
Trends and Challenges in

Satisfiability Modulo Theories

Cesare Tinelli

The University of Iowa

DISPROVING-VERIFY’07 – p.1/38

Intro: Validity Modulo Theories

In a number of CS applications one is interested in

determining the validity of a first-order sencence wrt a
background theory, a distinguished set T of first-order
models

A formula ϕ is T -valid if it is satisfied by every model of T

Example
x+ y > 0 ∧ y < 0 → x > 0

is T -valid if T is the set of all expansion of Z to the free
constants x, y, z

DISPROVING-VERIFY’07 – p.2/38

Validity Modulo Theories in a Nutshell

Distinguishing Feature
T -validity may be determined more efficiently using
specialized methods on T as opposed to general-purpose
first-order reasoning

DISPROVING-VERIFY’07 – p.3/38

Validity Modulo Theories in a Nutshell

Distinguishing Feature
T -validity may be determined more efficiently using
specialized methods on T as opposed to general-purpose
first-order reasoning

Main Issue
Tension between the scope of background theories and the
efficiency of their validity checkers

DISPROVING-VERIFY’07 – p.3/38

Validity Modulo Theories in a Nutshell

Distinguishing Feature
T -validity may be determined more efficiently using
specialized methods on T as opposed to general-purpose
first-order reasoning

Main Issue
Tension between the scope of background theories and the
efficiency of their validity checkers

A lot of theoretical and practical work in

1. identifying fragments of theories with efficient checkers

2. enlarging theories and/or their fragments by using several
specialized checkers in cooperation

DISPROVING-VERIFY’07 – p.3/38

Theory fragments with efficient checkers

Examples

Universal fragment of theory of equality (over some
signature Σ)

Universal, linear fragment of theory of R

Universal, difference constraints fragment of theory of N

Universal fragment of theory of arrays with extensionality

Universal fragment of theories of inductive data types

DISPROVING-VERIFY’07 – p.4/38

Why Satisfiability Modulo Theories?

Validity Modulo Theories’ dual problem

More popular setting because most validity checkers are
refutation-based
(and so are actually unsatisfiability checkers)

Terminology originated with SMT-LIB initiative in 2003

SMT acronym caught on and is now widely used

DISPROVING-VERIFY’07 – p.5/38

Goals of This Talk

Give an overview of SMT and its applications

Present main approaches and issues

Discuss some long-standing challenges

Highlight some new challenges for the field

DISPROVING-VERIFY’07 – p.6/38

Applications of SMT

DISPROVING-VERIFY’07 – p.7/38

Applications of SMT

Type checking

statically verifying the well-typedness of programs

Model checking of reactive (in)finite state systems

verifying safety properties

abstraction/refinement

Model-based test-case generation

generating better test sets

Specification checking

checking the consistency of formal specifications

DISPROVING-VERIFY’07 – p.7/38

Applications of SMT

Extended static checking/static analysis

verifying the absence of certain run-time errors

Optimizing/certifying compilers

verifying correctness of optimizations

verifying PCC

Full functional verification
supporting proofs of inductive invariants

supporting interactive proofs

DISPROVING-VERIFY’07 – p.8/38

Main SMT Approaches

DISPROVING-VERIFY’07 – p.9/38

Main SMT Approaches

Small engines approaches

Eager encodings to propositional logic
Typically relying on fast SAT solvers

Lazy encodings to propositional logic
Typically relying on DPLL solvers + theory solvers
(decision procedures)

Hybrid encodings, i.e., eager encodings to other
decidable logics:

QF fragment of bit vectors

QF fragment of linear arithmetic with free symbols

DISPROVING-VERIFY’07 – p.9/38

Main SMT Approaches

Big engines approaches

Eager, specialized encodings to FOL=

Relying on superposition engine + proper reduction
orderings

DISPROVING-VERIFY’07 – p.10/38

Claim of the Day

All these approaches can be seen as different instances
of a common logical abstraction/refinement framework

DISPROVING-VERIFY’07 – p.11/38

Claim of the Day

All these approaches can be seen as different instances
of a common logical abstraction/refinement framework

Let’s see that

DISPROVING-VERIFY’07 – p.11/38

Claim of the Day

All these approaches can be seen as different instances
of a common logical abstraction/refinement framework

