
Designing Extensible Theory Solvers

Cesare Tinelli

Frontiers of Combining Systems 2017
Sep 29, 2017

Credits

Based on joint work with

Andrew Reynolds, Dejan Jovanović and Clark Barrett

2

The Growth of SMT Solvers

More and more applications are leveraging SMT solvers

SMT solvers keep growing and evolving

E.g., they are now supporting many new theories

• unbounded strings with length constraints [39, 31],
• sequences with concatenation and extraction
• (co-)algebraic datatypes [33],
• finite sets with cardinality constraints [5],
• finite relations with transitive closure
• floating-point arithmetic [13]
• non-linear integer arithmetic
• non-linear real arithmetic (with transcendental functions)

3

The Growth of SMT Solvers

More and more applications are leveraging SMT solvers

SMT solvers keep growing and evolving

E.g., they are now supporting many new theories

• unbounded strings with length constraints [39, 31],
• sequences with concatenation and extraction
• (co-)algebraic datatypes [33],
• finite sets with cardinality constraints [5],
• finite relations with transitive closure
• floating-point arithmetic [13]
• non-linear integer arithmetic
• non-linear real arithmetic (with transcendental functions)

3

General architectures for SMT solvers

One general architecture, DPLL(T), is well understood and
established

Its basic version is limited to quantifier-free formulas

T is the specific background theory supported by the solver

4

DPLL(T) architecture

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

5

DPLL(T) architecture

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

5

SAT Engine

• Only sees Boolean
skeleton of problem

• Builds partial model by
assigning truth values to
literals

• Sends these literals to the
core as assertions

DPLL(T) architecture

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

5

Core

• Sends each assertion to the
appropriate theory

• Sends deduced literals to other
theories/SAT solver

• Handles theory combination

DPLL(T) architecture

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

5

Theory Solvers

• Decide T-satisfiability of
conjunctions of theory
literals

• Are backtrackable

• Generate explanations,
lemmas and conflicts

• Propagate theory literals

The proliferation of theory solvers

New and established theory-specific subsolvers share several
functionalities:

• simplifying/normalizing constraints
• reporting conflicts
• propagating literals
• returning lemmas
• producing explanations and proofs
• …

There is a need to express their common features from both a
formal and an engineering perspective

6

The proliferation of theory solvers

New and established theory-specific subsolvers share several
functionalities:

• simplifying/normalizing constraints
• reporting conflicts
• propagating literals
• returning lemmas
• producing explanations and proofs
• …

There is a need to express their common features from both a
formal and an engineering perspective

6

Our experience with developing theory solvers

Lesson 1
Term simplification is crucial for performance and scalability

Lesson 2
New theory solvers can often be built on top of existing solvers

7

Our experience with developing theory solvers

Lesson 1
Term simplification is crucial for performance and scalability

Lesson 2
New theory solvers can often be built on top of existing solvers

7

Stratified solvers

In general, a theory solver can be built in layers:

• lower layers are simpler/more efficient than higher layers
• higher layers implement a larger fragment of the constraint

language
• higher layers increase the solver’s refutation recall
• abstraction and refinement can be used to connect the layers

8

Refutation Recall?

Solvers are classified in theory along these binary dimensions:

• refutation soundness
• refutation completeness
• solution soundness
• solution completeness
• termination

In practice,

• most solvers are refutation and solution sound
• many solvers are refutation or solution incomplete
• solvers for newer theories are rarely terminating

9

Refutation Recall?

Solvers are classified in theory along these binary dimensions:

• refutation soundness
• refutation completeness
• solution soundness
• solution completeness
• termination

In practice,

• most solvers are refutation and solution sound
• many solvers are refutation or solution incomplete
• solvers for newer theories are rarely terminating

9

Refutation Recall?

