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Modeling Computational Systems

Software or hardware systems can be often represented as a
state transition system M = (S, I, T ,L) where

• S is a set of states, the state space

• I ⊆ S is a set of initial states

• T ⊆ S × S is a (right-total) transition relation

• L : S → 2P is a labeling function where P is a set of state
predicates

Typically, the state predicates denote variable-value pairs x = v
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Model Checking

Software or hardware systems can be often represented as a
state transition system M = (S, I, T ,L)

M can be seen as a model both

1. in an engineering sense:

an abstraction of the real system

and

2. in a mathematical logic sense:

a Kripke structure in some modal logic
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Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic
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Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens
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Safety Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens

I will focus on checking safety in this talk
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Talk Roadmap

• Checking safety properties

• Logic-based model checking

• Satisfiability Modulo Theories
• theories
• solvers

• SMT-based model checking
• main approaches
• k-induction

• basic method
• enhancements

• interpolation
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Basic Terminology

Let M = (S, I, T ,L) be a transition system

The set RI of reachable states (of M) is the smallest subset of
S such that

1. I ⊆ RI (initial states are reachable)

2. RI ⊲⊳ T ⊆ RI (T -successors of reachable states are reachable)

Let E ⊆ S (a state property)

The set BE of bad states wrt E is the smallest subset of S such
that

1. E ⊆ BE (the states of E are bad)

2. T ⊲⊳ BE ⊆ BE (T -predecessors of bad states are bad)
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Safety and Invariance

M is safe wrt a state property E if RI ∩ E = ∅

iff I ∩ BE = ∅

A state property P is invariant (for M) iff RI ⊆ P

Note:
M is safe wrt E iff S \ E is invariant for M
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Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅
(Forward rechability)
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Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅

or

1. compute BE and

2. check that I ∩ BE = ∅

(Forward rechability)

(Backward rechability)
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Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅

or

1. compute BE and

2. check that I ∩ BE = ∅

(Forward rechability)

(Backward rechability)

This can be done explicitly only if S is finite, and relatively
small (< 10M states)
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Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅

or

1. compute BE and

2. check that I ∩ BE = ∅

(Forward rechability)

(Backward rechability)

Alternatively, we can represent M symbolically and use

• BDD-based methods, if S is finite,

• automata-based methods,

• logic-based methods, or

• abstract interpretation methods
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Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅

or

1. compute BE and

2. check that I ∩ BE = ∅

(Forward rechability)

(Backward rechability)

Alternatively, we can represent M symbolically and use

• BDD-based methods, if S is finite,

• automata-based methods,

• logic-based methods, or

• abstract interpretation methods
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Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L

(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

4th NASA Formal Methods Symposium, April 2012 – p.9/54



Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L

(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

Examples of L:

• Propositional logic

• Quantified Boolean Formulas

• Bernay-Schönfinkel logic

• Quantifier-free real (or linear integer) arithmetic with
arrays and uninterpreted functions

• . . .
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Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]
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Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]

• states σ ∈ S identified with L(σ) and encoded as n-tuples
of V n
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Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]

• states σ ∈ S identified with L(σ) and encoded as n-tuples
of V n

• I encoded as a formula I[x] with free variables x such that

σ ∈ I iff |=L I[σ]
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Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]

• states σ ∈ S identified with L(σ) and encoded as n-tuples
of V n

• I encoded as a formula I[x] with free variables x such that

σ ∈ I iff |=L I[σ]

• T encoded as a formula T [x,x′] such that

|=L T [σ, σ′] for all (σ, σ′) ∈ T

4th NASA Formal Methods Symposium, April 2012 – p.10/54



Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]

• states σ ∈ S identified with L(σ) and encoded as n-tuples
of V n

• I encoded as a formula I[x] with free variables x such that

σ ∈ I iff |=L I[σ]

• T encoded as a formula T [x,x′] such that

|=L T [σ, σ′] for all (σ, σ′) ∈ T

• State properties encoded as formulas P [x]
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Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[σ] iff σ ∈ R
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Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]
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Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

