

Trends and Challenges in Satisfiability Modulo Theories

Cesare Tinelli

The University of Iowa

In a number of CS applications one is interested in

determining the validity of a first-order sencence wrt a **background theory**, a distinguished set \mathcal{T} of first-order models

A formula φ is T-valid if it is satisfied by every model of T

Example

 $x + y > 0 \land y < 0 \to x > 0$

is $\mathcal T$ -valid if $\mathcal T$ is the set of all expansion of $\mathbb Z$ to the free constants x,y,z

Validity Modulo Theories in a Nutshell

Distinguishing Feature

 $\mathcal{T}\text{-validity}$ may be determined more efficiently using specialized methods on \mathcal{T} as opposed to general-purpose first-order reasoning

Validity Modulo Theories in a Nutshell

Distinguishing Feature

 \mathcal{T} -validity may be determined more efficiently using specialized methods on \mathcal{T} as opposed to general-purpose first-order reasoning

Main Issue

Tension between the scope of background theories and the efficiency of their validity checkers

Validity Modulo Theories in a Nutshell

Distinguishing Feature

 $\mathcal{T}\text{-validity}$ may be determined more efficiently using specialized methods on \mathcal{T} as opposed to general-purpose first-order reasoning

Main Issue

Tension between the scope of background theories and the efficiency of their validity checkers

A lot of theoretical and practical work in

- 1. identifying *fragments* of theories with efficient checkers
- 2. enlarging theories and/or their fragments by using several specialized checkers in cooperation

Theory fragments with efficient checkers

Examples

- 6 Universal fragment of theory of equality (over some signature Σ)
- 5 Universal, linear fragment of theory of \mathbb{R}
- \circ Universal, difference constraints fragment of theory of \mathbb{N}
- 6 Universal fragment of theory of arrays with extensionality
- Oniversal fragment of theories of inductive data types

- Solution Validity Modulo Theories' dual problem
- More popular setting because most validity checkers are refutation-based (and so are actually unsatisfiability checkers)
- 6 Terminology originated with SMT-LIB initiative in 2003
- 6 SMT acronym caught on and is now widely used

- 6 Give an overview of SMT and its applications
- 6 Present main approaches and issues
- Oiscuss some long-standing challenges
- 6 Highlight some new challenges for the field

Applications of SMT

5 Type checking

- statically verifying the well-typedness of programs
- Model checking of reactive (in)finite state systems
 - verifying safety properties
 - abstraction/refinement
- Model-based test-case generation
 - generating better test sets
- Specification checking
 - checking the consistency of formal specifications

- 6 Extended static checking/static analysis
 - verifying the absence of certain run-time errors
- 6 Optimizing/certifying compilers
 - verifying correctness of optimizations
 - verifying PCC
- Full functional verification
 - supporting proofs of inductive invariants
 - supporting interactive proofs

Main SMT Approaches

Small engines approaches

- *Eager* encodings to propositional logic
 Typically relying on fast SAT solvers
- Lazy encodings to propositional logic
 Typically relying on DPLL solvers + theory solvers (decision procedures)
- 6 Hybrid encodings, i.e., eager encodings to other decidable logics:
 - QF fragment of bit vectors
 - QF fragment of linear arithmetic with free symbols

Big engines approaches

Eager, specialized encodings to FOL=

Relying on superposition engine + proper reduction orderings

All these approaches can be seen as different instances of a common logical abstraction/refinement framework

All these approaches can be seen as different instances of a common logical abstraction/refinement framework

Let's see that

All these approaches can be seen as different instances of a common logical abstraction/refinement framework

Let's see that

Diclaimer

The following formal presentation of the framework is somewhat wishy-washy

A proper treatment can be given, using, e.g., the theory of institutions or similar theoretical tools

A logic \mathcal{L} is tuple $(Lan_{\mathcal{L}}, Mod_{\mathcal{L}}, \models_{\mathcal{L}}, Ref_{\mathcal{L}})$ where

- 6 $Lan_{\mathcal{L}}$ is a set of *formulas*
- 6 $Mod_{\mathcal{L}}$ is a set of *models*
- $\models_{\mathcal{L}}$ is a *satisfiability relation* $\subseteq Mod_{\mathcal{L}} \times Lan_{\mathcal{L}}$
- 6 $Ref_{\mathcal{L}}$ is a *refutation system*

