

Formalizing DPLL-based Solvers for Propositional Satisfiability and for Satisfiability Modulo Theories

Cesare Tinelli

(joint work with Robert Nieuwenhuis and Albert Oliveras)

tinelli@cs.uiowa.edu

The University of Iowa

- Observe to the set of a propositional formula is a well-studied and important problem.
- 6 Theoretical interest: first established NP-Complete problem, phase transition, ...
- Operation of the second structure of the second str
 - Development of algorithms and enhancements.
 - Implementation of extremely efficient tools.
 - Solvers based on the DPLL procedure have been the most successful so far.

6 Any SAT solver can be used to decide the satisfiability of ground (i.e., variable-free) first-order formulas.

- 6 Any SAT solver can be used to decide the satisfiability of ground (i.e., variable-free) first-order formulas.
- Often, however, one is interested in the satisfiability of certain ground formulas in a given first-order theory:

- 6 Any SAT solver can be used to decide the satisfiability of ground (i.e., variable-free) first-order formulas.
- Often, however, one is interested in the satisfiability of certain ground formulas in a given first-order theory:
 - △ Pipelined microprocessors: theory of equality, atoms like f(g(a, b), c) = g(c, a).

- 6 Any SAT solver can be used to decide the satisfiability of ground (i.e., variable-free) first-order formulas.
- Often, however, one is interested in the satisfiability of certain ground formulas in a given first-order theory:
 - △ Pipelined microprocessors: theory of equality, atoms like f(g(a, b), c) = g(c, a).
 - ▲ Timed automata, planning: theory of integers/reals, atoms like x y < 2.

- 6 Any SAT solver can be used to decide the satisfiability of ground (i.e., variable-free) first-order formulas.
- Often, however, one is interested in the satisfiability of certain ground formulas in a given first-order theory:
 - △ Pipelined microprocessors: theory of equality, atoms like f(g(a, b), c) = g(c, a).
 - ▲ Timed automata, planning: theory of integers/reals, atoms like x y < 2.
 - Software verification: combination of theories, atoms like 5 + car(a+2) = cdr(a[j]+1).

- 6 Any SAT solver can be used to decide the satisfiability of ground (i.e., variable-free) first-order formulas.
- Often, however, one is interested in the satisfiability of certain ground formulas in a given first-order theory:
 - △ Pipelined microprocessors: theory of equality, atoms like f(g(a, b), c) = g(c, a).
 - ▲ Timed automata, planning: theory of integers/reals, atoms like x y < 2.
 - Software verification: combination of theories, atoms like 5 + car(a+2) = cdr(a[j]+1).
- 6 We refer to this general problems as (ground) Satisfiability Modulo Theories, or SMT.

- 6 Note: The *T*-satisfiability of ground formulas is decidable iff the *T*-satisfiability of sets of literals is decidable.
- Fact: Many theories of interest have (efficient) decision procedures for sets of literals.
- Or Problem: In practice, dealing with Boolean combinations of literals is as hard as in the propositional case.
- 6 Current solution: Exploit propositional satisfiability technology.

Lifting SAT to SMT

- 6 Eager approach [UCLID]:
 - translate into an equisatisfiable propositional formula,
 - feed it to any SAT solver.
- **Lazy approach** [CVC, ICS, MathSAT, Verifun, Zap]:
 - abstract the input formula into a propositional one,
 - feed it to a DPLL-based SAT solver,
 - use a theory decision procedure to refine the formula.
- **OPLL(T)** [DPLLT, Sammy]:
 - use the decision procedure to guide the search of a DPLL solver.

Develop a declarative formal framework to:

- 6 Reason formally about DPLL-based solvers for SAT and for SMT.
- Model modern features such as non-chronological bactracking, lemma learning or restarts.
- Obscribe different strategies and prove their correctness.
- 6 Compare different systems at a higher level.
- 6 Get new insights for further enhancements of DPPL solvers.