Let’s see that

Diclaimer
The following formal presentation of the framework is
somewhat wishy-washy

A proper treatment can be given, using, e.g., the theory of
institutions or similar theoretical tools

DISPROVING-VERIFY’07 – p.11/38

A Few Technicalities: Logics in Abstract

A logic L is tuple (LanL,ModL, |=L,Ref L) where

LanL is a set of formulas

ModL is a set of models

|=L is a satisfiability relation ⊆ ModL × LanL

Ref L is a refutation system

DISPROVING-VERIFY’07 – p.12/38

A Few Technicalities: Logics in Abstract

A logic L is tuple (LanL,ModL, |=L,Ref L) where

LanL is a set of formulas

ModL is a set of models

|=L is a satisfiability relation ⊆ ModL × LanL

Ref L is a refutation system

A formula ϕ is L-(un)satisfiable if there is some (no)
A ∈ ModL s.t. A |=L ϕ

DISPROVING-VERIFY’07 – p.12/38

A Few Technicalities: Logics in Abstract

A logic L is tuple (LanL,ModL, |=L,Ref L) where

LanL is a set of formulas

ModL is a set of models

|=L is a satisfiability relation ⊆ ModL × LanL

Ref L is a refutation system

Typically,

LanL is closed under negation (¬) and conjunction (∧)

Ref L is a (semi)-decision procedure for L-unsatisfiability
we write ϕ ⊢L ⊥ if Ref L returns “unsatisfiable” for ϕ

DISPROVING-VERIFY’07 – p.12/38

A Few Technicalities: Logics in Abstract

A logic L is tuple (LanL,ModL, |=L,Ref L) where

LanL is a set of formulas

ModL is a set of models

|=L is a satisfiability relation ⊆ ModL × LanL

Ref L is a refutation system

SMT works with logics where

LanL is a fragment of FOL

ModL is the set of models of some FOL theory T

|=L is often decidable, and by efficient methods
DISPROVING-VERIFY’07 – p.12/38

Efficiency Abstractions

For efficiency, SMT methods universally resort to

some reduction of L-satisfiability to satisfiability in one or
more simpler, and more efficient, logics

The reduction is achieved by a (possibly incremental)
abstraction/refinement process

DISPROVING-VERIFY’07 – p.13/38

Logic Abstractions

A logic L̂ effectively abstracts a logic L if there are
computable mappings

(_)a : LanL → Lan
L̂

(_)a : ModL → Mod
L̂

(_)c : Lan
L̂
→ LanL

s.t.