A logic \mathcal{L} is tuple $(Lan_{\mathcal{L}}, Mod_{\mathcal{L}}, \models_{\mathcal{L}}, Ref_{\mathcal{L}})$ where

- 6 $Lan_{\mathcal{L}}$ is a set of *formulas*
- 6 $Mod_{\mathcal{L}}$ is a set of *models*
- $\models_{\mathcal{L}}$ is a satisfiability relation $\subseteq Mod_{\mathcal{L}} \times Lan_{\mathcal{L}}$
- 6 $Ref_{\mathcal{L}}$ is a *refutation system*

A formula φ is \mathcal{L} -*(un)satisfiable* if there is some (no) $\mathcal{A} \in Mod_{\mathcal{L}}$ s.t. $\mathcal{A} \models_{\mathcal{L}} \varphi$

A logic \mathcal{L} is tuple $(Lan_{\mathcal{L}}, Mod_{\mathcal{L}}, \models_{\mathcal{L}}, Ref_{\mathcal{L}})$ where

- 6 $Lan_{\mathcal{L}}$ is a set of *formulas*
- 6 $Mod_{\mathcal{L}}$ is a set of *models*
- 6 $\models_{\mathcal{L}}$ is a satisfiability relation $\subseteq Mod_{\mathcal{L}} \times Lan_{\mathcal{L}}$
- 6 $Ref_{\mathcal{L}}$ is a *refutation system*

Typically,

- 6 $Lan_{\mathcal{L}}$ is closed under negation (¬) and conjunction (\land)
- 6 $Ref_{\mathcal{L}}$ is a (semi)-decision procedure for \mathcal{L} -unsatisfiability we write $\varphi \vdash_{\mathcal{L}} \bot$ if $Ref_{\mathcal{L}}$ returns "unsatisfiable" for φ

A logic \mathcal{L} is tuple $(Lan_{\mathcal{L}}, Mod_{\mathcal{L}}, \models_{\mathcal{L}}, Ref_{\mathcal{L}})$ where

- 6 $Lan_{\mathcal{L}}$ is a set of *formulas*
- 6 $Mod_{\mathcal{L}}$ is a set of *models*
- $\models_{\mathcal{L}}$ is a *satisfiability relation* $\subseteq Mod_{\mathcal{L}} \times Lan_{\mathcal{L}}$
- 6 $Ref_{\mathcal{L}}$ is a *refutation system*

SMT works with logics where

- 6 $Lan_{\mathcal{L}}$ is a fragment of FOL
- 6 $Mod_{\mathcal{L}}$ is the set of models of some FOL theory \mathcal{T}
- $| \models_{\mathcal{L}} |$ is often decidable, and by efficient methods

- 6 For efficiency, SMT methods universally resort to some reduction of *L*-satisfiability to satisfiability in one or more simpler, and more efficient, logics
- 6 The reduction is achieved by a (possibly incremental) abstraction/refinement process

A logic $\hat{\mathcal{L}}$ *effectively abstracts* a logic \mathcal{L} if there are computable mappings

$$(_)^{a}: Lan_{\mathcal{L}} \to Lan_{\hat{\mathcal{L}}} \qquad (_)^{a}: Mod_{\mathcal{L}} \to Mod_{\hat{\mathcal{L}}} \\ (_)^{c}: Lan_{\hat{\mathcal{L}}} \to Lan_{\mathcal{L}}$$

s.t.

1. $(\varphi^{a})^{c}$ is *equisatisfiable* with φ in \mathcal{L} 2. $(_)^{a} : Mod_{\mathcal{L}} \to Mod_{\hat{\mathcal{L}}}$ is surjective 3. if $\mathcal{A} \models_{\mathcal{L}} \varphi$ then $\mathcal{A}^{a} \models_{\hat{\mathcal{L}}} \varphi^{a}$

Proposition $\varphi^{\mathbf{a}} \vdash_{\hat{\mathcal{L}}} \bot \Rightarrow \varphi^{\mathbf{a}}$ is $\hat{\mathcal{L}}$ -unsat $\Rightarrow \varphi$ is \mathcal{L} -unsat

6 So, if we abstract φ and $\hat{\mathcal{L}}$'s inference systems finds φ^{a} unsatisfiable, we are done

Proposition $\varphi^{\mathbf{a}} \vdash_{\hat{\mathcal{L}}} \bot \Rightarrow \varphi^{\mathbf{a}}$ is $\hat{\mathcal{L}}$ -unsat $\Rightarrow \varphi$ is \mathcal{L} -unsat