- 6 Motivation: SAT and SMT
- 6 The DPLL procedure
- 6 An Abstract Framework
- SAT case
 - The Original DPLL Procedure
 - The Basic and the Enhanced DPLL System
- SMT case
 - Very Lazy Theory Learning
 - Lazy Theory Learning
 - Theory Propagation

- 6 Tries to build incrementally a satisfying truth assignment M for a CNF formula F.
- 6 M is grown by
 - \land deducing the truth value of a literal from M and F, or
 - guessing a truth value.
- If a wrong guess for a literal leads to an inconsistency, the procedure backtracks and tries the opposite value.

OperationAssign.Formula $1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$

Operation	Assign.	Formula
		$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 1		$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$

Operation		
		$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 1	1	$1 \lor 2, 2 \lor \overline{3} \lor 4, \overline{1} \lor \overline{2}, \overline{1} \lor \overline{3} \lor \overline{4}, 1$
deduce 2	1, 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Operation		Formula
		$1 \lor 2, 2 \lor \overline{3} \lor 4, \overline{1} \lor \overline{2}, \overline{1} \lor \overline{3} \lor \overline{4}, 1$
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 2	1, 2	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
guess 3	1,2,3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Operation	-	Formula
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 2	1, 2	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
guess 3	1,2,3	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 4	1,2,3,4	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$

Operation	Assign.	Formula
		$1 \lor 2, 2 \lor \overline{3} \lor 4, \overline{1} \lor \overline{2}, \overline{1} \lor \overline{3} \lor \overline{4}, 1$
deduce 1	1	$1 \lor 2, 2 \lor \overline{3} \lor 4, \overline{1} \lor \overline{2}, \overline{1} \lor \overline{3} \lor \overline{4}, 1$
deduce 2	1, 2	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
guess 3	1, 2, 3	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 4	1,2,3,4	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$

Inconsistency!

Operation	Assign.	Formula
		$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 1	1	$1 \lor 2, 2 \lor \overline{3} \lor 4, \overline{1} \lor \overline{2}, \overline{1} \lor \overline{3} \lor \overline{4}, 1$
deduce 2	1, 2	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
guess 3	1,2,3	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 4	1,2,3,4	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
undo 3	1,2	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$

Operation	Assign.	Formula
		$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 2	1, 2	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
guess 3	1,2,3	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 4	1,2,3,4	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
undo 3	1, 2	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
guess 3	1,2,3	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$

Operation	Assign.	Formula
		$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 2	1, 2	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
guess 3	1,2,3	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 4	1,2,3,4	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
undo 3	1, 2	$1 \lor 2, 2 \lor \overline{3} \lor 4, \overline{1} \lor \overline{2}, \overline{1} \lor \overline{3} \lor \overline{4}, 1$
guess 3	1,2,3	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$

Model Found!

- 6 Motivation: SAT and SMT
- 6 The DPLL procedure
- 6 An Abstract Framework
- SAT case
 - The Original DPLL Procedure
 - The Basic and the Enhanced DPLL System
- 6 SMT case
 - Very Lazy Theory Learning
 - Lazy Theory Learning
 - Theory Propagation

- 6 The DPLL procedure can be described declaratively by simple sequent-style calculi.
- Such calculi however cannot model meta-logical features such as backtracking, learning and restarts.
- We model DPLL and its enhancements as transition systems instead.
- 6 A transition system is a binary relation over states, induced by a set of conditional transition rules.

Our states:

fail or $M \parallel F$

where F is a CNF formula, a set of clauses, and
M is a sequence of annotated literals
denoting a partial truth assignment.

Our states:

fail or
$$M \parallel F$$

Initial state:

6 $\emptyset \parallel F$, where F is to be checked for satisfiability.

Expected final states:

- 6 fail, if F is unsatisfiable
 - $M \parallel G$, where M is a model of G and G is logically equivalent to F.

