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Abstract
In online bandit learning, the learner aims to mini-
mize a sequence of losses, while only observing the
value of each loss at a single point. Although various
algorithms and theories have been developed for online
bandit learning, most of them are limited to convex loss-
es. In this paper, we investigate the problem of online
bandit learning with non-convex losses, and develop an
efficient algorithm with formal theoretical guarantees.
To be specific, we consider a class of losses which is a
composition of a non-increasing scalar function and a
linear function. This setting models a wide range of su-
pervised learning applications such as online classifica-
tion with a non-convex loss. Theoretical analysis shows
that our algorithm achieves an eO(poly(d)T 2/3) regret
bound when the variation of the loss function is small.
To the best of our knowledge, this is the first work in
online bandit learning that does not rely on convexity.

Introduction
Online decision-making has become a popular learning
paradigm in many disciplines such as Artificial Intelligence,
Economics and Control Theory (Saha and Tewari 2011). At
each round of online learning, the learner chooses a deci-
sion from a given set, and an adversary responds with a loss
function that decides the cost of decisions. The performance
of an online learning algorithm is measured by the regret,
which is the difference between the total cost of the deci-
sions it chooses, and the cost of the optimal decision cho-
sen in hindsight. According to the amount of information
revealed to the learner, online learning can be classified into
two categories (Cesa-Bianchi and Lugosi 2006): i) full in-
formation setting where the learner observes the entire cost
function, and ii) bandit setting where only the cost of the
selected action is available.

In the past decades, there have been tremendous pro-
gresses made in online bandit learning, ranging from mul-
tiarmed bandit (Robbins 1952; Auer et al. 2003), online lin-
ear optimization with bandit feedback (Awerbuch and K-
leinberg 2004; Dani, Kakade, and Hayes 2008; Abernethy,
Hazan, and Rakhlin 2008), to online convex optimization
with bandit feedback (Flaxman, Kalai, and McMahan 2005;
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Saha and Tewari 2011; Agarwal, Dekel, and Xiao 2010).
A major limitation of the previous work is that most of
them are restricted to convex losses. The drawback of us-
ing convex losses has been revealed by several recent stud-
ies. In (Calauzènes, Usunier, and Gallinari 2012), the au-
thors show it is impossible to find any convex loss that is
calibrated with the standard evaluation metrics for ranking.
Similarly, for multi-label learning, no convex loss is consis-
tent with the popular ranking loss (Gao and Zhou 2011). The
success of deep learning also indicates the significance of
using non-convex losses (Hinton, Osindero, and Teh 2006).

The resurge of non-convex losses in machine learning
motives us to investigate online bandit learning with non-
convex loss functions. In particular, we consider the follow-
ing learning protocol.
• At the t-th round, the learner submits a point x

t

2 Rd with
kx

t

k2  1, and simultaneously an oblivious adversary
selects a vector u

t

and a non-increasing scalar function
f
t

: R 7! R that assesses the consistency between the
ground truth u

t

and the answer x
t

by f
t

(x

>
t

u

t

).
• Instead of revealing the loss function f

t

(hu
t

, ·i) directly,
the adversary only provides the learner c

t

2 R whose
expectation is the cost f

t

(u

>
t

x

t

), i.e.,
E

t�1[ct] = f
t

(u

>
t

x

t

), (1)
where E

t�1[·] is the expectation conditioned on the ran-
domness until round t� 1.

Notice that the above protocol generalizes many machine
learning tasks. Taking the online classification as an exam-
ple, we can set u

t

= y
t

z

t

, where z

t

2 Rd is an instance,
y
t

2 {±1} is the assigned class label, and f
t

(·) can be any
loss function such as the ramp loss (Ertekin, Bottou, and
Giles 2011).

We emphasize that in our setting both u

t

and f
t

(·) are
unknown to the learner. More importantly, unlike most on-
line learning that assume the loss function to be convex, in
this study, f

t

(·) can be non-convex. This relaxation makes
our problem significantly more challenging than most on-
line learning problems, including the traditional online ban-
dit learning. Following the convention in online learning, our
goal is to generate a sequence of answer vectors x1, . . . ,xT

,
that leads to a small regret defined below

regret =
TX

t=1

f
t

(u

>
t

x

t

)� min

kxk21

TX

t=1

f
t

(u

>
t

x).