Problem: R may be very expensive or impossible to compute,
or not even representable in L
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Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

Problem: R may be very expensive or impossible to compute,
or not even representable in L

Logic-based model checking is about approximating R

as efficiently as possible and as precisely as needed
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Main Logic-based Approaches

• Bounded model checking [CBRZ01, AMP06, BHvMW09]

• Interpolation-based model checking [McM03, McM05a]

• Property Directed Reachability [BM07, Bra10, EMB11]

• Temporal induction [SSS00, dMRS03, HT08]

• Backward reachability [ACJT96, GR10]

• . . .

Past accomplishments: mostly based on propositional logic,
with SAT solvers as reasoning engines

New frontier: based on logics decided by solvers for
Satisfiability Modulo Theories [Seb07, BSST09]
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Model Checking Modulo Theories

We invariably reason about transition systems in the context of
some theory T of their data types

Examples

• Pipelined microprocessors: theory of equality, atoms like
f(g(a, b), c) = g(c, a)

• Timed automata: theory of integers/reals, atoms like
x− y < 2

• General software: combination of theories, atoms like
a[2 ∗ j + 1] + x ≥ car(l)− f(x)

Such reasoning can be reduced to checking the satisfiability of
certain formulas in (or modulo) the theory T .
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Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class C of Σ-formulas:

decide for ϕ[x] ∈ C whether T ∪ {∃x. ϕ} is satisfiable
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Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class C of Σ-formulas:

decide for ϕ[x] ∈ C whether T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking
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Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class C of Σ-formulas:

decide for ϕ[x] ∈ C whether T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

• Equality with“Uninterpreted Function Symbols”

• Linear Arithmetic (Real and Integer)

• Arrays (i.e., updatable maps)

• Finite sets and multisets

• Inductive data types (enumerations, lists, trees, . . . )

• . . .
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Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class C of Σ-formulas:

decide for ϕ[x] ∈ C whether T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

Thanks to advances in SAT and in decision procedures, this can
be done very efficiently in practice by current SMT solvers
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

• compute satisfying assignments

• evaluate terms

• identify unsatisfiable cores

• generate interpolants

• construct proof objects

• . . .
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well

Are now the backend of a variety of FM tools :
model checkers, equivalence checkers, extended static checkers,

type checkers, program verifiers, symbolic simulators, malware

detectors, test case generators, invariant generators, . . .
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well

Are now the backend of a variety of FM tools

Increasingly conform to a standard I/O language: the SMT-LIB
format [BST10]
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Modern SMT Solvers

Such as Alt-Ergo, CVC3, MathSat, OpenSMT, VeriT, Yices,
Z3, . . . ,

• are based on many-sorted first-order logic

• support a combination of several built-in theories

• allow user-defined function and predicate symbols

• follow a stack-based, assert-and-query execution model

• provide a rich API
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Modern SMT Solvers

Such as Alt-Ergo, CVC3, MathSat, OpenSMT, VeriT, Yices,
Z3, . . . ,

• provide a rich API
declare: symbol → type → unit

define: symbol → λ-term → unit

assert: formula → unit

push: unit → unit

pop: unit → unit

check sat: unit → unit

eval: term → value

next model: unit → unit

. . .
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Model Checking: SAT or SMT?

SMT encodings in model checking provide several advantages
over SAT encodings

• more powerful language

(unquantified) first-order formulas instead of Boolean formulas

• satisfiability still efficiently decidable

• similar high level of automation

• more natural and compact encodings

• greater scalability

• not limited to finite state systems
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Model Checking: SAT or SMT?