Extending the assignment:

UnitProp

$$M \parallel F, C \lor l \rightarrow M l \parallel F, C \lor l \quad \text{if } \begin{cases} M \models \neg C, \\ l \text{ is undefined in } M \end{cases}$$

Extending the assignment:

UnitProp

$$M \parallel F, C \lor l \rightarrow M \ l \parallel F, C \lor l \quad \text{if } \begin{cases} M \models \neg C, \\ l \text{ is undefined in } M \end{cases}$$

Decide

$$M \parallel F \longrightarrow M l^{\mathsf{d}} \parallel F \quad \mathsf{if} \begin{cases} l \text{ or } \overline{l} \text{ occurs in } F, \\ l \text{ is undefined in } M \end{cases}$$

Notation: l^d annotates l as a decision literal.

Repairing the assignment:

Fail

$$M \parallel F, C \rightarrow fail \quad \text{if } \begin{cases} M \models \neg C, \\ M \text{ contains no decision literals} \end{cases}$$

Repairing the assignment:

Fail

$$M \parallel F, C \rightarrow fail \quad \text{if } \begin{cases} M \models \neg C, \\ M \text{ contains no decision literals} \end{cases}$$

Backtrack

$$M l^{\mathsf{d}} N \parallel F, C \rightarrow M \overline{l} \parallel F, C \quad \text{if } \begin{cases} M l^{\mathsf{d}} N \models \neg C, \\ l \text{ last decision literal} \end{cases}$$

- 6 Motivation: SAT and SMT
- 6 The DPLL procedure
- 6 An Abstract Framework
- 6 SAT case
 - △ The Original DPLL Procedure
 - △ The Basic and the Enhanced DPLL System
- 6 SMT case
 - Very Lazy Theory Learning
 - Lazy Theory Learning
 - Theory Propagation

Backtrack

$M l^{\mathsf{d}} N \parallel F, C \rightarrow M \overline{l} \parallel F, C \quad \text{if } \begin{cases} M l^{\mathsf{d}} N \models \neg C, \\ l \text{ last decision literal} \end{cases}$

From Backtracking to Backjumping

Backtrack

$$M l^{\mathsf{d}} N \parallel F, C \rightarrow M \overline{l} \parallel F, C \quad \text{if } \begin{cases} M l^{\mathsf{d}} N \models \neg C, \\ l \text{ last decision literal} \end{cases}$$

Backjump

 $\begin{cases} 1. \ M \ l^{\mathsf{d}} \ N \models \neg C, \\ 2. \ \text{for some clause } D \lor k : \end{cases}$ $Ml^{\mathsf{d}} N \parallel F, C \rightarrow Mk \parallel F, C \quad \text{if} \begin{cases} F, C \vdash L, \ldots, \\ M \models \neg D, \\ k \text{ is undefined in } M, \end{cases}$ k or \overline{k} occurs in $M l^{\mathsf{d}} N \parallel F, C$

Backtrack

$$M l^{\mathsf{d}} N \parallel F, C \rightarrow M \overline{l} \parallel F, C \text{ if } \begin{cases} M l^{\mathsf{d}} N \models \neg C, \\ l \text{ last decision literal} \end{cases}$$

1.12 B

$$M l^{\mathsf{d}} N \parallel F, C \rightarrow M k \parallel F, C \quad \text{if} \begin{cases} 1. \ M l^{\mathsf{d}} N \models \neg C, \\ 2. \text{ for some clause } D \lor k; \\ F, C \vdash D \lor k, \\ M \models \neg D, \\ k \text{ is undefined in } M, \\ k \text{ or } \overline{k} \text{ occurs in} \\ M l^{\mathsf{d}} N \parallel F, C \end{cases}$$

Note: Condition (1) is actually not necessary.

At the core, current DPLL-based SAT solvers are implementations of the transition system:

Basic DPLL

- 6 UnitProp
- 6 Decide
- 🍯 Fail
- 6 Backjump

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \parallel F$.

Exhausted execution: execution ending in an irreducible state

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \parallel F$.

Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in Basic DPLL is finite.

Note: This is not so immediate, because of Backjump.

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \parallel F$.

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution starting with $\emptyset \parallel F$ and ending in $M \parallel F$, $M \models F$.

Proposition (Completeness) If *F* is unsatisfiable, every exhausted execution starting with $\emptyset \parallel F$ ends with *fail*.