1. (ϕa)c is equisatisfiable with ϕ in L

2. (_)a : ModL → Mod
L̂

is surjective

3. if A |=L ϕ then Aa |=
L̂
ϕa

DISPROVING-VERIFY’07 – p.14/38

L-satisfiability by Abstraction Refinement

Proposition ϕa ⊢
L̂
⊥ ⇒ ϕa is L̂-unsat ⇒ ϕ is L-unsat

So, if we abstract ϕ and L̂’s inference systems finds ϕa

unsatisfiable, we are done

DISPROVING-VERIFY’07 – p.15/38

L-satisfiability by Abstraction Refinement

Proposition ϕa ⊢
L̂
⊥ ⇒ ϕa is L̂-unsat ⇒ ϕ is L-unsat

So, if we abstract ϕ and L̂’s inference systems finds ϕa

unsatisfiable, we are done

If A |=
L̂
ϕa for some A, ϕ may still be L-unsatisfiable

DISPROVING-VERIFY’07 – p.15/38

L-satisfiability by Abstraction Refinement

Proposition ϕa ⊢
L̂
⊥ ⇒ ϕa is L̂-unsat ⇒ ϕ is L-unsat

So, if we abstract ϕ and L̂’s inference systems finds ϕa

unsatisfiable, we are done

If A |=
L̂
ϕa for some A, ϕ may still be L-unsatisfiable

In that case, we

DISPROVING-VERIFY’07 – p.15/38

L-satisfiability by Abstraction Refinement

Proposition ϕa ⊢
L̂
⊥ ⇒ ϕa is L̂-unsat ⇒ ϕ is L-unsat

So, if we abstract ϕ and L̂’s inference systems finds ϕa

unsatisfiable, we are done

If A |=
L̂
ϕa for some A, ϕ may still be L-unsatisfiable

In that case, we

1. compute some ψ such that ϕ |=L ψ but A 6|=
L̂
ψa

DISPROVING-VERIFY’07 – p.15/38

L-satisfiability by Abstraction Refinement

Proposition ϕa ⊢
L̂
⊥ ⇒ ϕa is L̂-unsat ⇒ ϕ is L-unsat

So, if we abstract ϕ and L̂’s inference systems finds ϕa

unsatisfiable, we are done

If A |=
L̂
ϕa for some A, ϕ may still be L-unsatisfiable

In that case, we

1. compute some ψ such that ϕ |=L ψ but A 6|=
L̂
ψa

2. check the L̂-satisfiability of ϕa ∧ ψa

DISPROVING-VERIFY’07 – p.15/38

L-satisfiability by Abstraction Refinement

Proposition ϕa ⊢
L̂
⊥ ⇒ ϕa is L̂-unsat ⇒ ϕ is L-unsat

So, if we abstract ϕ and L̂’s inference systems finds ϕa

unsatisfiable, we are done

If A |=
L̂
ϕa for some A, ϕ may still be L-unsatisfiable

In that case, we

1. compute some ψ such that ϕ |=L ψ but A 6|=
L̂
ψa

2. check the L̂-satisfiability of ϕa ∧ ψa

Key to efficiency is how and when to compute and add
the refinement formula ψ

DISPROVING-VERIFY’07 – p.15/38

Why we abstract

Typically,

we have an efficient, sound and complete Ref
L̂

and

we also have an efficient, sound but incomplete Ref L

Ref L is complete for a subset of LanL

DISPROVING-VERIFY’07 – p.16/38

Why we abstract

Typically,

we have an efficient, sound and complete Ref
L̂

and

we also have an efficient, sound but incomplete Ref L

Ref L is complete for a subset of LanL

A good abstraction and a proper refinement strategy can yield
an efficient and complete refutation system for L thorough the
cooperation of Ref

L̂
and Ref L

DISPROVING-VERIFY’07 – p.16/38

Why we abstract

Typically,

we have an efficient, sound and complete Ref
L̂

and

we also have an efficient, sound but incomplete Ref L

Ref L is complete for a subset of LanL

Even when completeness is out of reach,
abstraction/refinement is still useful to improve accuracy, i.e.,
a higher number of correctly classified unsat queries

DISPROVING-VERIFY’07 – p.16/38

Prototypical Refutation System Ref L̂

Expansion Rules
Γ, ∆

Γ, ∆, ∆′
(*)

Splitting Rules
Γ, ∆

Γ, ∆, ∆1 | · · · | Γ, ∆, ∆n

(*), n ≥ 2

Contraction Rules
Γ, ∆

Γ
(*)

Closing Rules
Γ, ∆

⊥
(*)

(*) some condition on ∆

Γ,∆(i) sets of L̂-formulas

DISPROVING-VERIFY’07 – p.17/38

Ref L̂ with L Refinement

Expansion Rules
Γ, ∆

Γ, ∆, ∆′
(*)

Splitting Rules
Γ, ∆

Γ, ∆, ∆1 | · · · | Γ, ∆, ∆n

(*), n ≥ 2

Contraction Rules
Γ, ∆

Γ
(*)

Closing Rules
Γ, ∆

⊥
(*)

Refinement Rules
Γ, ∆

Γ, ∆, ϕa

if (*), ∆c |=L ϕ

(*) some condition on ∆

DISPROVING-VERIFY’07 – p.18/38

Example: Eager Reduction to SAT

L = Integer Difference Logic
LanL = Boolean combinations of x− y < ±n atoms
ModL = expansions of Z to free constants

L̂ = propositional logic
Lan

L̂
= CNF formulas

Mod
L̂

= propositional models
Ref

L̂
= any SAT solver

DISPROVING-VERIFY’07 – p.19/38

Example: Eager Reduction to SAT

L = Integer Difference Logic
LanL = Boolean combinations of x− y < ±n atoms
ModL = expansions of Z to free constants

L̂ = propositional logic
Lan

L̂
= CNF formulas

Mod
L̂

= propositional models
Ref

L̂
= any SAT solver

Abstraction:
ϕa is a Boolean abstraction of ϕ’s CNF

Refinement:
Selected ground instances of IDL axioms over constants in ϕ
(more or less . . .)