- 6 So, if we abstract φ and $\hat{\mathcal{L}}$'s inference systems finds φ^{a} unsatisfiable, we are done
- 6 If $\mathcal{A} \models_{\hat{\mathcal{L}}} \varphi^{a}$ for some \mathcal{A}, φ may still be \mathcal{L} -unsatisfiable

Proposition $\varphi^{\mathbf{a}} \vdash_{\hat{\mathcal{L}}} \bot \Rightarrow \varphi^{\mathbf{a}}$ is $\hat{\mathcal{L}}$ -unsat $\Rightarrow \varphi$ is \mathcal{L} -unsat

- 6 So, if we abstract φ and $\hat{\mathcal{L}}$'s inference systems finds φ^{a} unsatisfiable, we are done
- 6 If $\mathcal{A} \models_{\hat{\mathcal{L}}} \varphi^{a}$ for some \mathcal{A}, φ may still be \mathcal{L} -unsatisfiable
- 6 In that case, we

Proposition $\varphi^{a} \vdash_{\hat{\mathcal{L}}} \bot \Rightarrow \varphi^{a}$ is $\hat{\mathcal{L}}$ -unsat $\Rightarrow \varphi$ is \mathcal{L} -unsat

- 6 So, if we abstract φ and $\hat{\mathcal{L}}$'s inference systems finds φ^{a} unsatisfiable, we are done
- 6 If $\mathcal{A} \models_{\hat{\mathcal{L}}} \varphi^{a}$ for some \mathcal{A}, φ may still be \mathcal{L} -unsatisfiable
- 6 In that case, we
 - 1. compute some ψ such that $\varphi \models_{\mathcal{L}} \psi$ but $\mathcal{A} \not\models_{\hat{\mathcal{L}}} \psi^{a}$

Proposition $\varphi^{\mathbf{a}} \vdash_{\hat{\mathcal{L}}} \bot \Rightarrow \varphi^{\mathbf{a}}$ is $\hat{\mathcal{L}}$ -unsat $\Rightarrow \varphi$ is \mathcal{L} -unsat

- 6 So, if we abstract φ and $\hat{\mathcal{L}}$'s inference systems finds φ^{a} unsatisfiable, we are done
- 6 If $\mathcal{A} \models_{\hat{\mathcal{L}}} \varphi^{a}$ for some \mathcal{A}, φ may still be \mathcal{L} -unsatisfiable
- 6 In that case, we
 - 1. compute some ψ such that $\varphi \models_{\mathcal{L}} \psi$ but $\mathcal{A} \not\models_{\hat{\mathcal{L}}} \psi^{a}$
 - 2. check the $\hat{\mathcal{L}}$ -satisfiability of $\varphi^{a} \wedge \psi^{a}$

Proposition $\varphi^{\mathbf{a}} \vdash_{\hat{\mathcal{L}}} \bot \Rightarrow \varphi^{\mathbf{a}}$ is $\hat{\mathcal{L}}$ -unsat $\Rightarrow \varphi$ is \mathcal{L} -unsat

- 6 So, if we abstract φ and $\hat{\mathcal{L}}$'s inference systems finds φ^{a} unsatisfiable, we are done
- 6 If $\mathcal{A} \models_{\hat{\mathcal{L}}} \varphi^{a}$ for some \mathcal{A}, φ may still be \mathcal{L} -unsatisfiable
- 6 In that case, we
 - 1. compute some ψ such that $\varphi \models_{\mathcal{L}} \psi$ but $\mathcal{A} \not\models_{\hat{\mathcal{L}}} \psi^{a}$
 - 2. check the $\hat{\mathcal{L}}$ -satisfiability of $\varphi^{\mathrm{a}} \wedge \psi^{\mathrm{a}}$
- 6 Key to efficiency is how and when to compute and add the *refinement formula* ψ

Typically,

- we have an efficient, sound and complete $Ref_{\hat{L}}$ and
- ⁶ we also have an efficient, sound but incomplete $Ref_{\mathcal{L}}$
- 6 $Ref_{\mathcal{L}}$ is complete for a subset of $Lan_{\mathcal{L}}$

Typically,

- we have an efficient, sound and complete $Ref_{\hat{\mathcal{L}}}$ and
- 6 we also have an efficient, sound but incomplete $Ref_{\mathcal{L}}$
- 6 $Ref_{\mathcal{L}}$ is complete for a subset of $Lan_{\mathcal{L}}$