Solvers are classified in theory along these binary dimensions:

• refutation soundness
• refutation completeness
• solution soundness
• solution completeness
• termination

In practice,

• most solvers are refutation and solution sound
• many solvers are refutation or solution incomplete
• solvers for newer theories are rarely terminating

9

Problem
These binary dimensions are too coarse for proper analysis!

Information Retrieval to the rescue

Image by Walber - Own work, CC BY-SA 4.0

10

https://commons.wikimedia.org/w/index.php?curid=36926283

Information Retrieval to the rescue

Image by Walber - Own work, CC BY-SA 4.0

10

Classification problem
unsat vs. sat, unknown, timeout

Relevant elements
unsat input problems in fragment

https://commons.wikimedia.org/w/index.php?curid=36926283

Back to theory solvers

Challenge
How to extend modularly a theory solver for fragment of
a theory T to a larger fragment of T
while

1. maintaining precision at 100%
2. increasing recall over larger fragment

11

Focus of this talk

Theories T with signature

ΣT = Σb
T ∪ Σe

T

with Σb
T a basic signature and Σe

A an extension signature

Assumptions

1. Σb
T and Σe

T share sorts but not function symbols
2. extension symbols in formulas are applied only to vars
3. A bjective mapping

ξ : Z → { f(x̄) | f ∈ Σe
T }

with Z a distinguished set of abstraction variables

12

Focus of this talk

Theories T with signature

ΣT = Σb
T ∪ Σe

T

with Σb
T a basic signature and Σe

A an extension signature

Assumptions

1. Σb
T and Σe

T share sorts but not function symbols
2. extension symbols in formulas are applied only to vars
3. A bjective mapping

ξ : Z → { f(x̄) | f ∈ Σe
T }

with Z a distinguished set of abstraction variables

12

Example

Σb
A basic signature for integer arithmetic (Int, ·, +, −, 0, 1, . . .)

Σe
A extension signature for integer arithmetic (×)

ΣA = Σb
A ∪ Σe

A

F = { x6 + x5 × x3 ≈ x5, x5 − 3 ≈ x1 × x2 ∨ x5 > 4 }

Fb = { x6 + z5,3 ≈ x5, x5 − 3 ≈ z1,2 ∨ x5 > 4 }

Fe = { z5,3 ≈ x5 × x3, z1,2 ≈ x1 × x2 }

ξ = { z5,3 7→ x5 × x3, z1,2 7→ x1 × x2, . . . }

⌈Fb⌉ = Fbξ = F

Observe
⌈Fb⌉ = F ≡A ∃ z5,3∃ z1,2 Fb ∧ Fe

13

Example

Σb
A basic signature for integer arithmetic (Int, ·, +, −, 0, 1, . . .)

Σe
A extension signature for integer arithmetic (×)

ΣA = Σb
A ∪ Σe

A

F = { x6 + x5 × x3 ≈ x5, x5 − 3 ≈ x1 × x2 ∨ x5 > 4 }

Fb = { x6 + z5,3 ≈ x5, x5 − 3 ≈ z1,2 ∨ x5 > 4 }

Fe = { z5,3 ≈ x5 × x3, z1,2 ≈ x1 × x2 }

ξ = { z5,3 7→ x5 × x3, z1,2 7→ x1 × x2, . . . }

⌈Fb⌉ = Fbξ = F

Observe
⌈Fb⌉ = F ≡A ∃ z5,3∃ z1,2 Fb ∧ Fe

13

Abstract DPLL(T)

Abstractly, the core of a DPLL(T) solver maintains two evolving
data structures:

1. A context M, a sequence of literals from a set L
2. A clause set F, a set of clauses over L

M is initially empty

F is initially a CNF of input formula

L is finite and includes all literals in initial F

14

Basic theory solver in DPLL(T) systems

type contex = literal sequence
type response = Learn of clause | Infer of literal

| Sat of model | Unknown

SolveT(M): context → response
if φ = ℓ1 ∨ . . . ∨ ℓn, |=T φ, M ̸|=p φ for some ℓ1, . . . , ℓn ⊆ L
Learn(φ)

else if M |=T ℓ for some ℓ ∈ L \ M
Infer(ℓ)

else if I |= M for some T-model I
Sat(I)

else
Unknown

15

Leveraging the state of the art

Current theory solvers have functionalities that can be leveraged to
handle extended contexts M = Mb ∪ Me :