$M \parallel F \rightarrow M \parallel F, C \text{ if } \begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \vdash C \end{cases}$

$M \parallel F \rightarrow M \parallel F, C \text{ if } \begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \vdash C \end{cases}$

Forget $M \parallel F, C \rightarrow M \parallel F \text{ if } F \vdash C$

$$M \parallel F \rightarrow M \parallel F, C \quad \text{if } \begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \vdash C \end{cases}$$

Forget $M \parallel F, C \rightarrow M \parallel F \text{ if } F \vdash C$

Usually *C* is a clause identified during conflict analysis.

$$M \parallel F \rightarrow M \parallel F, C \quad \text{if } \begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \vdash C \end{cases}$$

Forget

 $M \parallel F, C \quad \to \quad M \parallel F \quad \text{if } F \vdash C$

Restart

 $M \parallel F \rightarrow \emptyset \parallel F$ if ... you want to

$$M \parallel F \rightarrow M \parallel F, C \quad \text{if } \begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \vdash C \end{cases}$$

Forget

$$M \parallel F, C \quad \to \quad M \parallel F \quad \text{if } F \vdash C$$

Restart

 $M \parallel F \rightarrow \emptyset \parallel F$ if ... you want to

The DPLL system =

{UnitProp, Decide, Fail, Backjump, Learn, Forget, Restart}

6 Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.

- 6 Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.

- 6 Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- 6 A common strategy is to apply the rules with these priorities:

- 6 Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- 6 A common strategy is to apply the rules with these priorities:
 - 1. If n > 0 conflicts have been found so far, increase n and apply Restart.

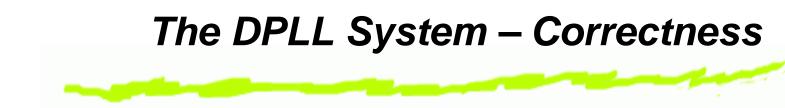
- 6 Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- 6 In practice, Learn is usually (but not only) applied right after Backjump.
- 6 A common strategy is to apply the rules with these priorities:
 - 1. If n > 0 conflicts have been found so far, increase n and apply Restart.
 - If a current clause is falsified by the current assignment, apply Fail Or Backjump + Learn.

- 6 Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- 6 In practice, Learn is usually (but not only) applied right after Backjump.
- 6 A common strategy is to apply the rules with these priorities:
 - 1. If n > 0 conflicts have been found so far, increase n and apply Restart.
 - If a current clause is falsified by the current assignment, apply Fail Or Backjump + Learn.
 - 3. Apply UnitProp

Proposition (Termination) Every execution in which(a) Learn/Forget are applied only finitely many times and(b) Restart is applied with increased periodicityis finite.

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Proposition (Soundness) For every execution $\emptyset \parallel F \Longrightarrow \cdots \Longrightarrow M \parallel F$ with $M \parallel F$ irreducible wrt. Basic DPLL, $M \models F$.



Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

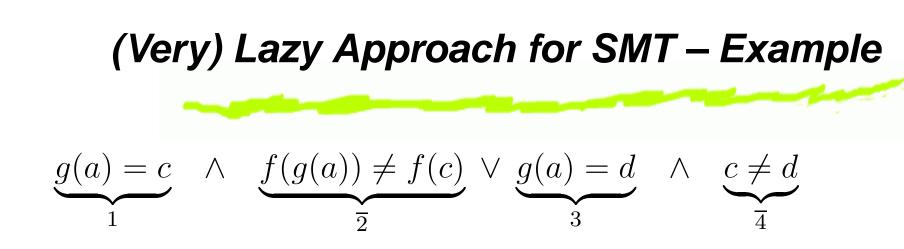
Proposition (Soundness) For every execution $\emptyset \parallel F \Longrightarrow \cdots \Longrightarrow M \parallel F$ with $M \parallel F$ irreducible wrt. Basic DPLL, $M \models F$.

