in the
standard hinge loss. To see this, we can consider the hinge
loss `(z, y) = max(0, 1 − yz), then `∗i (αi) = αiyi and
Ωn = {α ∈ Rn : −1 ≤ α ◦ y ≤ 0}, and with a variable
change the new problem in (9) can be reduced to

max
β∈[0,1]n

1

n

n∑
i=1

βi(1− τ)− 1

2λn2
(β ◦ y)T K̂(β ◦ y)

which is the dual problem of the following problem

max
w∈Rm

1

n

n∑
i=1

max(0, (1− τ)− yiw>x̂i) +
λ

2
||w||22

with the reduced margin 1− τ in the definition of the hinge
loss. In the next subsection, we provide a theoretical anal-
ysis of the proposed sparse-regularized dual formation with
the Nyström approximation by establishing an error bound
of the obtained dual solution α̃∗. The above analysis also im-
plies that the new formulation can be solved with the same
time complexity as solving the original formulation in (6).



Next, we briefly discuss the second step that uses the ob-
tained dual solution α̃∗ to re-train a refined Nyström based
kernel classifier. The methodology is to select a new set of
landmark points using the dual solution α̃∗ and then learn
a Nyström based kernel classifier using the selected land-
mark points. In Hsieh et al. (2014b), the authors have sug-
gested an approach based on weighed k-means clustering.
This approach is grounded in that when the kernel func-
tion is stationary (i.e., κ(xi,xj) = κ(‖xi − xj‖2)), the ∆
in (8) is bounded by a quantity that is proportional to the
square root of a weighted k-means objective defined with
the weights given by square of the optimal dual solution,
i.e.,

∑n
i=1[α∗]

2
i ‖xi − cπi‖2, where πi = arg minj ‖xi −

cj‖2. Thus, one can perform a weighted k-means using the
weights given by [α̃∗]

2
i , i ∈ [n] and use the resulting cluster

centers as landmark points to construct the Nyström approx-
imation. However, this approach will introduce an additional
cost of weighted k-means clustering to find the clusters and
is restricted to stationary kernels. In this paper, we use a sim-
ple alternative based on a greedy approach. It is motivated
by that if α∗ is given we can select the examples that have
largest |[α∗]i| to minimize ∆. In practice, we only obtain an
approximate dual solution α̃∗, hence we opt for a probabilis-
tic sampling approach that selects examples based on the
probability distribution Pr(xi is selected) = |[α̃∗]i|∑n

i=1 |[α̃∗]i| ,
which is observed to be more effective than a determinis-
tic approach that simply selects examples that have largest
|[α̃∗]i| and also competitive with the weighted k-means sam-
pling approach.

A Theoretical Analysis
We provide a theoretical analysis of the error of α̃∗ below
and finally present a theorem to summarize the main result.
Let S be the support set of α∗ and s = |S| be the number
of non-zero entries in α∗. Denote by αS the vector that only
contains elements of α in S. We assume that s� n. Before
presenting our analysis we need to define a few quantities
regarding the kernel matrix as follows:

∆̂ =
1

n

n∑
i=1

|[α∗]i||K̂∗,i −K∗,i|∞,

γ(s) = min
1≤‖α‖0≤s

1

n

α>Kα

‖α‖2
> 0

where γ(s) > 0 is known as restricted eigen-value condi-
tion of K/n in the literature (Bickel et al., 2009). We de-
note by λi, i ∈ [n] the eigen-values of K/n ranked in the
descending order. In addition, we introduce the following
coherence measure to facilitate our analysis. For any real
PSD matrix A ∈ RN×N , let τk(A) denote the coherence
of a dominant k-dimensional invariant subspace of A spec-
ified by τk(A) = N

k maxi(PUk)ii, where PUk = UkU
>
k

denotes the projection onto the dominant k invariant sub-
space of A (i.e., Uk contains the top-k eigen-vectors of A as
its columns). The coherence measure has been used in ma-
trix completion (Recht, 2011) and random matrix approxi-
mation (Gittens, 2011). To characterize the coherence mea-
sure of the kernel matrix K with respect to any subset Ω of

cardinality m+ s, we define

τk(m, s) = max
Ω∈[n],|Ω|=m+s

τk(KΩ,Ω)

where KΩ,Ω is the submatrix of K with row and column
indices in Ω. We first present the following lemma showing
that α̃∗ − α∗ lies in the cones of dominant coordinates as in
the definition of restricted eigen-value.
Lemma 1. Let S be the support set of α∗ and Sc denote its
complement. By setting τ ≥ 2