• Computing an congruence relation ≈M over terms in T (M),
where s ≈M t only if M |=T s ≈ t

• Computing simplified forms t↓ of terms t, where |=T t ≈ t↓

16

Static simplification

In DPLL(T) architectures, simplified forms are useful to

theory solvers: to reduce the number of cases
Ex: (t1 < t2)↓ = p > 0

the SAT engine: to abstract different atoms by the same var
Ex: {(x × 2 > 8),¬(4 < x)}↓ = {(x > 4),¬(x > 4)}

However, they are mostly applied once, to the input formula

17

Dynamic simplification

Claim
It is helpful to apply the same simplification technique
dynamically (as M changes) and modulo ≈M

18

Context-dependent simplification

Assume x̄ ≈M s̄ for variables x̄ and terms s̄ from T (M). Then,

M |=T t ≈ (tσ)↓

where σ = { x̄ 7→ s̄ } (called a derivable substitution)

19

Context-dependent simplification

Assume x̄ ≈M s̄ for variables x̄ and terms s̄ from T (M). Then,

M |=T t ≈ (tσ)↓

where σ = { x̄ 7→ s̄ } (called a derivable substitution)

Reduction to basics
Now suppose t = f(x̄) and z ≈ f(x̄) ∈ M

If (tσ)↓ is a Σb
T-term, then

z ≈ f(x̄) can be simplified to z ≈ (tσ)↓

and handled by the basic solver

19

Context-dependent simplification

Assume x̄ ≈M s̄ for variables x̄ and terms s̄ from T (M). Then,

M |=T t ≈ (tσ)↓

where σ = { x̄ 7→ s̄ } (called a derivable substitution)

Example
Let M = { u ≈ z1,1, y1 ≈ w + 2, y1 − w ≈ 2, z1,1 ≈ y1 × y1 }

σ = { y1 7→ 3 } is a derivable substitution

Suppose (y1 × y1)σ↓ = (3 × 3)↓ = 9

Then the theory solver can infer the (basic) equality u ≈ 9

19

Context-dependent simplification

Assume x̄ ≈M s̄ for variables x̄ and terms s̄ from T (M). Then,

M |=T t ≈ (tσ)↓

where σ = { x̄ 7→ s̄ } (called a derivable substitution)

Example
Let Mb = { x1 ̸≈ x2, w ≈ 4 · z, y ≈ 2 · z }
and Me = { x1 ≈ y × y, x2 ≈ w × z }

Then σ = {w 7→ 4 · z, y 7→ 2 · z } is a derivable substitution

Moreover, (y × y)σ↓ = ((2 · z)× (2 · z))↓ = 4 · (z × z)
(w × z)σ↓ = ((4 · z)× z)↓ = 4 · (z × z)

Thus, the solver can infer x1 ≈ x2 from Mb

19

Model-based refinement

What to do if no (more) simplifications apply to M = Mb ∪ Me?

20

Model-based refinement

What to do if no (more) simplifications apply to M = Mb ∪ Me?

Observation
Mb is a conservative abstraction of M in the basic language

20

Model-based refinement

What to do if no (more) simplifications apply to M = Mb ∪ Me?

Observation
Mb is a conservative abstraction of M in the basic language

Abstraction refinement

1. If the basic solver Solveb
T finds Mb unsat then M is unsat

2. If Solveb
T finds a T-model I s.t. I |= Mb

2.1 If I |= Me then M is sat
2.2 Otherwise, add to F a refinement lemma,

a Σb-clause φξ s.t. Me |=T φ and I ̸|= φ

20

Model-based refinement

What to do if no (more) simplifications apply to M = Mb ∪ Me?