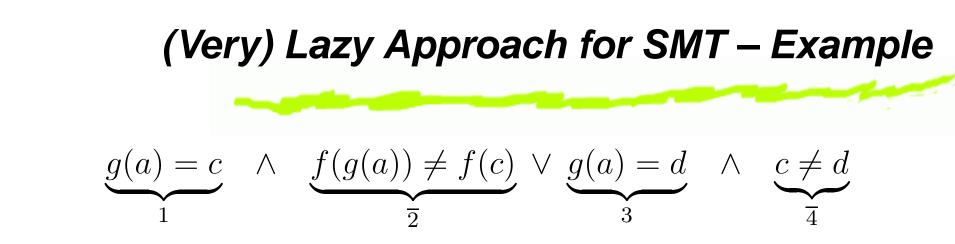
Proposition (Completeness) If *F* is unsatisfiable, for every execution $\emptyset \parallel F \Longrightarrow \cdots \Longrightarrow S$ with *S* irreducible wrt. Basic DPLL, S = fail.

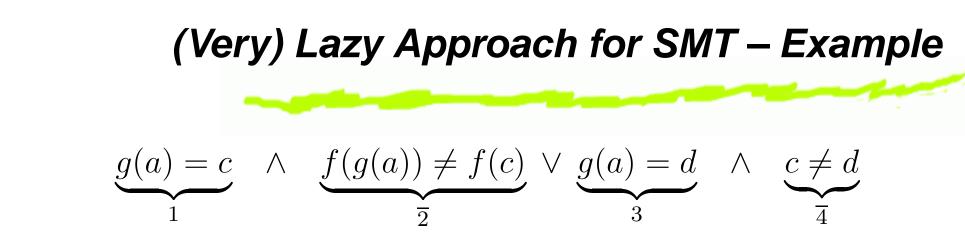
- 6 Motivation: SAT and SMT
- 6 The DPLL procedure
- 6 An Abstract Framework
- SAT case
 - △ The Original DPLL Procedure
 - The Basic and the Enhanced DPLL System
- 6 SMT case
 - Very Lazy Theory Learning
 - Lazy Theory Learning
 - Theory Propagation

$g(a) = c \quad \land \quad f(g(a)) \neq f(c) \lor g(a) = d \quad \land \quad c \neq d$