λn

∑n
i=1 |[α∗]i|‖K̂∗i−K∗i‖∞,

we have ‖[α̃∗ − α∗]Sc‖1 ≤ 3‖[α̃∗ − α∗]S‖1.
Due to limit of space, we put all proofs in the supplement.

We assume `∗i (α) is µ-strongly convex, where µ ≥ 0 1. Fol-
lowing the optimality condition of α̃∗ to (9) and the opti-
mality condition of α∗ to (2), there exists g∗ ∈ ∂‖α̃∗‖1 such
that

(α̃∗ − α∗)>(5f(α̃∗) +
1

λn2
K̂α̃∗ +

τ

n
g∗) ≤ 0,

(α̃∗ − α∗)>(5f(α∗) +
1

λn2
Kα∗) ≥ 0

where f(α) = 1
n

∑n
i=1 `

∗
i (αi). Using the Cauchy-Schwarz

inequality, we have

(α̃∗ − α∗)>(5f(α̃∗) +
1

λn2
K̂α̃∗) +

τ

n
‖[α̃∗]Sc‖1

≤ τ

n
‖[α̃∗ − α∗]S‖1

Thus, we have
τ

n
‖[α̃∗ − α∗]S‖1 −

τ

n
‖[α̃∗]Sc‖1

≥ (α̃∗ − α∗)>(5f(α̃∗) +
1

λn2
K̂α̃∗)

= (α̃∗ − α∗)>(5f(α∗) +
1

λn2
Kα∗)

+ (α̃∗ − α∗)>(5f(α̃∗)−5f(α∗))

+
1

λn2
(α̃∗ − α∗)>(K̂α̃∗ −Kα∗)

≥ 0 +
µ

n
‖α̃∗ − α∗‖22 +

1

λn

1

n
(α̃∗ − α∗)>(K̂ −K)α∗︸ ︷︷ ︸

A

+
1

λn

1

n
(α̃∗ − α∗)>K̂(α̃∗ − α∗)︸ ︷︷ ︸

B

where the second inequality uses that f(α) is (µ/n)-
strongly. Next, we bound the two terms A, and B. For
bounding A, we have A ≥ −‖α̃∗ − α∗‖1∆̂. For bounding
B, we prove the following lemma in the supplement.
Lemma 2. If m ≥ 8kτk(m, 16s)

(
16s log d+ log k

δ

)
, by

setting τ ≥ 2
λn

∑n
i=1 |[α∗]i|‖K̂∗i −K∗i‖∞, then

B ≥ 2

(
γ(16s)−

(
3 +

32s

m

)
λk+1

)
‖α̃∗ − α∗‖22.

1When µ = 0, it is a convex function. The squared hinge loss
is 1/2-strongly convex.



Table 1: Statistics of datasets

Name usps letter ijcnn1 webspam cod-rna covtype
#Training 7,291 12,000 91,701 280,000 271,617 464,810
#Testing 2,007 6000 49,990 70,000 59,535 116,202
#Features 256 16 22 254 8 54

Given the above bounds for A and B, we have

‖α̃∗ − α∗‖22(λµ+ 2γ(16s)− (6 + 64s/m)λk+1)

+ (λτ − ∆̂)|α̂Sc |1 ≤ (λτ + ∆̂)‖[α̃∗ − α∗]S‖1

If we assume that τ ≥ 2∆̂
λ , then it is not difficult to prove

the error bound stated in the following theorem.