SMT encodings in model checking provide several advantages
over SAT encodings

SMT-based model checking techniques are

blurring the line between traditional model

checking and deductive verification
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Talk Roadmap
√

Checking safety properties

√
Logic-based model checking

√
Satisfiability Modulo Theories
√

theories
√

solvers

• SMT-based model checking
• main approaches
• k-induction

• basic method
• enhancements

• interpolation
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SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Backward reachability

• Temporal induction (aka k-induction)

• Interpolation-based model checking
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SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Backward reachability

• Temporal induction (aka k-induction)

• Interpolation-based model checking

Will focus more on temporal induction
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Technical Preliminaries

Let’s fix

• L, a logic decided by an SMT solver

(e.g., quantifier-free linear arithmetic and EUF)

• M = (I[x], T [x,x′]), an encoding in L of a system M

• P [x], a state property to be proven invariant for S

4th NASA Formal Methods Symposium, April 2012 – p.21/54



Example: Parametric Resettable Counter

Model

Vars
input pos int n 0
input bool r
int c, n

Initialization
c := 1
n := n 0

Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

The transition relation contains

infinitely many instances of the

schema above, one for each n0 > 0
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Example: Parametric Resettable Counter

Model

Vars
input pos int n 0
input bool r
int c, n

Initialization
c := 1
n := n 0

Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Encoding in L

x := (c, n, r, n0)

I [x] := (c = 1) ∧ (n = n0)

T [x,x′] := (n′ = n)

∧ (r′ ∨ (c = n) → (c′ = 1))

∧ (¬r′ ∧ (c 6= n) → (c′ = c+ 1))

P [x] := c < n+ 1
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Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)
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Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

An SMT solver can check both entailments above
(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)
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Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

Problem: Not all invariants are inductive

Example: In the parametric resettable counter, P :=

c ≤ n+ 1 is invariant but (2) above is falsifiable,

e.g., by (c, n, r) = (4, 3, false) and (c, n, r)′ = (5, 3, false)
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Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:
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Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive
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Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate
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Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate

• Strengthen T : find another invariant Q[x] and use
Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]
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Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate

• Strengthen T : find another invariant Q[x] and use
Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)
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Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate

• Strengthen T : find another invariant Q[x] and use
Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)

• Consider longer T -paths: k-induction
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Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate

• Strengthen T : find another invariant Q[x] and use
Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)

• Consider longer T -paths: k-induction

Easy to automate (but fairly weak in its basic form)
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Basic k-Induction (Naive Algorithm)

Notation: Ii := I [xi], Pi := P [xi], Ti := T [xi−1,xi]

(0) for i = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Ti |=L Pi) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pi ∧ T1 ∧ · · · ∧ Ti+1 |=L Pi+1) then
(0) return success

P is k-inductive for some k ≥ 0, if the first entailment holds for
all i = 0, . . . , k and the second entailment holds for i = k

Example: In the parametric resettable counter, P := c ≤ n+ 1
is 1-inductive, but not 0-inductive
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Basic k-Induction (Naive Algorithm)

Notation: Ii := I [xi], Pi := P [xi], Ti := T [xi−1,xi]

(0) for i = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Ti |=L Pi) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pi ∧ T1 ∧ · · · ∧ Ti+1 |=L Pi+1) then
(0) return success

P is k-inductive for some k ≥ 0, if the first entailment holds for
all i = 0, . . . , k and the second entailment holds for i = k

Note:

• inductive = 0-inductive

• k-inductive ⇒ (k + 1)-inductive ⇒ invariant

• some invariants are not k-inductive for any k
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Basic k-Induction with SMT Solvers

Solver maintains current set of asserted formulas

Two solver instances: b, i

(0) assertb(I0)

(0) k := 0

(0) loop

(0) assertb(Tk) // T0 = true by convention

(0) if not entailedb(Pk) then return cexb()

(0) asserti(Pk); asserti(Tk+1)

(0) if entailedi(Pk+1) then return success

(0) k := k + 1

asserts(F ): adds formula F to asserted formulas

entaileds(F ): checks if F is entailed by asserted formulas

cexs(): returns counterexample after failed entailment
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Actual k-Induction with SMT Solvers

Solver maintains current set of asserted formulas

Two solver instances: b, i

(0) assertb(I0); asserti(¬P1)