A good abstraction and a proper refinement strategy can yield an efficient and complete refutation system for \mathcal{L} thorough the cooperation of $Ref_{\hat{\mathcal{L}}}$ and $Ref_{\mathcal{L}}$

Typically,

- we have an efficient, sound and complete $Ref_{\hat{\mathcal{L}}}$ and
- 6 we also have an efficient, sound but incomplete $Ref_{\mathcal{L}}$
- 6 $Ref_{\mathcal{L}}$ is complete for a subset of $Lan_{\mathcal{L}}$

Even when completeness is out of reach, abstraction/refinement is still useful to improve accuracy, i.e., a higher number of correctly classified unsat queries

Prototypical Refutation System $Ref_{\hat{\mathcal{L}}}$

Expansion Rules

$$rac{\Gamma,\Delta}{\Gamma,\Delta,\Delta'}$$
 (*)

Contraction Rules $\frac{\Gamma, \Delta}{\Gamma}$ (*)

Splitting RulesClosing Rules Γ, Δ $(*), n \ge 2$ $\frac{\Gamma, \Delta}{\bot}$ (*) $\Gamma, \Delta, \Delta_1 \mid \cdots \mid \Gamma, \Delta, \Delta_n$ $(*), n \ge 2$ $\frac{\Gamma, \Delta}{\bot}$ (*)

(*) some condition on Δ

 $\Gamma, \Delta_{(i)}$ sets of $\hat{\mathcal{L}}$ -formulas

$\operatorname{Ref}_{\hat{\mathcal{L}}}$ with \mathcal{L} Refinement

Expansion Rules

$$rac{\Gamma,\Delta}{\Gamma,\Delta,\Delta'}$$
 (*

Contraction Rules $\frac{\Gamma, \Delta}{\Gamma}$ (*)

Splitting Rules

Closing Rules Γ, Δ (*)

 $\frac{\Gamma, \Delta}{\Gamma, \Delta, \Delta_1 \mid \dots \mid \Gamma, \Delta, \Delta_n} \quad \text{(*), } n \ge 2 \qquad \frac{\Gamma, \Delta}{\bot} \quad \text{(*)}$

Refinement Rules

$$\frac{\Gamma, \Delta}{\Gamma, \Delta, \varphi^{\mathrm{a}}} \quad \text{if (*), } \Delta^{\mathrm{c}} \models_{\mathcal{L}} \varphi$$

(*) some condition on Δ

Example: Eager Reduction to SAT

- \mathcal{L} = Integer Difference Logic
- $Lan_{\mathcal{L}}$ = Boolean combinations of $x y < \pm n$ atoms
- $Mod_{\mathcal{L}}$ = expansions of \mathbb{Z} to free constants
- $\hat{\mathcal{L}}$ = propositional logic
- $Lan_{\hat{\mathcal{L}}} = CNF$ formulas
- $Mod_{\hat{\mathcal{L}}}$ = propositional models
- $Ref_{\hat{\mathcal{L}}}$ = any SAT solver

Example: Eager Reduction to SAT

DISPROVING-VERIFY'07 - p.19/3

- \mathcal{L} = Integer Difference Logic
- $Lan_{\mathcal{L}}$ = Boolean combinations of $x y < \pm n$ atoms
- $Mod_{\mathcal{L}}$ = expansions of \mathbb{Z} to free constants
- $\hat{\mathcal{L}}$ = propositional logic
- $Lan_{\hat{L}} = CNF$ formulas
- $Mod_{\hat{\mathcal{L}}}$ = propositional models
- $Ref_{\hat{\mathcal{L}}}$ = any SAT solver

Abstraction:

 $\varphi^{\rm a}$ is a Boolean abstraction of φ 's CNF

Refinement:

Selected ground instances of IDL axioms over constants in φ (more or less . . .)
Example: Eager Reduction to SAT

- \mathcal{L} = Integer Difference Logic
- $Lan_{\mathcal{L}}$ = Boolean combinations of $x y < \pm n$ atoms
- $Mod_{\mathcal{L}}$ = expansions of \mathbb{Z} to free constants
- $\hat{\mathcal{L}}$ = propositional logic
- $Lan_{\hat{L}} = CNF$ formulas
- $Mod_{\hat{\mathcal{L}}}$ = propositional models
- $Ref_{\hat{\mathcal{L}}}$ = any SAT solver

Proof strategy:

- 1. Start with $\Gamma = \{\varphi^a\}$
- 2. Apply refinement rules so that Γ^c becomes equisat with φ
- 3. Apply other rules to Γ (i.e., give Γ to SAT solver)

- \mathcal{L} = Arrays with extensionality
- $Lan_{\mathcal{L}}$ = Boolean combinations of read/write atoms
- $Mod_{\mathcal{L}}$ = expansions of array models to free constants
- $\hat{\mathcal{L}}$ = FOL with equality
- $Lan_{\hat{\mathcal{L}}} = FOL$ clauses
- $Mod_{\hat{\mathcal{L}}}$ = models of FOL with equality
- $Ref_{\hat{\mathcal{L}}}$ = any superposition-based prover

- \mathcal{L} = Arrays with extensionality
- $Lan_{\mathcal{L}}$ = Boolean combinations of read/write atoms
- $Mod_{\mathcal{L}}$ = expansions of array models to free constants
- $\hat{\mathcal{L}}$ = FOL with equality
- $Lan_{\hat{L}}$ = FOL clauses
- $Mod_{\hat{\mathcal{L}}}$ = models of FOL with equality
- $Ref_{\hat{\mathcal{L}}}$ = any superposition-based prover

Abstraction:

 φ^{a} is a certain *flat form* of φ 's CNF

Refinement: Array axioms

- \mathcal{L} = Arrays with extensionality
- $Lan_{\mathcal{L}}$ = Boolean combinations of read/write atoms
- $Mod_{\mathcal{L}}$ = expansions of array models to free constants

$$\hat{\mathcal{L}}$$
 = FOL with equality

- $Lan_{\hat{\mathcal{L}}} = FOL$ clauses
- $Mod_{\hat{\mathcal{L}}}$ = models of FOL with equality
- $Ref_{\hat{\mathcal{L}}}$ = any superposition-based prover

Proof strategy:

- 1. Start with $\Gamma = \{\varphi^a\}$
- 2. Apply refinement rules to add array axioms
- 3. Apply other rules to Γ (i.e., give Γ to superposition prover)

- \mathcal{L} = Arrays with extensionality
- $Lan_{\mathcal{L}}$ = Boolean combinations of read/write atoms
- $Mod_{\mathcal{L}}$ = expansions of array models to free constants
- $\hat{\mathcal{L}}$ = FOL with equality
- $Lan_{\hat{L}}$ = FOL clauses
- $Mod_{\hat{\mathcal{L}}}$ = models of FOL with equality
- $Ref_{\hat{\mathcal{L}}}$ = any superposition-based prover

Termination Conditions:

- 6 $\Gamma = \{\bot\}$ or
- \circ Γ is saturated (*)
- (*) Termination is guaranteed with proper reduction ordering

Expansion Rules Superposition Right

$$\frac{\Gamma, C \lor s[u] = t, C' \lor u' = v'}{\Gamma, C \lor s[u] = t, C' \lor u' = v', \mu(C \lor C' \lor s[v'] = t)} \quad \text{if } \begin{cases} \mu = mgu(u', u), \\ \dots \end{cases}$$

Splitting Rules None

Closing Rules

Fail $\frac{\Gamma,\Box}{\bot}$

. . .

DISPROVING-VERIFY'07 - p.21/3

Contraction Rules Subsumption $\frac{\Gamma, C, C'}{\Gamma, C}$ if $\sigma(C) \subseteq C$ for some σ, \ldots

Deletion
$$\frac{\Gamma, C \lor t = t}{\Gamma}$$

- - -

Refinement Rules \mathcal{T} -Axiom $\frac{\Gamma}{\Gamma, C}$ if *C* is an axiom of \mathcal{T}

DISPROVING-VERIFY'07 - p.22/3

L =	QF fragment of	of some theory ${\mathcal T}$
-----	----------------	-------------------------------

- $Lan_{\mathcal{L}}$ = Boolean combinations of \mathcal{T} -atoms
- $Mod_{\mathcal{L}}$ = expansions of models of \mathcal{T} to free constants
- $\hat{\mathcal{L}}$ = propositional logic
- $Lan_{\hat{L}} = CNF$ formulas
- $Mod_{\hat{\mathcal{L}}}$ = propositional models
- $Ref_{\hat{\mathcal{L}}}$ = DPLL-based solver

\mathcal{L} =	QF fragment of some theory 7
-----------------	------------------------------