Theorem 1. Assume for some k and δ ∈ (0, 1) and the
following conditions hold

λµ+ 2γ(16s) ≥
(

6 +
64s

m

)
λk+1,

m ≥ 8kτk(m, 16s)

(
16s log d+ log

k

δ

)
By setting τ ≥ 2

λn

∑n
i=1 |[α∗]i|‖K̂∗i −K∗i‖∞ Then, with a

probability 1− δ, we have

‖α̃∗ − α∗‖2 ≤
1.5λ
√
sτ

λµ+ 2γ(16s)− (6 + 64s/m)λk+1

Remark: It is interesting to compare our error bound of
α̃∗ with the bound of the original Nyström based formula-
tion in terms of α̂∗ as in (8) derived by (Hsieh et al., 2014b)
and the error bound of dual solution obtained by the divide-
and-conquer approach (Hsieh et al., 2014a). Considering
τ = Θ( 1

λn

∑n
i=1 |[α∗]i|‖K̂∗i−K∗i‖∞), compared with (8),

our error bound is proportional to
∑n
i=1 |[α∗]i|‖K̂∗i −

K∗i‖∞ which is smaller than ∆ as in the error bound of
α̂∗. The error bound of α̂∗ has an inverse dependence on the
minimum non-zero eigen-value of K/n, which in practice
could be very close to zero, leading to potentially a large
error in α̂∗. In contrast, our error bound is inversely propor-
tional to λµ+2γ(16s)−(6+64s/m)λk+1, depending on the
minimum restricted eigen-value. In addition, the error bound
in (8) depends on ‖K̃m‖2 and ‖K̂‖2, while our error bound
only depends on

√
s, making the proposed refined Nyström

based kernel classifier attractive when the number of sup-
port vectors is relatively small. Compared with the error
bound of the approximate solution obtained by the divide-
and-conquer approach (Theorem 1 (Hsieh et al., 2014a)),
which depends on how well the data is clustered and is in-
versely proportional to the minimum eigen-value of the ker-
nel matrix, the bound in Theorem 1 is better.

Experiments
Implementation
In our experiments, we implement both the feature construc-
tion by the Nyström method and the optimization of linear
SVM in a cluster environment. The training data is randomly
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Figure 1: Test Accuracy for linear SVM, RBF SVM and
Nyström based kernel classifier with different number of
samples on the six datasets.
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Figure 2: Test Accuracy of the spare-regularized Nyström
based kernel classifier.

partitioned over 5 nodes. Given the landmark points, we con-
struct the short feature representation as in Eqn. (5) for all
training examples by running the code parallel on 5 nodes.
To solve the linear SVM problem in a distributed fashion,
we use the recently proposed distributed stochastic dual co-
ordinate ascent algorithm (Yang, 2013; Ma et al., 2015).

Experimental Results
In this section, we present empirical evaluations of the pro-
posed refined Nyström based kernel classifier on six real-
world datasets, namely usps, letter, ijcnn1, webspam, cod-
rna and covtype, of which we use the version available on
LIBSVM website 2. Table 1 summarizes the statistics of
these datasets. We run linear SVM and kernel SVM using
LIBLINEAR and LIBSVM, respectively. The kernel used
in the experiments is the RBF kernel and the loss function
is the hinge loss. Through cross-validation, we choose the
best parameter C from 2[−6:1:6] and the best parameter γ for
the RBF kernel from 2[−6:2:6]. For the methods that involves
randomness, the results are averaged over five random trials
of sampling.

We first compare the original Nyström based kernel clas-
sifier with different number of samples to linear SVM and
kernel SVM, with results shown in Figure 1. For the orig-
inal Nyström approximation, we use uniform sampling to
select examples from the training data. We can see that
as the number of samples m for the Nyström approxima-
tion increases, the test accuracy is monotonically increas-
ing. However, there still exits a potentially large gap in the

2http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


performance as compared with the optimal kernel classifier.
For example, the optimal kernel classifier outperforms the
Nyström based kernel classifier withm = 4096 by 3 percent
on webspam dataset and by 4 percent on the ijcnn1 dataset.