(0) k := 0

(0) loop

(0) assertb(Tk) // T0 = true by convention

(0) if not entailedb(Pk) then return cexb()

(0) asserti(P−k); asserti(T−k+1)

(0) if unsati() then return success

(0) k := k + 1

asserts(F ): adds formula F to asserted formulas

entaileds(F ): checks if F is entailed by asserted formulas

cexs(): returns counterexample after failed entailment

unsats(): succeeds iff asserted formulas are jointly unsatisfiable
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Definition of entaileds

(0) proc entaileds(F )

(0) push()

(0) asserts(¬F )

(0) r := unsat()

(0) pop()

(0) return r

unsats(): succeeds iff asserted formulas are jointly unsatisfiable
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Enhancements to k-Induction

• Abstraction and refinement

• Path compression

• Termination checks

• Property strengthening

• Invariant generation

• Multiple property checking
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Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)
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Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can strengthen the premise of the inductive step as follows

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck |=L Pk+1

where Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]
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Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can strengthen the premise of the inductive step as follows

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck |=L Pk+1

where Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]

Rationale: Consider a path that breaks original (2)

π := σ0, . . . , σi, σi+1, . . . , σj , σj+1, . . . , σk+1

with E[σi, σj ] and i < j. If π is on an actual execution of M,
so is the shorter path σ0, . . . , σi, σj+1, . . . , σk+1
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Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck ∧Nk |=L Pk+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]
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Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck ∧Nk |=L Pk+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

Rationale: if
σ0, . . . , σi, . . . , σk+1 breaks original (2) and I[σi], then
σi, . . . , σk+1 breaks the base case in the first place
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Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck ∧Nk |=L Pk+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

Better E’s than x = y can be generated by an analysis of M

More sophisticated notions of compressions have been
proposed [dMRS03]
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Termination check

Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Tk |=L Pk) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1) then
(0) return success
(0) if (I0 ∧ T1 ∧ · · · ∧ Tk+1 |=L ¬Ck+1) then
(0) return success
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Termination check

Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Tk |=L Pk) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1) then
(0) return success
(0) if (I0 ∧ T1 ∧ · · · ∧ Tk+1 |=L ¬Ck+1) then
(0) return success

Rationale: If the last test succeeds, every execution of length
k + 1 is compressible to a shorter one.
Hence, the whole reachable state space has been covered
without finding counterexamples for P
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Termination check

Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Tk |=L Pk) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1) then
(0) return success
(0) if (I0 ∧ T1 ∧ · · · ∧ Tk+1 |=L ¬Ck+1) then
(0) return success

Note: The termination check may slow down the process but
increases precision in some cases
It even makes k-induction complete whenever the quotient S/E
is finite (e.g., timed automata)
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Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1
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Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Then this property is satisfied by σ0:

F [x0] := ∃x1, . . . ,xk+1(P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ ¬Pk+1)
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Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Then this property is satisfied by σ0:

F [x0] := ∃x1, . . . ,xk+1(P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ ¬Pk+1)

(Naive) Algorithm:

1. find a E[x] in L satisfied by σ0 and s.t. E[x] |=L F [x]

2. restart the process with P [x] ∧ ¬E[x] in place of P [x]
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Correctness of Property Strengthening

F [x0] := ∃x1, . . . ,xk+1 (P0∧ · · · ∧Pk ∧T1∧ · · · ∧Tk+1∧¬Pk+1)

When F is satisfied by some σ0, we

1. find a E[x] in L satisfied by σ0 and s.t. E[x] |=L F [x]

2. replace P [x] with Q[x] := P [x] ∧ ¬E[x]

3. “restart” the k-induction process

• If all states satisfying E are unreachable, we can remove
them from consideration in the inductive step

• Otherwise, P is not invariant and the base case is
guaranteed to fail with Q

4th NASA Formal Methods Symposium, April 2012 – p.37/54



Viability of Property Strengthening

F [x0] := ∃x1, . . . ,xk+1 (P0∧ · · · ∧Pk ∧T1∧ · · · ∧Tk+1∧¬Pk+1)