DISPROVING-VERIFY’07 – p.19/38

Example: Eager Reduction to SAT

L = Integer Difference Logic
LanL = Boolean combinations of x− y < ±n atoms
ModL = expansions of Z to free constants

L̂ = propositional logic
Lan

L̂
= CNF formulas

Mod
L̂

= propositional models
Ref

L̂
= any SAT solver

Proof strategy:

1. Start with Γ = {ϕa}

2. Apply refinement rules so that Γc becomes equisat with ϕ

3. Apply other rules to Γ (i.e., give Γ to SAT solver)
DISPROVING-VERIFY’07 – p.19/38

Example: Eager Reduction to FOL =

L = Arrays with extensionality
LanL = Boolean combinations of read/write atoms
ModL = expansions of array models to free constants

L̂ = FOL with equality
Lan

L̂
= FOL clauses

Mod
L̂

= models of FOL with equality
Ref

L̂
= any superposition-based prover

DISPROVING-VERIFY’07 – p.20/38

Example: Eager Reduction to FOL =

L = Arrays with extensionality
LanL = Boolean combinations of read/write atoms
ModL = expansions of array models to free constants

L̂ = FOL with equality
Lan

L̂
= FOL clauses

Mod
L̂

= models of FOL with equality
Ref

L̂
= any superposition-based prover

Abstraction:
ϕa is a certain flat form of ϕ’s CNF

Refinement:
Array axioms

DISPROVING-VERIFY’07 – p.20/38

Example: Eager Reduction to FOL =

L = Arrays with extensionality
LanL = Boolean combinations of read/write atoms
ModL = expansions of array models to free constants

L̂ = FOL with equality
Lan

L̂
= FOL clauses

Mod
L̂

= models of FOL with equality
Ref

L̂
= any superposition-based prover

Proof strategy:

1. Start with Γ = {ϕa}

2. Apply refinement rules to add array axioms

3. Apply other rules to Γ (i.e., give Γ to superposition prover)
DISPROVING-VERIFY’07 – p.20/38

Example: Eager Reduction to FOL =

L = Arrays with extensionality
LanL = Boolean combinations of read/write atoms
ModL = expansions of array models to free constants

L̂ = FOL with equality
Lan

L̂
= FOL clauses

Mod
L̂

= models of FOL with equality
Ref

L̂
= any superposition-based prover

Termination Conditions:

Γ = {⊥} or

Γ is saturated (*)

(*) Termination is guaranteed with proper reduction ordering
DISPROVING-VERIFY’07 – p.20/38

Superposition Rules

Expansion Rules
Superposition Right

Γ, C ∨ s[u] = t, C′ ∨ u′ = v′

Γ, C ∨ s[u] = t, C′ ∨ u′ = v′, µ(C ∨ C′ ∨ s[v′] = t)
if

µ = mgu(u′, u),

. . .

. . .

Splitting Rules
None

Closing Rules

Fail
Γ, �

⊥

DISPROVING-VERIFY’07 – p.21/38

Superposition Rules

Contraction Rules

Subsumption
Γ, C, C′

Γ, C
if σ(C) ⊆ C for some σ, . . .

Deletion
Γ, C ∨ t = t

Γ

. . .

Refinement Rules

T -Axiom
Γ

Γ, C
if C is an axiom of T

DISPROVING-VERIFY’07 – p.22/38

Example: Lazy Reduction to SAT (DPLL(T))

L = QF fragment of some theory T

LanL = Boolean combinations of T -atoms
ModL = expansions of models of T to free constants

L̂ = propositional logic
Lan

L̂
= CNF formulas

Mod
L̂

= propositional models
Ref

L̂
= DPLL-based solver

DISPROVING-VERIFY’07 – p.23/38

Example: Lazy Reduction to SAT (DPLL(T))

L = QF fragment of some theory T

LanL = Boolean combinations of T -atoms
ModL = expansions of models of T to free constants

L̂ = propositional logic
Lan

L̂
= CNF formulas

Mod
L̂

= propositional models
Ref

L̂
= DPLL-based solver

Abstraction:
ϕa is a Boolean abstraction of ϕ’s CNF

Refinement:
Selected ground theorems or unit consequences of Γc in T

DISPROVING-VERIFY’07 – p.23/38

Example: Lazy Reduction to SAT (DPLL(T))