- $Lan_{\mathcal{L}}$ = Boolean combinations of \mathcal{T} -atoms
- $Mod_{\mathcal{L}}$ = expansions of models of \mathcal{T} to free constants
- $\hat{\mathcal{L}}$ = propositional logic
- $Lan_{\hat{L}} = CNF$ formulas
- $Mod_{\hat{\mathcal{L}}}$ = propositional models
- $Ref_{\hat{\mathcal{L}}}$ = DPLL-based solver

Abstraction:

 $\varphi^{\rm a}$ is a Boolean abstraction of φ 's CNF

Refinement:

Selected ground theorems or unit consequences of Γ^c in ${\mathcal T}$

\mathcal{L} =	QF fragment of some theory 7
-----------------	------------------------------

- $Lan_{\mathcal{L}}$ = Boolean combinations of \mathcal{T} -atoms
- $Mod_{\mathcal{L}}$ = expansions of models of \mathcal{T} to free constants
- $\hat{\mathcal{L}}$ = propositional logic
- $Lan_{\hat{L}} = CNF$ formulas
- $Mod_{\hat{\mathcal{L}}}$ = propositional models
- $Ref_{\hat{\mathcal{L}}}$ = DPLL-based solver

Proof strategy:

- 1. Start with $\Gamma = \{\varphi^a\}$
- 2. Apply a mix of DPLL and refinement rules (*)

(*) Termination guaranteed by mild restrictions on rule application mix

\mathcal{L} =	QF fragment of	of some theory ${\mathcal T}$
-----------------	----------------	-------------------------------

- $Lan_{\mathcal{L}}$ = Boolean combinations of \mathcal{T} -atoms
- $Mod_{\mathcal{L}}$ = expansions of models of \mathcal{T} to free constants
- $\hat{\mathcal{L}}$ = propositional logic
- $Lan_{\hat{L}} = CNF$ formulas
- $Mod_{\hat{\mathcal{L}}}$ = propositional models
- $Ref_{\hat{\mathcal{L}}}$ = DPLL-based solver

Termination Conditions:

- 6 $\Gamma = \{\bot\}$ (on all branches) or
- 6 Δ^{c} is \mathcal{T} -consistent and $\Delta \models \varphi^{a}$, where $\Delta = \{ \text{ literals of } \Gamma \}$

Expansion Rules

Unit Propagation $\frac{\Gamma, l_1, \dots, l_n, \overline{l}_1 \vee \dots \vee \overline{l}_n \vee l}{\Gamma, l_1, \dots, l_n, \overline{l}_1 \vee \dots \vee \overline{l}_n \vee l, l}$

Learn $\frac{\Gamma}{\Gamma, C}$ if $\Gamma \models C$

Splitting Rules

Split
$$\frac{\Gamma}{\Gamma, l \mid \Gamma, \overline{l}}$$
 if neither *l* nor \overline{l} is in Γ

Closing Rules Fail $\Gamma, l_1, \ldots, l_n, \overline{l}_1 \lor \cdots \lor \overline{l}_n$

DISPROVING-VERIFY'07 - p.24/3

Contraction Rules

Forget
$$\frac{\Gamma, C}{\Gamma}$$
if $\Gamma \models C$ Restart $\frac{\Gamma, \Delta}{\Gamma}$ if $\Delta =$ propagated and splitting literals

Refinement Rules

$$\mathcal{T}$$
-Learn $\frac{\Gamma}{\Gamma, C}$ if $\models_{\mathcal{T}} C^{c}$, atoms of C from Γ

 $\mathcal{T}\text{-}\mathbf{Propagate} \quad \frac{\Gamma, \Delta}{\Gamma, \Delta, l} \quad \text{if } \Delta \text{ set of literals, atom of } l \text{ from } \Gamma, \Delta^{c} \models_{\mathcal{T}} l^{c}$

Example: Eager Reduction to LRA+UF

\mathcal{L}	=	finite multisets
$Lan_{\mathcal{L}}$	=	Boolean combinations of multiset atoms
$Mod_{\mathcal{L}}$	=	expansions of multiset models to free constants
$\hat{\mathcal{L}}$	=	linear real arithmetic with uninterpreted symbols
$Lan_{\hat{\mathcal{L}}}$	=	Boolean combination of linear expressions
$Mod_{\hat{\mathcal{L}}}$	=	expansions of Reals to free symbols
$Ref_{\hat{\mathcal{L}}}$	=	DPLL(LRA+UF) solver