When F is satisfied by some σ0, we

1. find a E[x] in L satisfied by σ0 and s.t. E[x] |=L F [x]

2. replace P [x] with Q[x] := P [x] ∧ ¬E[x]

3. “restart” the k-induction process

• Normally, computing a E equivalent to F requires QE,
which may be impossible or very expensive

• Under-approximating F might be cheaper but less effective
in pruning unreachable states.
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(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1
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(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Correctness: states not satisfying J are definitely unreachable
and so can be pruned
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(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Correctness: states not satisfying J are definitely unreachable
and so can be pruned

Viability: can use any property-independent method for
invariant generation (template-based [KGT11], abstract
interpretation-based, . . . )
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(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Effectiveness: when P is invariant, can substantially improve

• speed, by making P k-inductive for a smaller k, and

• precision, by turning P from k-inductive for no k to
k-inductive for some k
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(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Shortcomings:

• Computed invariants may not prune the right unreachable
states

• Adding too many invariants may swamp the SMT solver
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Approximating R with Interpolation

Recall: If R[x] is the strongest inductive invariant for M in L,

M is safe wrt some E[x] iff R[x] ∧ E[x] |=L ⊥ (⊥ = false)

Problem: Such invariant may be very expensive or impossible
to compute, or not even representable in L

4th NASA Formal Methods Symposium, April 2012 – p.41/54



Approximating R with Interpolation

Recall: If R[x] is the strongest inductive invariant for M in L,

M is safe wrt some E[x] iff R[x] ∧ E[x] |=L ⊥ (⊥ = false)

Problem: Such invariant may be very expensive or impossible
to compute, or not even representable in L

Observation: It suffices to compute an R̂[x] such that

• R[x] |=L R̂[x] (R̂ over-approximates R)

• R̂[x] ∧ B[x] |=L ⊥ (R̂ is disjoint with E)
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Approximating R with Interpolation

Recall: If R[x] is the strongest inductive invariant for M in L,

M is safe wrt some E[x] iff R[x] ∧ E[x] |=L ⊥ (⊥ = false)

Problem: Such invariant may be very expensive or impossible
to compute, or not even representable in L

Observation: It suffices to compute an R̂[x] such that

• R[x] |=L R̂[x] (R̂ over-approximates R)

• R̂[x] ∧ B[x] |=L ⊥ (R̂ is disjoint with E)

A solution: Use theory interpolants to compute R̂[x]
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Logical Interpolation (simplified)

A logic L has the interpolation property if

for all A[y,x] and B[x, z] in L with A[y,x] ∧B[x, z] |=L ⊥

there is a P [x] in L such that

A[y,x] |=L P [x] and P [x] ∧B[x, z] |=L ⊥

P is an interpolant of A and B
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Logical Interpolation (simplified)

A logic L has the interpolation property if

for all A[y,x] and B[x, z] in L with A[y,x] ∧B[x, z] |=L ⊥

there is a P [x] in L such that

A[y,x] |=L P [x] and P [x] ∧B[x, z] |=L ⊥

P is an interpolant of A and B

Intuitively, P

• is an abstraction of A from the viewpoint of B

• summarizes and explains in terms of the shared variables x
why A is inconsistent with B
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Logical Interpolation (simplified)

A logic L has the interpolation property if

for all A[y,x] and B[x, z] in L with A[y,x] ∧B[x, z] |=L ⊥

there is a P [x] in L such that

A[y,x] |=L P [x] and P [x] ∧B[x, z] |=L ⊥

P is an interpolant of A and B

Note: If L has quantifier elimination, the strongest interpolant
(wrt |=L ) is one equivalent to ∃y.A[y,x]
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Logical Interpolation (simplified)