Observation
Mb is a conservative abstraction of M in the basic language

Abstraction refinement

1. If the basic solver Solveb
T finds Mb unsat then M is unsat

2. If Solveb
T finds a T-model I s.t. I |= Mb

2.1 If I |= Me then M is sat
2.2 Otherwise, add to F a refinement lemma,

a Σb-clause φξ s.t. Me |=T φ and I ̸|= φ

20

Model-based refinement

What to do if no (more) simplifications apply to M = Mb ∪ Me?

Refinement Example
Let Mb = { z ̸≈ 0 } and Me = { z ≈ y × y }

Let I be a model of IA satisfying Mb with I(z) = −1

A refinement lemma for (M, I) is z ≥ 0

20

Model-based refinement

What to do if no (more) simplifications apply to M = Mb ∪ Me?

Refinement Example
Let Mb = { z ̸≈ 0 } and Me = { z ≈ y × y }

Let I be a model of IA satisfying Mb with I(z) = −1

A refinement lemma for (M, I) is z ≥ 0

Note
⌈z ≥ 0⌉ = y × y ≥ 0 is valid in IA

20

A Strategy for Extended Theory Solvers

Solvee
T(Mb ∪ Me): Perform the following steps

1. (Context-Dependent Simplification)

2. (Basic Solver)

3. (Model-Based Refinement)

21

A Strategy for Extended Theory Solvers

Solvee
T(Mb ∪ Me): Perform the following steps

1. (Context-Dependent Simplification)
While there is a σ = { ȳ 7→ s̄ }

with ȳ, s̄ ∈ T (Mb) and Mb |=T ȳ ≈ s̄
do
1.1 (Ext-Reduce)
1.2 (Ext-Equal)

2. (Basic Solver)

3. (Model-Based Refinement)

21

A Strategy for Extended Theory Solvers

Solvee
T(Mb ∪ Me): Perform the following steps

1. (Context-Dependent Simplification)
While there is a σ = { ȳ 7→ s̄ }

with ȳ, s̄ ∈ T (Mb) and Mb |=T ȳ ≈ s̄
do
1.1 (Ext-Reduce)

If there is a x ≈ t ∈ Me s.t. s = (tσ)↓ is basic and x ≈ s ∈ L
return Infer(x ≈ s)

1.2 (Ext-Equal)

2. (Basic Solver)

3. (Model-Based Refinement)

21

A Strategy for Extended Theory Solvers

Solvee
T(Mb ∪ Me): Perform the following steps

1. (Context-Dependent Simplification)
While there is a σ = { ȳ 7→ s̄ }

with ȳ, s̄ ∈ T (Mb) and Mb |=T ȳ ≈ s̄
do
1.1 (Ext-Reduce)
1.2 (Ext-Equal)

If there are x1 ≈ t1, x2 ≈ t2 ∈ Me s.t.
(t1σ)↓ = (t2σ)↓ and x1 ≈ x2 ∈ L

return Infer(x1 ≈ x2)

2. (Basic Solver)

3. (Model-Based Refinement)

21

A Strategy for Extended Theory Solvers

Solvee
T(Mb ∪ Me): Perform the following steps

1. (Context-Dependent Simplification)

2. (Basic Solver)

3. (Model-Based Refinement)

21

A Strategy for Extended Theory Solvers

Solvee
T(Mb ∪ Me): Perform the following steps

1. (Context-Dependent Simplification)

2. (Basic Solver)
Let res = Solveb

T(Mb)

Unless res = Sat(I) return res

3. (Model-Based Refinement)

21

A Strategy for Extended Theory Solvers

Solvee
T(Mb ∪ Me): Perform the following steps

1. (Context-Dependent Simplification)

2. (Basic Solver)
Let res = Solveb

T(Mb)

3. (Model-Based Refinement)