Proof strategy:

- 1. Start with $\Gamma = \{\varphi^a\}$
- 2. Apply refinement rules until $\Gamma^{\rm c}$ is equisat with φ
- 3. Apply other rules to Γ (i.e., give Γ to DPLL(T) solver)

Theory Combinations as Refinement

When $T = T_1 + \ldots + T_n$ combination methods apply

Theory Combinations as Refinement

When $T = T_1 + \ldots + T_n$ combination methods apply

When $T = T_1 + \ldots + T_n$ combination methods apply

Eager approaches

Reduce $\mathcal{T}_1 + \ldots + \mathcal{T}_n$ to some theory \mathcal{T}_0

When $T = T_1 + \ldots + T_n$ combination methods apply

Eager approaches Reduce $T_1 + \ldots + T_n$ to some theory T_0

Lazy approaches

 $\mathsf{DPLL}(\mathcal{T}_1,\ldots,\mathcal{T}_n)$ with Nelson-Oppen combination

Query abstraction involves purification

Refinement is done per theory, with refinement formulas including *shared* equalities

- 6 Most SMT solvers accept only ground formulas
- 6 In most cases, queries are ground formulas

- 6 Most SMT solvers accept only ground formulas
- 6 In most cases, queries are ground formulas
- Observe to be seen to be seen

- 6 Most SMT solvers accept only ground formulas
- 6 In most cases, queries are ground formulas
- Observe to be seen to be seen
- 6 Here is why

Often, we want ground satisfiability in a theory $\mathcal{T}_{\mathrm{Full}}$

Often, we want ground satisfiability in a theory $\mathcal{T}_{\mathrm{Full}}$

However, we only have a solver for ground satisfiability in a subtheory T of T_f with

- 6 \mathcal{T} 's signature $\subseteq \mathcal{T}_{Full}$'s signature
- 6 \mathcal{T} 's theorems $\subseteq \mathcal{T}_{\mathrm{Full}}$'s theorems

Often, we want ground satisfiability in a theory $\mathcal{T}_{\mathrm{Full}}$

However, we only have a solver for ground satisfiability in a subtheory T of T_f with

- 6 \mathcal{T} 's signature $\subseteq \mathcal{T}_{Full}$'s signature
- ${}_{\scriptstyle igodol {}_{
 m Full}}$'s theorems ${}_{\scriptstyle {
 m Full}}$'s theorems

We then approximate $\mathcal{T}_{\rm Full}\text{-satisfiability}$ with $\mathcal{T}\text{-satisfiability}$ of $\Gamma\cup\Phi$ where

- $\bullet \Phi$ is the original ground query and
- ~ Γ is a fixed, selected set of quantified axioms of \mathcal{T}_{Full} that are not theorems of \mathcal{T}

- T: Theory of integers and lists (with only cons, nil, head, tail)
- $\mathcal{T}_{\mathrm{Full}}$: Theory of integers and lists with length function
- $\Gamma: \quad \{\operatorname{len}(\operatorname{nil}) = 0, \ \forall x, y. \ \operatorname{len}(\operatorname{cons}(x, y)) = \operatorname{len}(y) + 1\}$

Creeping Quantifiers: Example

- T: Theory of integers and lists (with only cons, nil, head, tail)
- $\mathcal{T}_{\mathrm{Full}}$: Theory of integers and lists with length function
- $\Gamma: \quad \{\operatorname{len}(\operatorname{nil}) = 0, \ \forall x, y. \ \operatorname{len}(\operatorname{cons}(x, y)) = \operatorname{len}(y) + 1\}$

Note $T \cup \Gamma$ is weaker (strictly in this example) than T_{Full} but stronger than T

But we can catch more T_{Full} -unsatisfiable formulas if we check the T-satisfiability of $\Gamma \cup \Phi$ instead of just Φ

Creeping Quantifiers: Example

- T: Theory of integers and lists (with only cons, nil, head, tail)
- $\mathcal{T}_{\mathrm{Full}}$: Theory of integers and lists with length function
- $\Gamma: \quad \{\operatorname{len}(\operatorname{nil}) = 0, \ \forall x, y. \ \operatorname{len}(\operatorname{cons}(x, y)) = \operatorname{len}(y) + 1\}$

Note $T \cup \Gamma$ is weaker (strictly in this example) than T_{Full} but stronger than T

But we can catch more T_{Full} -unsatisfiable formulas if we check the T-satisfiability of $\Gamma \cup \Phi$ instead of just Φ

Problem How to deal with quantifiers in Γ ?