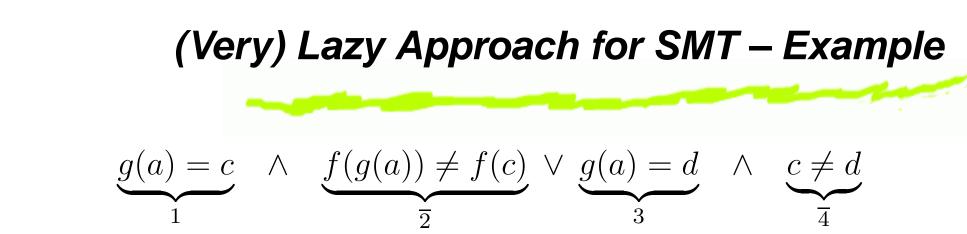
Theory: Equality



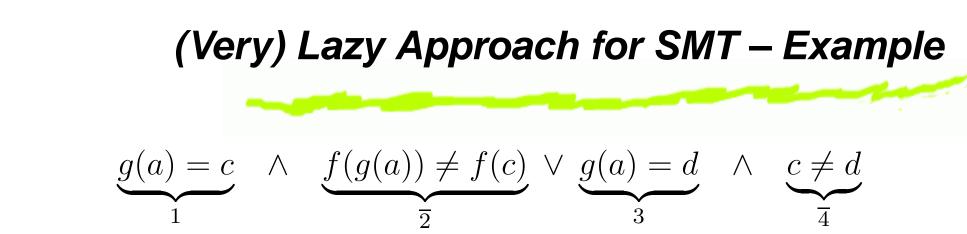




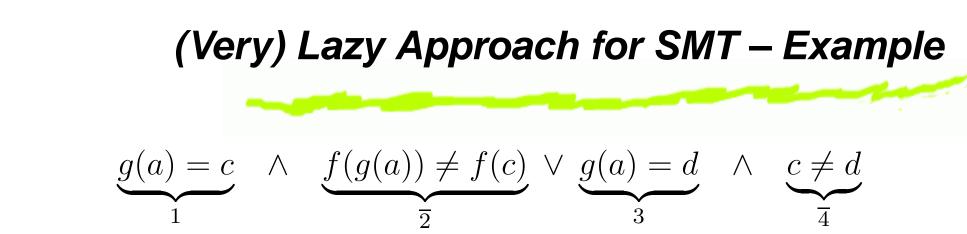
- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver.
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$. Theory solver finds $\{1, \overline{2}\}$ *E*-unsatisfiable.



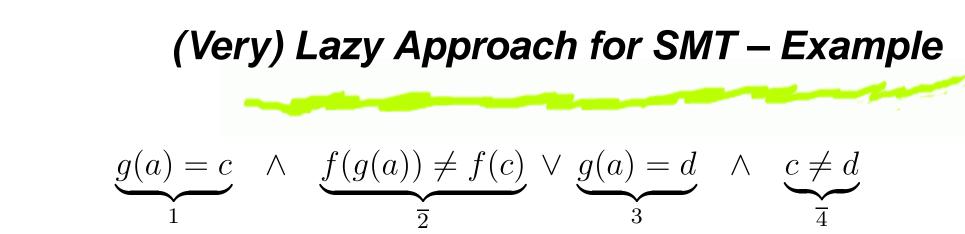
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$. Theory solver finds $\{1, \overline{2}\}$ *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2\}$ to SAT solver.



- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$. Theory solver finds $\{1, \overline{2}\}$ *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2\}$ to SAT solver.
- SAT solver returns model $\{1, 2, 3, \overline{4}\}$. Theory solver finds $\{1, 3, \overline{4}\}$ *E*-unsatisfiable.



- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$. Theory solver finds $\{1, \overline{2}\}$ *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2\}$ to SAT solver.
- 6 SAT solver returns model $\{1, 2, 3, \overline{4}\}$. Theory solver finds $\{1, 3, \overline{4}\}$ *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver.



- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$. Theory solver finds $\{1, \overline{2}\}$ *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2\}$ to SAT solver.
- 6 SAT solver returns model $\{1, 2, 3, \overline{4}\}$. Theory solver finds $\{1, 3, \overline{4}\}$ *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver.
- 6 SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2, \overline{1} \lor \overline{3} \lor 4\}$ unsatisfiable.

Let T be the background theory.

The previous process can be modeled in Abstract DPLL using the following rules:

- UnitProp, Decide, Fail, Restart
 (as in the propositional case) and
- 6 T-Backjump, T-Learn, T-Forget, Very Lazy Theory Learning

Note: The first component of a state $M \parallel F$ is still a truth assignment, but now for ground, first-order literals.

Modeling the Lazy Approach

 $T\text{-}\mathsf{Backjump}$

$$M l^{\mathsf{d}} N \parallel F, C \longrightarrow M k \parallel F, C \quad \mathbf{if} \prec$$

 $\begin{cases} 1. \ M \ l^{\mathsf{d}} \ N \models \neg C, \\ 2. \ \text{for some clause } D \lor k: \\ F, C \vdash_T D \lor k, \\ M \models \neg D, \\ k \ \text{is undefined in } M, \\ k \ \text{or } \overline{k} \ \text{occurs in} \\ M \ l^{\mathsf{d}} \ N \parallel F, CF \ \text{or } M \ l^{\mathsf{d}} \ I \end{cases}$

Only change: \vdash_T instead of \vdash

 $F \vdash_T G$ iff every model of T that satisfies F satisfies G.