21

A Strategy for Extended Theory Solvers

Solvee
T(Mb ∪ Me): Perform the following steps

1. (Context-Dependent Simplification)

2. (Basic Solver)
Let res = Solveb

T(Mb)

3. (Model-Based Refinement)
If res = Sat(I)
3.1 (Check)

return res if I |= Me
3.2 (Refine)

return Learn(⌈φ⌉) if there is a ref. lemma φ s.t. Lit(φ) ⊆ L
3.3 (Give up)

return Unknown

21

A Strategy for Extended Theory Solvers

Solvee
T(Mb ∪ Me): Perform the following steps

1. (Context-Dependent Simplification)

2. (Basic Solver)

3. (Model-Based Refinement)

21

An application

Extending
a theory of string with concatenation and length

in the cvc4 solver

22

An extended theory of strings

Basic signature:
Σb

S = (Int, String, ◦, |_|, ϵ, a, ab, …)

Extension signature:
Σe

S = (substr, contains, indexof, replace, …)

Full signature:
ΣA = Σb

S ∪ Σe
S

CVC4 has an efficient and competitive theory solver for the basic
theory

We recently worked an extending it to the full theory

23

Context-based simplification for strings

Simplification rules are highly non-trivial (2,000 LOC in C++)

Sample reductions:

contains(y ◦ x ◦ abc, x ◦ a)↓ = ⊤
contains(abcde, d ◦ x ◦ a)↓ = ⊥
contains(a ◦ x, b ◦ x ◦ a)↓ = ⊥
indexof(a ◦ x ◦ b, b, 0)↓ = 1 + indexof(x, b, 0)
indexof(abc ◦ x, a ◦ x, 1)↓ = −1
replace(a ◦ x, b, y)↓ = a ◦ replace(x, b, y))
replace(x, y, y)↓ = x
substr(x ◦ abcd, 1 + |x|, 2)↓ = bc

24

Model-based refinement

When a S-model I satisfying Mb falsifies M,
the extended solver

1. identifies relevant falsified equations z ≈ f(x̄) in M

2. expands z ≈ f(x̄) lazily based on recursive axioms
for extension functions

25

Built-in axioms for extension string operators

[[x ≈ substr(y, n,m)]] ≡
ite(0 ≤ n < |y| ∧ 0 < m,

y ≈ z1 ◦ x ◦ z2 ∧ |z1| ≈ n ∧ |z2| ≈ |y|
.
− m, x ≈ ϵ)

[[x ≈ contains(y, z)]] ≡
(x ≈ ⊥) ⇔

∧K
n=0 n ≤ |y| − |z| ⇒ ¬[[z ≈ substr(y, n, |z|)]]

[[x ≈ replace(y, z,w)]] ≡
ite(z ̸≈ ϵ ∧ [[⊤ ≈ contains(y, z)]],

x ≈ z1 ◦ w ◦ z2 ∧ y ≈ z1 ◦ z ◦ z2 ∧ [[|z1| ≈ indexof(y, z, 0)]],
x ≈ y)

[[x ≈ indexof(y, z, n)]] ≡ . . .

26

Experimental evaluation

25, 386 benchmarks generated by PyEx

PyEx is an SMT-based symbolic execution engine for Python

Benchmarks heavily involve string functions in the extended
signature

27

Experimental evaluation

Compared our implementation in cvc4 against the string solvers in
z3-str and z3

Both use eager reductions to handle extended string functions

Tested two configurations of cvc4:

1. cvc4+m, which uses model-based refinement (m)
2. cvc4+sm, which also uses context-dependent simplification

(s)

30s timeout for each benchmark

27

Experimental results

PyEx-c (5557) PyEx-z3 (8399) PyEx-z32 (11430) Total (25386)
Solver # time # time # time # time
cvc4+sm 5485 52m 11298 2h33m 7019 1h43m 23802 5h8m
cvc4+m 5377 1h8m 10355 2h29m 6879 3h6m 22611 6h44m
z3 4695 2h44m 8415 5h18m 6258 3h30m 19368 11h33m
z3str2 3291 3h47m 5908 7h24m 4136 4h48m 13335 16h1m