L = QF fragment of some theory T

LanL = Boolean combinations of T -atoms
ModL = expansions of models of T to free constants

L̂ = propositional logic
Lan

L̂
= CNF formulas

Mod
L̂

= propositional models
Ref

L̂
= DPLL-based solver

Proof strategy:

1. Start with Γ = {ϕa}

2. Apply a mix of DPLL and refinement rules (*)

(*) Termination guaranteed by mild restrictions on rule application mix

DISPROVING-VERIFY’07 – p.23/38

Example: Lazy Reduction to SAT (DPLL(T))

L = QF fragment of some theory T

LanL = Boolean combinations of T -atoms
ModL = expansions of models of T to free constants

L̂ = propositional logic
Lan

L̂
= CNF formulas

Mod
L̂

= propositional models
Ref

L̂
= DPLL-based solver

Termination Conditions:

Γ = {⊥} (on all branches) or

∆c is T -consistent and ∆ |= ϕa, where
∆ = { literals of Γ }

DISPROVING-VERIFY’07 – p.23/38

DPLL(T) Rules

Expansion Rules

Unit Propagation
Γ, l1, . . . , ln, l1 ∨ · · · ∨ ln ∨ l

Γ, l1, . . . , ln, l1 ∨ · · · ∨ ln ∨ l, l

Learn
Γ

Γ, C
if Γ |= C

Splitting Rules

Split
Γ

Γ, l | Γ, l
if neither l nor l is in Γ

Closing Rules

Fail
Γ, l1, . . . , ln, l1 ∨ · · · ∨ ln

⊥ DISPROVING-VERIFY’07 – p.24/38

DPLL(T) Rules

Contraction Rules

Forget
Γ, C

Γ
if Γ |= C

Restart
Γ, ∆

Γ
if ∆ = propagated and splitting literals

Refinement Rules

T -Learn
Γ

Γ, C
if |=T Cc, atoms of C from Γ

T -Propagate
Γ, ∆

Γ, ∆, l
if ∆ set of literals, atom of l from Γ, ∆c |=T lc

DISPROVING-VERIFY’07 – p.25/38

Example: Eager Reduction to LRA+UF

L = finite multisets
LanL = Boolean combinations of multiset atoms
ModL = expansions of multiset models to free constants

L̂ = linear real arithmetic with uninterpreted symbols
Lan

L̂
= Boolean combination of linear expressions

Mod
L̂

= expansions of Reals to free symbols
Ref

L̂
= DPLL(LRA+UF) solver

Proof strategy:

1. Start with Γ = {ϕa}

2. Apply refinement rules until Γc is equisat with ϕ

3. Apply other rules to Γ (i.e., give Γ to DPLL(T) solver)
DISPROVING-VERIFY’07 – p.26/38

Theory Combinations as Refinement

When T = T1 + . . .+ Tn combination methods apply

DISPROVING-VERIFY’07 – p.27/38

Theory Combinations as Refinement

When T = T1 + . . .+ Tn combination methods apply

DISPROVING-VERIFY’07 – p.27/38

Theory Combinations as Refinement

When T = T1 + . . .+ Tn combination methods apply

Eager approaches
Reduce T1 + . . .+ Tn to some theory T0

DISPROVING-VERIFY’07 – p.27/38

Theory Combinations as Refinement

When T = T1 + . . .+ Tn combination methods apply

Eager approaches
Reduce T1 + . . .+ Tn to some theory T0

Lazy approaches
DPLL(T1, . . . , Tn) with Nelson-Oppen combination

Query abstraction involves purification

Refinement is done per theory, with refinement formulas
including shared equalities