We present a simple algorithm for online bandit learn-
ing with non-convex losses. It is computationally efficien-
t and achieves a non-trivial regret bound under appropriate
conditions. Our approach follows the standard exploration-
exploitation framework for bandit learning (Awerbuch and
Kleinberg 2004; McMahan and Blum 2004). In an explo-
ration round, the algorithm submits a random vector in order
to obtain an unbiased estimate of u

t

, and updates the curren-
t solution based on the bandit feedback. In an exploitation
round, it submits the current solution in order to incur a s-
mall loss. Under the assumption that f

t

(·) is non-increasing
and Lipschitz continuous, we are able to bound the regret by
the number of iterations and the variation of the target vec-
tors {u

t

}T
t=1. To be specific, the regret bound takes the form

eO(poly(d)T 2/3
+

p
TV

T

),1 where V
T

is the variation of vec-
tors u1, . . . ,uT

. Thus, the proposed algorithm achieves an
eO((poly(d)T 2/3

) regret bound if V
T

 O(T 1/3
).

Related Work
In this section, we briefly review the related work in online
convex and non-convex optimizations.

Online Convex Optimization
In the full information setting, online convex optimiza-
tion has been extensively studied (Kivinen, Smola, and
Williamson 2002; Zhang et al. 2013). Zinkevich (2003)
shows that a simple online gradient descent algorithm
achieves an O(

p
T ) regret bound for convex and Lipschitz

continuous functions. When the loss function is strongly
convex, the regret bound can be improved to O(log T ) (Haz-
an, Agarwal, and Kale 2007). Both the O(

p
T ) and

O(log T ) regrets bounds, for convex and strongly convex
loss functions respectively, are known to be minimax op-
timal (Abernethy et al. 2009).

Compared to the full information setting, the regret bound
for the bandit setting is usually worse and has an explicit de-
pendence on the dimensionality d. The current best-known
regret bounds are O(dT 3/4

), eO(d2/3T 2/3
), O(d2/3T 2/3

),
and O(d

p
T ) for convex, convex-and-smooth, strongly con-

vex, and strongly-convex-and-smooth functions, respective-
ly (Flaxman, Kalai, and McMahan 2005; Saha and Tewari
2011; Agarwal, Dekel, and Xiao 2010). Notice that when
the learner is allowed to query the loss function at multiple
points, the regret can be improved to match its counterpart
in the full information setting (Agarwal, Dekel, and Xiao
2010).

In the bandit setting, there are two special cases that are
well-studied: multiarmed bandit and online linear optimiza-
tion with bandit feedback. In the first problem, we assume
there are K arms, and a gambler pulls one of them to re-
ceive a reward in each round. Auer et al. (2003) prove that
the gambler’s regret can be bounded by eO(

p
KT ), which

is optimal up to logarithmic factors (Audibert and Bubeck
2009). Furthermore, if the reward function has some struc-
tural properties, such as Lipschitz (Magureanu, Combes,

1We use the eO notation to hide constant factors as well as poly-
logarithmic factors in d and T .

and Proutiere 2014), the regret could be further improved.
The online linear optimization problem with bandit feed-
back was first introduced by Awerbuch and Kleinberg (2004)
who obtained a O(d3/5T 2/3

) regret bound against an obliv-
ious adversary. Later, McMahan and Blum (2004) achieved
an O(poly(d)T 3/4

) regret bound against an adaptive ad-
versary. In (Dani, Kakade, and Hayes 2008; Abernethy,
Hazan, and Rakhlin 2008), the regret bound was improved
to O(poly(d)

p
T ), where the dependence on T is opti-

mal (Bubeck, Cesa-Bianchi, and Kakade 2012).

Online Non-convex Optimization
Several heuristic approaches have been developed for on-
line learning with non-convex loss in the full information
setting, such as the online version of the concave-convex
procedure (Ertekin, Bottou, and Giles 2011; Gasso et al.
2011). However, none of them are equipped with a formal
regret bound. One exception is the online submodular mini-
mization (Hazan and Kale 2012) that achieves O(

p
dT ) and

O(dT 2/3
) regret bounds in the full information and bandit

settings, respectively. But these algorithms rely on the spe-
cific property of submodular function (i.e., the Lovász exten-
sion is convex), and thus cannot be applied to the problem
considered here.