Modeling the Lazy Approach

 $\begin{pmatrix} 1 & M \end{pmatrix}^{\mathsf{d}} N \models \neg C$

 $T\text{-}\mathsf{Backjump}$

$$M l^{\mathsf{d}} N \parallel F, C \rightarrow M k \parallel F, C \text{ if } \begin{cases} 1. M l^{\mathsf{d}} N \parallel F, C \\ 2. \text{ for some clause } D \lor k; \\ F, C \vdash_T D \lor k, \\ M \models \neg D, \\ k \text{ is undefined in } M, \\ k \text{ or } \overline{k} \text{ occurs in} \\ M l^{\mathsf{d}} N \parallel F, CF \text{ or } M l^{\mathsf{d}} N \end{cases}$$

T-Learn

 $M \parallel F \rightarrow M \parallel F, C \text{ if } \begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \vdash_T C \end{cases}$

T-Forget

 $M \parallel F, C \rightarrow M \parallel F \text{ if } F \vdash_T C$

The interaction between theory solver and SAT solver in the previous example can be modeled with the rule

Very Lazy Theory Learning

$$M \parallel F \rightarrow \emptyset \parallel F, \overline{l_1} \vee \ldots \vee \overline{l_n} \quad \text{if } \begin{cases} M \models F \\ \{l_1, \ldots, l_n\} \subseteq M \\ l_1 \wedge \cdots \wedge l_n \vdash_T \bot \end{cases}$$

The interaction between theory solver and SAT solver in the previous example can be modeled with the rule

Very Lazy Theory Learning

$$M \parallel F \rightarrow \emptyset \parallel F, \overline{l_1} \vee \ldots \vee \overline{l_n} \quad \text{if} \quad \begin{cases} M \models F \\ \{l_1, \ldots, l_n\} \subseteq M \\ l_1 \wedge \cdots \wedge l_n \vdash_T \bot \end{cases}$$

A better approach is to detect partial assignments that are already T-unsatisfiable.

Modeling the Lazy Approach

Lazy Theory Learning

$$M \parallel F \rightarrow M \parallel F, \overline{l_1} \vee \ldots \vee \overline{l_n} \quad \text{if } \begin{cases} \{l_1, \ldots, l_n\} \subseteq M \\ l_1 \wedge \cdots \wedge l_n \vdash_T \bot \\ \overline{l_1} \vee \cdots \vee \overline{l_n} \notin F \end{cases}$$

Modeling the Lazy Approach

Lazy Theory Learning

$$M \parallel F \rightarrow M \parallel F, \overline{l_1} \vee \ldots \vee \overline{l_n} \quad \text{if } \begin{cases} \{l_1, \ldots, l_n\} \subseteq M \\ l_1 \wedge \cdots \wedge l_n \vdash_T \bot \\ \overline{l_1} \vee \cdots \vee \overline{l_n} \notin F \end{cases}$$

- 6 The learned clause is false in M, hence either Backjump or Fail applies.
- If this is always done, the third condition of the rule is unnecessary
- In some solvers, the rule is applied as soon as possible, i.e., with $M = N l_n$.

Ignoring Restart (for simplicity), a common strategy is to apply the rules using the following priorities:

- 1. If a current clause is falsified by the current assignment, apply Fail/Backjump + Learn.
- 2. If the assignment is *T*-unsatisfiable, apply Lazy Theory Learning + (Fail/Backjump).
- 3. Apply UnitProp.
- 4. Apply Decide.

- 6 Motivation: SAT and SMT
- 6 The DPLL procedure
- 6 An Abstract Framework
- SAT case
 - △ The Original DPLL Procedure
 - The Basic and the Enhanced DPLL System
- 6 SMT case
 - Very Lazy Theory Learning
 - Lazy Theory Learning
 - Theory Propagation

DPLL(T) – Eager Theory Propagation

Use the theory information as soon as possible by eagerly applying

Theory Propagate $M \parallel F \rightarrow M \ l \parallel F \quad \text{if} \begin{cases} M \vdash_T l \\ l \text{ or } \overline{l} \text{ occurs in } F \\ l \text{ is undefined in } M \end{cases}$

$\underbrace{ \begin{array}{c} \textbf{Eager Theory Propagation - Example} \\ \underbrace{g(a) = c}_{1} & \land & \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) = d}_{3} & \land & \underbrace{c \neq d}_{\overline{4}} \end{array} }$