DISPROVING-VERIFY’07 – p.27/38

Long-standing Issue in SMT: Quantifiers

DISPROVING-VERIFY’07 – p.28/38

Long-standing Issue in SMT: Quantifiers

Most SMT solvers accept only ground formulas

In most cases, queries are ground formulas

DISPROVING-VERIFY’07 – p.28/38

Long-standing Issue in SMT: Quantifiers

Most SMT solvers accept only ground formulas

In most cases, queries are ground formulas

Dealing with quantified formula is however a real and
frequent need

DISPROVING-VERIFY’07 – p.28/38

Long-standing Issue in SMT: Quantifiers

Most SMT solvers accept only ground formulas

In most cases, queries are ground formulas

Dealing with quantified formula is however a real and
frequent need

Here is why

DISPROVING-VERIFY’07 – p.28/38

Creeping Quantifiers

Often, we want ground satisfiability in a theory TFull

DISPROVING-VERIFY’07 – p.29/38

Creeping Quantifiers

Often, we want ground satisfiability in a theory TFull

However, we only have a solver for ground satisfiability in a
subtheory T of Tf with

T ’s signature ⊆ TFull’s signature

T ’s theorems ⊆ TFull’s theorems

DISPROVING-VERIFY’07 – p.29/38

Creeping Quantifiers

Often, we want ground satisfiability in a theory TFull

However, we only have a solver for ground satisfiability in a
subtheory T of Tf with

T ’s signature ⊆ TFull’s signature

T ’s theorems ⊆ TFull’s theorems

We then approximate TFull-satisfiability with T -satisfiability of
Γ ∪ Φ where

Φ is the original ground query and

Γ is a fixed, selected set of quantified axioms of TFull that
are not theorems of T

DISPROVING-VERIFY’07 – p.29/38

Creeping Quantifiers: Example

T : Theory of integers and lists (with only cons, nil, head, tail)

TFull: Theory of integers and lists with length function

Γ : {len(nil) = 0, ∀x, y. len(cons(x, y)) = len(y) + 1}

DISPROVING-VERIFY’07 – p.30/38

Creeping Quantifiers: Example

T : Theory of integers and lists (with only cons, nil, head, tail)

TFull: Theory of integers and lists with length function

Γ : {len(nil) = 0, ∀x, y. len(cons(x, y)) = len(y) + 1}

Note T ∪ Γ is weaker (strictly in this example) than TFull but
stronger than T

But we can catch more TFull-unsatisfiable formulas if we
check the T -satisfiability of Γ ∪ Φ instead of just Φ

DISPROVING-VERIFY’07 – p.30/38

Creeping Quantifiers: Example

T : Theory of integers and lists (with only cons, nil, head, tail)

TFull: Theory of integers and lists with length function

Γ : {len(nil) = 0, ∀x, y. len(cons(x, y)) = len(y) + 1}

Note T ∪ Γ is weaker (strictly in this example) than TFull but
stronger than T

But we can catch more TFull-unsatisfiable formulas if we
check the T -satisfiability of Γ ∪ Φ instead of just Φ

Problem How to deal with quantifiers in Γ?

DISPROVING-VERIFY’07 – p.30/38

Creeping Quantifiers: Example

T : Theory of integers and lists (with only cons, nil, head, tail)

TFull: Theory of integers and lists with length function

Γ : {len(nil) = 0, ∀x, y. len(cons(x, y)) = len(y) + 1}

Note T ∪ Γ is weaker (strictly in this example) than TFull but
stronger than T

But we can catch more TFull-unsatisfiable formulas if we
check the T -satisfiability of Γ ∪ Φ instead of just Φ

Problem How to deal with quantifiers in Γ?

(Still) Current Solution Logical abstraction and then
refinement via heuristic quantifier instantiation

DISPROVING-VERIFY’07 – p.30/38

Heuristic Instantiation as Generic Refinement

The case of DPLL(T) systems

1. Abstract each quantified subformula Qx. ϕ(x) in the
query by a fresh Boolean predicate P

2. If P gets ever asserted, refine it by adding one or more
instances of ϕ(x) as needed

DISPROVING-VERIFY’07 – p.31/38

Heuristic Instantiation as Generic Refinement

The case of DPLL(T) systems

1. Abstract each quantified subformula Qx. ϕ(x) in the
query by a fresh Boolean predicate P

2. If P gets ever asserted, refine it by adding one or more
instances of ϕ(x) as needed

Main Challenges When, how and how much to instantiate

State of the art Patterns, (incomplete) T -matching
See Wednesday morning’s talks

DISPROVING-VERIFY’07 – p.31/38

Beyond Decision Procedures

As SMT solvers get be embedded in more and different tools
more complex forms of outputs are being asked

E.g.