Next, we verify the proposed sparse-regularized dual for-
mulation with the Nyström approximation. The test accu-
racy is evaluated on the returned model constructed from the
obtained dual variables. Comparing this with the the stan-
dard Nyström based kernel classifier allows us to see the
effect of the added sparsity-inducing regularizer. The results
are shown in Figure 2 with the value of τ varying from 0
to 0.9 3. When the value of τ is 0, it reduces to the stan-
dard Nyström based kernel classifier. From the results, we
can see that adding the sparsity-inducing regularizer to the
dual formulation with the Nyström approximation can boost
the performance. For example, when m = 4096 the perfor-
mance of the Nyström based kernel classifier is improved by
2 percent on the ijcnn1 dataset.

Next, we examine the performance of the refined Nyström
based kernel SVM. We use the obtained dual solution to the
sparse-regularized dual formulation to construct a new set of
landmark points to re-train a Nyström based kernel classi-
fier. For each value of τ , we optimize the sparse-regularized
dual formulation and obtain a dual solution, then we use
the dual solution to construct the same number of land-
mark points to compute a new Nyström approximation for
learning a new classifier. We report the results of the prob-
abilistic approach (referred to as sp-pro-nys) for construct-
ing the landmark points, which is described on page 4. For
baselines, we include the results of the model directly con-
structed from the obtained dual solution in the first step (re-
ferred to as sp) and the approach that uses the divide-and-
conquer approach (Hsieh et al., 2014a) to obtain a dual so-
lution to re-train a Nyström based kernel classifier using the
weighted k-means to find the centers as the landmark points
as suggested in (Hsieh et al., 2014b). This approach is re-
ferred to as dc-wkm-nys. Note that the divide-and-conquer
approach requires a clustering on the training data in order
to obtain a partition of the training data. We follow the idea
in (Hsieh et al., 2014b) and use the standard k-means clus-
tering to partition the data instead of the expensive kernel k-
means clustering as suggested in (Hsieh et al., 2014a). The
results are shown in Figure 3. From the results we can see
that (i) the second step that re-trains a new Nyström based
kernel classifier using the obtained dual solution in the first
step can further improve the performance; (ii) the proposed
new pipeline outperforms the divide-and-conquer approach
followed by the weighted k-means sampling approach for
constructing a new Nyström approximation.

Finally, we compare the training time of linear SVM, ker-
nel SVM, the standard Nyström based kernel classifier and
the refined Nyström based kernel classifier. We report the re-
sults on two datasets webspam and cod-rna with m = 1024
in the Figure 4. It shows that the training time of Nyström
on both datasets is much less than kernel SVM. On the other

3When τ > 1, it will yield trivial solution with the optimal
model being zero. To avoid clutter, we only show one curve on the
covtype dataset.
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Figure 3: Test Accuracy of the refined Nyström based kernel
classifier (sp-pro-nys). The value of m is set to 1024 in the
proposed algorithm. For the divide-and-conquer approach,
the x-axis denotes 1−nc/100, where nc denotes the number
of clusters used in divide-and-conquer approach. We did not
report the result on the covtype due to that the divide-and-
conquer approach needs to solve multiple kernel SVM on
each partition. When the number of partitions is small, each
kernel SVM is still expensive.
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Figure 4: Training time of linear SVM, kernel SVM, the
standard Nyström based classifier, and the refined Nyström
based classifier for m = 1024 on two datasets webspam and
cod-rna.

hand, the training time of the refined Nyström based clas-
sifier is also comparable to training time of the standard
Nyström method.

Conclusions
In this paper, we have considered improving the perfor-
mance of the Nyström based kernel SVM. We proposed a
fast and accurate refined Nyström based kernel classifier that
consists of two steps, where in the first step we learn an ac-
curate dual solution based on a sparse-regularized dual for-
mulation with the Nyström approximation and in the second
step we use the obtained dual solution to re-train a Nyström
based kernel classifier. We established an error bound of
the obtained dual solution in the first step, which is better
than previous theoretical results. The empirical evaluations
on various datasets further demonstrate the effectiveness of
the proposed algorithm.
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