 $\emptyset \parallel 1, \ \overline{2} \lor 3, \ \overline{4}$

$\begin{array}{c} \textbf{Eager Theory Propagation - Example}\\\\ \underbrace{g(a) = c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) = d}_{3} \land \underbrace{c \neq d}_{\overline{4}} \\\\ \emptyset \parallel 1, \overline{2} \lor 3, \overline{4} \implies (\text{UnitProp})\\ 1 \parallel 1, \overline{2} \lor 3, \overline{4} \end{array}$

Eager Theory Propagation - Example $\underbrace{g(a) = c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) = d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$ $1 2 \parallel 1, \overline{2} \lor 3, \overline{4}$

Eager Theory Propagation - Example $\underbrace{g(a) = c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) = d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$

 $1\ 2\ 3\ \|\ 1,\ \overline{2}\lor 3,\ \overline{4}$

Eager Theory Propagation - Example

$$\underbrace{g(a) = c}_{1} \quad \land \quad \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) = d}_{3} \quad \land \quad \underbrace{c \neq d}_{\overline{4}}$$

 $\emptyset \parallel 1, \overline{2} \lor 3, \overline{4}$ $\parallel 1, \overline{2} \lor 3, \overline{4}$ 1 $1 \ 2 \parallel 1, \ \overline{2} \lor 3, \ \overline{4} \implies$ $1\ 2\ 3\ \|\ 1,\ \overline{2}\lor 3,\ \overline{4}$ $1 2 3 4 \parallel 1, \overline{2} \lor 3, \overline{4}$

 \Longrightarrow \implies \Longrightarrow

(UnitProp)

- (Theory Propagate)
- (UnitProp)
- (Theory Propagate)

Eager Theory Propagation - Example

 $\underbrace{g(a) = c}_{1} \quad \land \quad \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) = d}_{3} \quad \land \quad \underbrace{c \neq d}_{\overline{4}}$

 $\emptyset \parallel 1, \ \overline{2} \lor 3, \ \overline{4} \implies$ $1 \parallel 1, \overline{2} \lor 3, \overline{4} \implies$ $1 \ 2 \parallel 1, \ \overline{2} \lor 3, \ \overline{4} \implies (UnitProp)$ $1\ 2\ 3\ \|\ 1,\ \overline{2}\lor 3,\ \overline{4} \implies$ $1 \ 2 \ 3 \ 4 \ \| \ 1, \ \overline{2} \lor 3, \ \overline{4}$ \Longrightarrow fail

(UnitProp) (Theory Propagate)

- (Theory Propagate)

(Fail)

- 6 By eagerly applying Theory Propagate every assignment is *T*-satisfiable, since M l is *T*-unsatisfiable iff $M \vdash_T \overline{l}$.
- 6 As a consequence, Lazy Theory Learning never applies.
- 6 For some logics, e.g., difference logic, his approach is extremely effective.
- 6 For some others, e.g., the theory of equality, it is too expensive to detect all *T*-consequences.
- If Theory Propagate is not applied eagerly, Lazy Theory Learning is needed to repair T-unsatisfiable assignments.

- 6 The six rules of the DPLL system plus Theory Propagate and Lazy Theory Learning provide a decision procedure for SMT.
- **5** Termination can be guaranteed this way:
 - 1. Apply at least one Basic DPLL rule between any two consecutive Learn applications.
 - 2. Apply Fail/Backjump immediately after Lazy Theory Learning.
- Soundness and completeness are proved similarly to the propositional case.

- 6 The DPLL procedure can be modelled abstractly by a transition system.
- Modern features such as backjumping, learning and restarts can be captured with our transition systems.
- 6 Extensions to SMT are simple and clean.
- 6 We can reason formally about the termination and correctness of DPLL variants for SAT/SMT.
- 6 We can compare different systems at a higher level.
- 6 We got new insights for further enhancements of DPLL solvers for SMT. (Stay tuned.)

Thank you