Creeping Quantifiers: Example

- T: Theory of integers and lists (with only cons, nil, head, tail)
- $\mathcal{T}_{\mathrm{Full}}$: Theory of integers and lists with length function
- $\Gamma: \quad \{\operatorname{len}(\operatorname{nil}) = 0, \ \forall x, y. \ \operatorname{len}(\operatorname{cons}(x, y)) = \operatorname{len}(y) + 1\}$

Note $T \cup \Gamma$ is weaker (strictly in this example) than T_{Full} but stronger than T

But we can catch more T_{Full} -unsatisfiable formulas if we check the T-satisfiability of $\Gamma \cup \Phi$ instead of just Φ

Problem How to deal with quantifiers in Γ ?

(Still) Current Solution Logical abstraction and then refinement via heuristic quantifier instantiation

Heuristic Instantiation as Generic Refinement

The case of DPLL(\mathcal{T}) systems

- 1. Abstract each quantified subformula Qx. $\varphi(x)$ in the query by a fresh Boolean predicate P
- 2. If P gets ever asserted, refine it by adding one or more instances of $\varphi({\bf x})$ as needed

Heuristic Instantiation as Generic Refinement

The case of DPLL(\mathcal{T}) systems

- 1. Abstract each quantified subformula Qx. $\varphi(x)$ in the query by a fresh Boolean predicate P
- 2. If *P* gets ever asserted, refine it by adding one or more instances of $\varphi(\mathbf{x})$ as needed

Main Challenges When, how and how much to instantiate

State of the art Patterns, (incomplete) \mathcal{T} -matching See Wednesday morning's talks

As SMT solvers get be embedded in more and different tools more complex forms of outputs are being asked

E.g.

- Olympic Unsatisfiable cores
- 6 Proofs
- 6 Interpolants
- Models

Each of these introduces challenges of its own

When Γ is $\mathcal T$ -unsatisfiable, return minimally $\mathcal T$ -unsatisfiable subsets of Γ

Uses Conflict analysis, intelligent backtracking

Challenges Minimization is a hard problem, even for simple theories

Approaches Compute almost minimal sets

When Γ is $\mathcal{T}\text{-unsatisfiable, produce a proof in some suitable proof system$

Uses Embedding in untrusting tools, interpolant generation

Challenges Minimization of overhead, tradeoff between proof size and rule granularity, choice of the proof system

Approaches Several, no unifying themes yet

When $\Gamma_1 \cup \Gamma_2$ is \mathcal{T} -unsatisfiable, return a \mathcal{T} -interpolant of Γ_1 and Γ_2 (a formula *I* whose free symbols occur in Γ_1 and Γ_2 , and s.t. $\Gamma_1 \models_{\mathcal{T}} I$ and $\Gamma_2, I \models_{\mathcal{T}} \bot$)

Uses Model checking

Challenges New topic, few known interpolating procedures, tricky combination issues

Approaches Eager reduction to LRA+UF

When Γ is satisfiable, return a concrete assignment of values to its free-symbols

Uses Counter-example generation in model checking/ESC/verification, test-case generation

Challenges Potential exponential overhead (difference between sat-checking and constraint solving), compact representation of solutions, combination of solutions

Approaches Mining constraint solving research, more work needed on model generation modulo theories

Which version of FOL= is best for SMT?

More concretely, which type system?

Which version of FOL= is best for SMT?

More concretely, which type system?

- Onsorted
- 6 Many-sorted
- Order-subsorted
- 6 With predicate subtyping
- 6 With parametrized types
- 6 With dependent types

Which version of FOL= is best for SMT?

More concretely, which type system?

Current trend Towards more sophisticated type systems

Rationale Simplifies combination/refinement issues

Challenges Increases complexity of refutation systems, persistent belief that types are mostly a nuisance

- 6 Embedding of SMT solvers into other tools
- Interoperability of SMT solvers
- Standardization of API's and input/output formats
- 6 Availability of benchmarks
- 6 Comparative experimental evaluations

- 6 Embedding of SMT solvers into other tools
- Interoperability of SMT solvers
- Standardization of API's and input/output formats
- 6 Availability of benchmarks
- 6 Comparative experimental evaluations

Being addressed by the SMT-LIB initiative

More info at www.smt-lib.org

Thank you