An Efficient Algorithm for Online Bandit
Learning

We first describe the proposed algorithm for online bandit
learning with non-convex losses, and then state its theoreti-
cal guarantees.

The Algorithm
Algorithm 1 summarizes the key steps of the proposed al-
gorithm. We maintain two sequences of vectors during the
learning process: the answer vectors x

t

and the auxiliary
vector w

t

. We initialize the answer vector x1 to be a ran-
dom normalized vector, and the auxiliary vector w1 to be 0.
At each iteration t, we generate a Bernoulli random variable
Z
t

with Pr(Z
t

= 1) = ⌘ to determine whether to explore
or exploit. When Z

t

= 0, we will simply submit the answer
vector x

t

as the solution, and make no update. When Z
t

= 1,
we will first compute a normalized Gaussian random vector
v

t

/kv
t

k2 and submit it as the answer. Based on the received
feedback c

t

, we update the auxiliary vector and the answer
vector by

w

t+1 = w

t

� c
t

kv
t

k2
v

t

and x

t+1 =

w

t+1

kw
t+1k2

.

We note that for the sake of simplicity, Algorithm 1 fol-
lows the early studies of online bandit learning that sepa-
rate the exploration steps from the exploitation steps (Awer-
buch and Kleinberg 2004; McMahan and Blum 2004). This
is different from the more recent strategy for exploration-
exploitation (Flaxman, Kalai, and McMahan 2005; Aber-
nethy, Hazan, and Rakhlin 2008) that usually combines ex-
ploration and exploitation into a single step by adding ran-
dom perturbation to the submitted solutions. We will exam-



Algorithm 1 An Efficient Algorithm for Online Bandit
Learning
Input: step size ⌘ and number of trials
T

1: Set ⌘ = T�1/3

2: Initialize x1 as any random normalized vector and w1 =

0

3: for t = 1, 2, . . . , T do
4: Sample binary random variable Z

t

with Pr(Z
t

=

1) = ⌘.
5: Sample a random vector v

t

from an Gaussian distri-
bution N (0, I

d

)

6: Submit the solution x

0
t

= Z
t

vt
kvtk2

+ (1� Z
t

)x

t

7: Receive c
t

from the adversary
8: Update the auxiliary vector w

t+1 = w

t

� Ztct
kvtk2

v

t

9: Update the answer vector x
t+1 = w

t+1/kwt+1k2
10: end for

ine in the future the second strategy for online bandit learn-
ing with non-convex losses.

Finally, we would like to point out that following the idea
of discretizing the decision space (Dani, Kakade, and Hayes
2008), our problem can be reduced to the multiarmed bandit
and solved by existing methods (Auer et al. 2003). However,
this strategy is inefficient because the number of arms is ex-
ponential in the dimensionality d, and the regret bound may
also have a high dependence on d. In contrast, our algorithm
is very efficient and the regret bound only has a polynomial
dependence on d.

The Main Results
Besides the basic assumption in (1), we further make the
following assumptions in our analysis.
• f

t

(·) is non-increasing and L-Lipschitz continuous.
• Both c

t

and f
t

(·) are upper bounded by a constant B. That
is,

sup

t2[T ]
|c

t

|  B, and sup

t2[T ],kxk21
|f

t

(u

>
t

x)|  B. (2)

• The target vectors u
t

’s are of unit length, i.e., ku
t

k2 = 1,
t = 1, . . . T .

• The adversary is oblivious, meaning that both u

t

’s and
f
t

’s are fixed.
As a starting point, we first analyze the regret bound for the
simplest case when all the target vectors are the same, and
then move to the general case.