A logic L has the interpolation property if

for all A[y,x] and B[x, z] in L with A[y,x] ∧B[x, z] |=L ⊥

there is a P [x] in L such that

A[y,x] |=L P [x] and P [x] ∧B[x, z] |=L ⊥

P is an interpolant of A and B

Note: If L has quantifier elimination, the strongest interpolant
(wrt |=L ) is one equivalent to ∃y.A[y,x]

Interpolation is an over-approximation of quantifier elimination

4th NASA Formal Methods Symposium, April 2012 – p.42/54



Logics with Interpolation

The quantifier-free fragment of several theories used in SMT
has the interpolation properties and computable interpolants:

• EUF [McM05b, FGG+09]

• linear integer arithmetic with divn [JCG09]

• real arithmetic [McM05b]

• arrays with diff [BGR11]

• combinations of any of the above [YM05, GKT09]

• . . .
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Interpolation-based Model Checking

Let (I[x], T [x,x′]) be an encoding in L of a system M

Consider the bounded reachability formulas (Ri[x])i where

• R0[x] := I[x]

• Ri+1[x] := Ri[x] ∨ ∃y(Ri[y] ∧ T [y,x])
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Interpolation-based Model Checking

Let (I[x], T [x,x′]) be an encoding in L of a system M

Consider the bounded reachability formulas (Ri[x])i where

• R0[x] := I[x]

• Ri+1[x] := Ri[x] ∨ ∃y(Ri[y] ∧ T [y,x])

We prove safety wrt a state property E by using interpolation

[McM05a] to compute a sequence (R̂i)i≥0 such that

• each R̂i overapproximates Ri and is disjoint with E

• the sequence is increasing wrt |=L

• the sequence has a fixpoint R̂ (modulo equivalence in L)
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Constructing (R̂i)i≥0

Fix some k > 0, R̂0 := I[x]

Base Case.

A := R̂0[x0] ∧ T [x0,x1]

B := T [x1,x2] ∧ · · · ∧ T [xk−1,xk] ∧ (E[x1] ∨ · · · ∨ E[xk])

if A ∧ B is satisfiable in L then

fail (M is not safe wrt E)

else

compute an interpolant P [x1] of A and B

R̂1 := R̂0[x] ∨ P [x]
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Constructing (R̂i)i≥0

Step Case.

for i = 1 to ∞

A := R̂i[x0] ∧ T [x0,x1]

B := T [x1,x2] ∧ · · · ∧ T [xk−1,xk] ∧ (E[x1] ∨ · · · ∨ E[xk])

if A ∧ B is satisfiable in L then

restart the whole process with a larger k

else

compute an interpolant P [x1] of A and B

R̂i+1 := R̂i[x] ∨ P [x]

if R̂i+1 |=L R̂i[x] then succeed (fixpoint found)
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Notes on the Interpolation Method

• It needs an interpolating SMT solver

• It is not incremental: a counter-example in the step case
requires a real restart

• It can be made terminating when M has finite
bisimulation quotient

• In the terminating cases, it converges more quickly than
basic k-induction
(k is bounded by M’s radius, not just the reoccurence radius as in

k-induction)
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Conclusions
• SMT-based Model Checking is the new frontier in safety
checking thanks to powerful and versatile SMT solvers

• Several SAT-based methods can be lifted to the SMT case

• SMT encodings of transitions systems are basically 1-to-1

• Reasoning is at the same level of abstraction as in the
original system

• Scalability and scope are higher than approaches based on
propositional logic

• Several approaches and enhancements are being tried,
capitalizing on different features of SMT solvers

• Lots of anecdotal evidence of successful applications
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Future Directions

• Quantifiers are often needed to encode
• parametrized model checking problems

(coming, e.g., from multi-process systems)

• problems with arrays

• New SMT techniques are needed to generate/work with
quantified transition relations, interpolants, invariants, . . .

• Synergistic combinations with traditional abstract
interpretation tools seem possible

• We are starting to see some promising work in these
directions, but much is left to do
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