Unsatisfiable cores

Proofs

Interpolants

Models

Each of these introduces challenges of its own

DISPROVING-VERIFY’07 – p.32/38

Unsatisfiable Cores

When Γ is T -unsatisfiable, return minimally T -unsatisfiable
subsets of Γ

Uses Conflict analysis, intelligent backtracking

Challenges Minimization is a hard problem, even for simple
theories

Approaches Compute almost minimal sets

DISPROVING-VERIFY’07 – p.33/38

Proofs

When Γ is T -unsatisfiable, produce a proof in some suitable
proof system

Uses Embedding in untrusting tools, interpolant generation

Challenges Minimization of overhead, tradeoff between proof
size and rule granularity, choice of the proof system

Approaches Several, no unifying themes yet

DISPROVING-VERIFY’07 – p.34/38

Interpolants

When Γ1 ∪ Γ2 is T -unsatisfiable, return a T -interpolant of Γ1

and Γ2

(a formula I whose free symbols occur in Γ1 and Γ2, and s.t.
Γ1 |=T I and Γ2, I |=T ⊥)

Uses Model checking

Challenges New topic, few known interpolating procedures,
tricky combination issues

Approaches Eager reduction to LRA+UF

DISPROVING-VERIFY’07 – p.35/38

Models

When Γ is satisfiable, return a concrete assignment of values
to its free-symbols

Uses Counter-example generation in model
checking/ESC/verification, test-case generation

Challenges Potential exponential overhead (difference
between sat-checking and constraint solving), compact
representation of solutions, combination of solutions

Approaches Mining constraint solving research, more work
needed on model generation modulo theories

DISPROVING-VERIFY’07 – p.36/38

Foundational Issues

Which version of FOL= is best for SMT?

More concretely, which type system?

DISPROVING-VERIFY’07 – p.37/38

Foundational Issues

Which version of FOL= is best for SMT?

More concretely, which type system?

Unsorted

Many-sorted

Order-subsorted

With predicate subtyping

With parametrized types

With dependent types

DISPROVING-VERIFY’07 – p.37/38

Foundational Issues

Which version of FOL= is best for SMT?

More concretely, which type system?

Current trend Towards more sophisticated type systems

Rationale Simplifies combination/refinement issues

Challenges Increases complexity of refutation systems,
persistent belief that types are mostly a nuisance

DISPROVING-VERIFY’07 – p.37/38

Practical Issues

Embedding of SMT solvers into other tools

Interoperability of SMT solvers

Standardization of API’s and input/output formats

Availability of benchmarks

Comparative experimental evaluations

DISPROVING-VERIFY’07 – p.38/38

Practical Issues

Embedding of SMT solvers into other tools

Interoperability of SMT solvers

Standardization of API’s and input/output formats

Availability of benchmarks

Comparative experimental evaluations

Being addressed by the SMT-LIB initiative

More info at www.smt-lib.org
DISPROVING-VERIFY’07 – p.38/38

Thank you

DISPROVING-VERIFY’07 – p.39/38

	Intro: Validity Modulo Theories
	Validity Modulo Theories in a Nutshell
	Theory fragments with efficient checkers
	Why emph {Satisfiability} Modulo Theories?
	Goals of This Talk
	Applications of SMT
	Applications of SMT
	Main SMT Approaches
	Main SMT Approaches
	Claim of the Day
	A Few Technicalities: Logics in Abstract
	Efficiency Abstractions
	Logic Abstractions
	$lo $-satisfiability by Abstraction Refinement
	Why we abstract
	Prototypical Refutation System $s {hat lo }$
	$s {hat lo }$ with $lo $ Refinement
	Example: Eager Reduction to SAT
	Example: Eager Reduction to FOL$_=$
	Superposition Rules
	Superposition Rules
	Example: Lazy Reduction to SAT (DPLL($T $))
	DPLL($T $) Rules
	DPLL($T $) Rules
	Example: Eager Reduction to LRA+UF
	Theory Combinations as Refinement
	Long-standing Issue in SMT: Quantifiers
	Creeping Quantifiers
	Creeping Quantifiers: Example
	Heuristic Instantiation as Generic Refinement
	Beyond Decision Procedures
	Unsatisfiable Cores
	Proofs
	Interpolants
	Models
	Foundational Issues
	Practical Issues
	Thank you