Regret Bound for a Single Target Vector We first con-
sider the simplest case when u1 = u2 = · · · = u

T

= u and
f1 = f2 = · · · = f

T

= f .
Define h(z) as the probability density function (PDF) of

the inner product of random unit vectors in Rd. When d = 1,
it is easy to verify

h(z) =
1

2

(�(z � 1) + �(z + 1)),

where �(·) is the Dirac delta function. When d � 2, we
have (Cho 2009)

h(z) =

(
�
(

d
2 )

�
(

d�1
2 )

p
⇡

(1� z2)
d�3
2 , for � 1 < z < 1

0, otherwise
(3)

where �(·) is the Gamma function. The following propo-
sition, which is inspired by the recent developments in
one-bit compressive sensing (Plan and Vershynin 2013;
Zhang, Yi, and Jin 2014), provides the key observation for
our analysis.
Proposition 1. We have

E

t�1


� Z

t

c
t

kv
t

k2
v

t

�
= �⌘u, t = 1, . . . , T (4)

where

� = �
Z 1

�1
f(z)h(z)z d z. (5)

From our assumption that f(·) is non-increasing, it is easy
to verify that � � 0. We note that � will have a strong depen-
dence on d. Generally speaking, we have � = poly(d�1

).
For instance, when f(z) = �z, we have � = E[z2] =

d�1 (Cho 2009).
Proposition 1 shows that in the exploration step, our al-

gorithm is able to find an unbiased estimate of u, up to a
scaling factor. Based on this observation, we obtain the fol-
lowing regret bound.
Theorem 1. Assume

T � max

8
<

:e,

 r
log

T (d+ 1)

�
log T

!3
9
=

; . (6)

Set ⌘ = T�1/3
in Algorithm 1. Then, with a probability 1�

� � ⌧ , we have

regret 

4B

✓
log

1

⌧
+ 1

◆
+ 4B

 
3L

�

r
log

T (d+ 1)

�
+ 1

!
T

2
3 .

To simplify the presentation, we assume the horizon T is
known so that we can choose ⌘ = T�1/3 in the algorithm.
This limitation could be addressed by the well-known “dou-
bling trick” (Cesa-Bianchi and Lugosi 2006). Theorem 1 im-
plies our algorithm achieves an eO(��1T 2/3

) regret bound,
which is even better than the regret bound in the general
online convex optimization with bandit feedback (Flaxman,
Kalai, and McMahan 2005). From the discussion in (Dani
and Hayes 2006; Abernethy, Hazan, and Rakhlin 2008), we
also know that ⌦(T 2/3

) regret bound is unavoidable if any
algorithm ignores the feedback received during exploitation.
We finally note that although the regret bound in Theorem 1
does not have an explicit dependence on d, its dependence
on d comes from �.

We now extend the simple case to a slightly more compli-
cated scenario where a different loss function is used. In this
case, we have the following proposition.



Proposition 2. We have

E

t�1


� Z

t

c
t

kv
t

k2
v

t

�
= �

t

⌘u, t = 1, . . . , T

where

�
t

= �
Z 1

�1
f
t

(z)h(z)z d z.

Following almost the same analysis for Theorem 1, we
obtain the following theorem to bound the regret.
Theorem 2. Suppose T and ⌘ satisfy the conditions in The-

orem 1. With a probability 1� � � ⌧ , we have

regret 

4B

✓
log

1

⌧
+ 1

◆
+ 4B

 
3L

�̄

r
log

T (d+ 1)

�
+ 1

!
T

2
3

where �̄ = min

t2[T ]
�
t

.

The only difference between Theorems 2 and 1 is that �
in Theorem 1 is replaced with �̄, the smallest one among
{�

t

}T
t=1.

Regret Bound for the General Case We now consider the
more general case where each u

t

is a different vector. Let ¯u
t

be the average of vectors u1, . . . ,ut

, i.e.,

¯

u

t

=

1

t

tX

i=1

u

t

.

Similar to Theorem 1, we have the following regret bound
for the general case when a single loss function is used.
Theorem 3. Suppose T and ⌘ satisfy the conditions in The-

orem 1. Then, with a probability 1� � � ⌧ , we have

regret 4B

✓
log

1

⌧
+ 1

◆
+ 2L

TX

t=2

ku
t

� ¯

u

t�1k2

+ 4B

 
3L

�⇢
T

r
log

T (d+ 1)

�
+ 1

!
T

2
3 ,

where � is defined in (5) and ⇢
T

= min

t2[T ]
k¯u

t

k2.

To bound the second term in the regret bound, we need
the following inequality (Hazan and Kale 2010)

TX

t=2

ku
t

�¯

u

t�1k22 
TX

t=1

ku
t

�¯

u

T

k22+12

vuut
TX

t=1

ku
t

� ¯

u

T

k22.