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 5000 10000 15000 20000 25000

T
i
m
e

Solved

cvc4+rm
cvc4+m

z3
z3str2

28

Another application

Lightweight extension
of linear arithmetic theory solver to non-linear arithmetic

in cvc4

29

Integer and real arithmetic

Basic signature:
Σb

A = (Int, Real, +, −, ·, 0, 1, …, 1/2, 1/3, …,)

Extension signature:
Σe

A = (×)

Full signature:
ΣA = Σb

A ∪ Σe
A

CVC4 has an efficient and competitive theory solver for the basic
theory based on several methods

We working an extending it to the full theory

30

Integer and real arithmetic

Context-dependent simplification linearizes non-linear terms when
their variables become equivalent to constants

31

Integer and real arithmetic

Context-dependent simplification linearizes non-linear terms when
their variables become equivalent to constants

All literals are first normalized to the form p ∼ 0
where ∼ is a relational operator and

p a sum of monomials of the form c · x1 × . . . × xn

31

Integer and real arithmetic

All computed derivable substitutions σ are into constants

They are constructed from linear equalities in Mb by a Gaussian
elimination process

Example
If Mb = { x + y ≈ 4, x − y ≈ −2, . . . } then σ = { x 7→ 1, y 7→ 3 }
will be computed

31

Model-based refinement

When a A-model I satisfying Mb falsifies M,
the extended solver

1. identifies relevant falsified equations z ≈ t1 × t2 in M

2. adds selected instances of (candidate) axiom templates
for extension functions

32

Templates for model-based refinement in A

Sign
t1 ∼1 0 ∧ t2 ∼2 0 ⇒ z ∼ 0

Magnitude
|t1| ∼1 |s1| ∧ |t2| ∼2 |s2| ⇒ |z| ∼ |s1 × s2|

where (s1 × s2)↓ ∈ T (Me)

Multiply
t1 ∼1 p ∧ t2 ∼2 0 ⇒ z ∼ (t2 × p)

where deg(t1) ≥ deg(p) and (t1 ∼1 p)↓ ∈ Mb

t1, t2, s1, s2 are monomials, p is a polynomial
∼1,∼2,∼ ∈ {≈, >,<,≤,≥}

33

Experimental evaluation

All benchmarks QF_NRA and QF_NIA from SMT-LIB 2

Tested two configurations of cvc4:

1. cvc4+m, which uses model-based refinement (m)
2. cvc4+sm, which also uses context-dependent simplification

(s)

34

Experimental evaluation

All benchmarks QF_NRA and QF_NIA from SMT-LIB 2

Tested two configurations of cvc4:

1. cvc4+m, which uses model-based refinement (m)
2. cvc4+sm, which also uses context-dependent simplification

(s)

QF_NRA
Compared against yices2, z3 and rasat

rasat has an incomplete interval-based solver

z3 and yices2 have complete solvers based on NLSAT/MCSAT

34

Experimental evaluation

All benchmarks QF_NRA and QF_NIA from SMT-LIB 2

Tested two configurations of cvc4:

1. cvc4+m, which uses model-based refinement (m)
2. cvc4+sm, which also uses context-dependent simplification

(s)

QF_NIA
Compared against yices2, z3, and aprove

aprove relies on bit-blasting

z3 relies on bit-blasting aided by linear and interval reasoning

yices2 extends NLSAT with branch-and-bound

34

Experimental results

QF NIA aprove calypto lranker lctes leipzig mcm uauto ulranker Total

time # time # time # time # time # time # time # time # time
yices 8706 1761 173 83 98 102 0 0 92 30 4 32 7 0 32 11 9112 2021
z3 8253 7636 172 146 93 767 0 0 157 173 16 180 7 0 32 43 8730 8947
cvc4+m 8234 4799 164 43 111 52 1 0 69 589 0 0 6 0 32 84 8617 5569
cvc4+sm 8190 3723 170 61 108 57 1 0 68 375 3 107 7 1 32 86 8579 4413
AProVE 8028 3819 72 110 3 2 0 0 157 169 0 0 0 0 6 4 8266 4106