(7)
From (7) and Theorem 3, we have

regret 4B

✓
log

1

⌧
+ 1

◆
+ 2L

q
T (V

T

+ 12

p
V
T

)

+ 4B

 
3L

�⇢
T

r
log

T (d+ 1)

�
+ 1

!
T

2
3

where

V
T

=

TX

t=1

ku
t

� ¯

u

T

k22.

When the total variation V
T

 O(T 1/3
), the additional

term
p
T (V

T

+ 12

p
V
T

) is on the order of T 2/3. Further-
more, if we assume a small variation for each iteration, that
is, V

t

 O(t1/3) for all t 2 [T ], each k¯u
t

k2 will be lower
bounded by some constant,2 and thus 1/⇢

T

is upper bounded
by some constant. As a result, we still have an eO(��1T 2/3

)

regret bound. On the other hand, the regret bound becomes
trivial when V

T

= ⌦(T ), which is significantly worse than
the previous results on variation based regret bound (Hazan
and Kale 2010). This is because we are dealing with non-
convex optimizations and therefore the gradient does not
provide an universal lower bound for the entire function.
Thus, we cannot utilize the analysis for convex functions,
but only rely on the assumption that f

t

(·) is non-increasing
and Lipschitz continuous. Finally, it is straightforward to ex-
tend the above result to the case when a different loss func-
tion is used, by introducing �̄ defined in Theorem 2.

Analysis
We here present the proofs of main theorems. The omitted
proofs are provided in the supplementary material.

Proof of Theorem 1
Under the assumption u1 = u2 = · · · = u

T

= u, we have

regret

=

TX

t=1

f(u>
x

0
t

)� T min

kxk1
f(u>

x)

=

TX

t=1

Z
t

✓
f

✓
u

>
v

t

kv
t

k2

◆
� f(u>

x

t

)

◆

+

TX

t=1

✓
f(u>

x

t

)� min

kxk1
f(u>

x)

◆

(2)
2B

TX

t=1

Z
t

| {z }
�1

+

TX

t=1

✓
f(u>

x

t

)� min

kxk1
f(u>

x)

◆

| {z }
�2

.

(8)

Then, we discuss how to bound �1 and �2.
According to the Multiplicative Chernoff Bound (Angluin

and Valiant 1979) provided in the supplementary, we have
with a probability at least 1� ⌧

�1  2E[�1] + 2 log

1

⌧
= 2⌘T + 2 log

1

⌧
. (9)

To bound �2, we introduce the vector-valued martingale-
difference sequence

�
i

= � Z
i

c
i

kv
i

k2
v

i

� �⌘u, i = 1, . . . , T. (10)

The following lemma follows immediately from the Freed-
man’s inequality for matrix martingales (Tropp 2011).

2We can prove it by contradiction. Suppose kūtk2  c, then
we must have Vt � (1� c)2t = ⇥(t).



Lemma 1. With a probability 1��, we have, for any t 2 [T ],
�����

tX

i=1

�
i

�����
2

 ⇢
t

(�)

where

⇢
t

(�) =
4B

3

log

T (d+ 1)

�
+B

r
2⌘t log

T (d+ 1)

�
.

From the assumption that f(·) is non-increasing and L-
Lipschitz continuous, we have the following lemma.
Lemma 2. We have

f(x>
t

u)� min

kxk1
f(x>

u)


(

2B, if t = 1;

2L
�⌘(t�1)

���
P

t�1
i=1 �i

���
2
, otherwise.

Based on Lemmas 1 and 2, we have with a probability at
least 1� �,

�2 2B +

2L

�⌘

TX

t=2

⇢
t�1(�)

t� 1

=2B +

8LB

3�⌘
log

T (d+ 1)

�

T�1X

t=1

1

t

+

2LB

�

s
2

⌘
log

T (d+ 1)

�

T�1X

t=1

1p
t

(6)
2B +

6LB

�⌘
log

T (d+ 1)

�
log T

+

4LB

�

s
2T

⌘
log

T (d+ 1)

�
,

(11)

where we use the following inequalities
TX

t=1

1

t
1 +

Z
T

t=1

1

t
dt = 1 + log t|T1 = log T + 1, and

TX

t=1

1p
t
 1 +

Z
T

t=1

1p
t
dt = 1 + 2

p
t|T1 = 2

p
T � 1.

Combining (8), (9) and (11), we have with a probability
at least 1� ⌧ � �,

regret

4B

✓
⌘T + log

1

⌧
+ 1

◆
+

6LB

�⌘
log

T (d+ 1)

�
log T

+

4LB

�

s
2T

⌘
log

T (d+ 1)

�

=4B

✓
T

2
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1

⌧
+ 1

◆
+

6LB

�
T

1
3
log

T (d+ 1)

�
log T

+

6LB

�

r
log

T (d+ 1)

�
T

2
3

(6)
4B

✓
T

2
3
+ log

1

⌧
+ 1

◆
+

12LB

�

r
log

T (d+ 1)

�
T

2
3 .

Proof of Lemma 1
We first state the Freedman’s inequality for matrix martin-
gales below.

Theorem 4. (Tropp 2011, Corollary 1.3) Let k · k be the

spectral norm of a matrix, which returns its largest singular

value. Consider a matrix martingale {Y
i

: i = 0, 1, 2, . . . }
whose values are matrices with dimension d1⇥d2. Let {X

i

:

i = 1, 2, 3, . . .} be the difference sequence, and assume that

the difference sequence is uniformly bounded:

kX
i

k  R almost surely i = 1, 2, 3, . . . .

Define two predictable quadratic variation processes for this

martingale:

W
col,t

:=

tX

i=1

E

i�1[Xi

X>
i

],

W
row,t

:=

tX

i=1

E

i�1[X
>
i

X
i

], t = 1, 2, 3, . . . .

Then, for all � � 0 and �2 > 0,

Pr

�
kY

t

k � � and max{kW
col,t

k, kW
row,t

k}  �2
 

 (d1 + d2) exp

✓
� �2/2

�2
+R�/3

◆
.

By setting � = exp

⇣
� �

2
/2

�

2+R�/3

⌘
, Theorem 4 implies that

with a probability at most �,

kY
t

k � 2R

3

log

d1 + d2
�

+

r
2�2

log

d1 + d2
�

and

max{kW
col,t

k, kW
row,t
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We then introduce several facts that will be used in our
analysis. Let ⇠ be a random vector. Based on Jensen’s in-
equality, we have

kE[⇠]k2  E[k⇠k]2. (12)

From the property of positive semidefinite (PSD) matrices,
we have
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(13)

where ↵ is the largest eigenvector of the PSD matrix
E[⇠⇠>]� E[⇠]E[⇠]>. Furthermore, it is easy to verify that

E
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(14)

Notice that the spectral norm of a vector is its `2-norm.



We bound the `2-norm of the �
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as follows
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We then bound the two predictable quadratic variation
processes as follows
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Then, based on Theorem 4, for each t 2 [T ], we have with a
probability at least 1� �
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We complete the proof by taking the union bound over t =
1, . . . , T .

Proof of Lemma 2
When t = 1, it is clear that
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1 u)� min
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In the following, we discuss the case when t � 2. From our
assumption that f(·) is a non-increasing function, we have
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According to the procedure in Algorithm 1, we have
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Following a simple geometric argument, we have
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Proof of Theorem 2
In this case, we define the vector-valued martingale-
difference sequence as

�
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= � Z
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⌘u, i = 1, . . . , T.

It is easy to verify that Lemma 1 still holds and Lemma 2
become the following one.
Lemma 3. We have

f
t
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2B, if t = 1;
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The rest proof is the same as that for Theorem 1.

Conclusion and Future Work
In this paper, we study the problem of online bandit learn-
ing with non-convex losses, and assume the loss function
is a composition of a non-increasing scalar function and a
linear function. Following the idea of exploration and ex-
ploitation, we develop an efficient algorithm which achieves
eO(poly(d)T 2/3

) regret bound under appropriate conditions.
One limitation of the current work is that the regret bound

only holds against an oblivious adversary. In the future, we
will investigate how to extend our results to the adaptive ad-
versary. There are also many open problems for bandit learn-
ing with non-convex losses, such as under what condition
there exists a Hannan-consistent algorithm and what is the
lower bound. We will leave these questions for future inves-
tigations.
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