QF NRA hong hycomp kissing lranker mtarski uauto zankl Total

time # time # time # time # time # time # time # time
z3 9 16 2442 3903 27 443 235 1165 7707 370 60 175 87 23 10567 6098
yices 7 59 2379 594 10 0 213 3110 7640 707 50 210 91 61 10390 4744
raSat 20 1 1933 409 12 32 0 0 6998 504 0 0 54 52 9017 999
cvc4+sm 20 0 2246 718 5 0 623 8375 5434 3711 11 31 33 36 8372 12874
cvc4+m 20 0 2236 491 6 0 603 6677 5440 3532 10 33 31 25 8346 10761

Fig. 6. Results for benchmarks in the QF NIA and QF NRA logics of SMT-LIB. All experiments
are run with a 60 second timeout. Time columns give cumulative seconds on solved benchmarks.

solver, while both Z3 and YICES2 are complete solvers based on NLSAT [28] (with
YICES2 relying on the more recent variant called MCSAT [20]). Note that NLSAT and
the underlying algorithms are highly non-trivial and not based on DPLL(T), making
integration with DPLL(T)-based solvers such as CVC4 impossible.

Although our method is incomplete, overall CVC4 solves an impressive fraction of
SMT-LIB problems. The first interesting observation is that CVC4 solves all instances
in the hong problem set. These are problems that are know to be hard for the meth-
ods underlying Z3 and YICES2, but easy for solvers based on interval reasoning such
as RASAT. Note that CVC4 does not directly employ any interval reasoning, and the
extra deductive power comes as a side-effect of model-based refinement. Another pos-
itive result is that CVC4 solves most problems in the lranker [30] and uauto problem
sets. CVC4’s perfomance on these problems which come from invariant generation [18],
show that our proposed methods work well on practical problems. An example of a
class of benchmarks where CVC4 does not perform well are the mtarski benchmarks
[2]. These benchmarks come from the analysis of elementary real functions and, due
to their high degrees, solving them requires full support for algebraic reasoning. The
results show that our new method is positioned between the incomplete interval-based
methods like those implemented in RASAT, and the complete methods like those imple-
mented in Z3 and YICES2, while performing well on practical problems.

On the QF NIA problems, we compare CVC4 with Z3, YICES2, and APROVE [25].
The APROVE solver relies on bit-blasting [23], Z3 relies on bit-blasting aided with lin-
ear and interval reasoning, while YICES2 extends NLSAT with branch-and-bound [27].
Both versions of CVC4 perform well, especially considering that we do not rely on
bit-blasting or sophisticated non-linear reasoning. Again, on the lranker and ulranker

problem sets the new method in CVC4 excels, solving the highest number of problems.
Overall, cvc4+m proves 812 problems unsatisfiable, and cvc4+sm proves 825 problems

13

60s timeout for each benchmark

35

Conclusions

• General modular approach for theory solver extensions

• Extended constraints processed with context-dependent
simplification and model-based refinement techniques

• Provides new light-weight solutions for handling constraints in
the theory of strings and in non-linear arithmetic

• Experimental data shows that the approach is
• highly effective for strings
• conferms some advantages over the state of the art in

non-linear arithmetic

36

Future work

Use approach in part to develop further theory extensions

Extensions of interest include

• a stratified approach for floating-point constraints
• commonly used type conversion functions (e.g., bv_to_int,

int_to_str)
• transcendental functions in real arithmetic
• catamorphisms on algebraic datatypes
• HOL constraints

37

