Designing Extensible Theory Solvers

Cesare Tinelli
Frontiers of Combining Systems 2017
Sep 29, 2017

Credits

Based on joint work with
Andrew Reynolds, Dejan Jovanović and Clark Barrett

The Growth of SMT Solvers

More and more applications are leveraging SMT solvers
SMT solvers keep growing and evolving
E.g., they are now supporting many new theories

The Growth of SMT Solvers

More and more applications are leveraging SMT solvers
SMT solvers keep growing and evolving
E.g., they are now supporting many new theories

- unbounded strings with length constraints [39, 31],
- sequences with concatenation and extraction
- (co-)algebraic datatypes [33],
- finite sets with cardinality constraints [5],
- finite relations with transitive closure
- floating-point arithmetic [13]
- non-linear integer arithmetic
- non-linear real arithmetic (with transcendental functions)

General architectures for SMT solvers

One general architecture, $\operatorname{DPLL}(T)$, is well understood and established

Its basic version is limited to quantifier-free formulas
T is the specific background theory supported by the solver

DPLL(T) architecture

The proliferation of theory solvers

New and established theory-specific subsolvers share several functionalities:

- simplifying/normalizing constraints
- reporting conflicts
- propagating literals
- returning lemmas
- producing explanations and proofs

The proliferation of theory solvers

New and established theory-specific subsolvers share several functionalities:

- simplifying/normalizing constraints
- reporting conflicts
- propagating literals
- returning lemmas
- producing explanations and proofs

There is a need to express their common features from both a formal and an engineering perspective

Our experience with developing theory solvers

Lesson 1
Term simplification is crucial for performance and scalability

Our experience with developing theory solvers

Lesson 1
Term simplification is crucial for performance and scalability

Lesson 2

New theory solvers can often be built on top of existing solvers

Stratified solvers

In general, a theory solver can be built in layers:

- lower layers are simpler/more efficient than higher layers
- higher layers implement a larger fragment of the constraint language
- higher layers increase the solver's refutation recall
- abstraction and refinement can be used to connect the layers

Refutation Recall?

Solvers are classified in theory along these binary dimensions:

- refutation soundness
- refutation completeness
- solution soundness
- solution completeness
- termination

Refutation Recall?

Solvers are classified in theory along these binary dimensions:

- refutation soundness
- refutation completeness
- solution soundness
- solution completeness
- termination

In practice,

- most solvers are refutation and solution sound
- many solvers are refutation or solution incomplete
- solvers for newer theories are rarely terminating

Refutation Recall?

Solvers are classified in theory along these binary dimensions:

- refutation soundness
- refutation completeness
- solution soundness
- solution completeness
- termination

Problem

These binary dimensions are too coarse for proper analysis!

- most solvers are retutation and solution sound
- many solvers are refutation or solution incomplete
- solvers for newer theories are rarely terminating

Information Retrieval to the rescue

How many relevant items are selected?

Recall $=\frac{\square}{\square}$

Information Retrieval to the rescue

Image by Walber - Own work, CC BY-SA 4.0

Back to theory solvers

Challenge

How to extend modularly a theory solver for fragment of a theory T to a larger fragment of T
while

1. maintaining precision at 100%
2. increasing recall over larger fragment

Focus of this talk

Theories T with signature

$$
\Sigma_{T}=\Sigma_{T}^{\mathrm{b}} \cup \Sigma_{T}^{\mathrm{e}}
$$

with Σ_{T}^{b} a basic signature and $\Sigma_{\mathrm{A}}^{\mathrm{e}}$ an extension signature

Focus of this talk

Theories T with signature

$$
\Sigma_{T}=\Sigma_{T}^{\mathrm{b}} \cup \Sigma_{T}^{\mathrm{e}}
$$

with Σ_{T}^{b} a basic signature and $\Sigma_{\mathrm{A}}^{\mathrm{e}}$ an extension signature

Assumptions

1. Σ_{T}^{b} and Σ_{T}^{e} share sorts but not function symbols
2. extension symbols in formulas are applied only to vars
3. A bjective mapping

$$
\xi: Z \rightarrow\left\{f(\bar{x}) \mid f \in \Sigma_{T}^{\mathrm{e}}\right\}
$$

with Z a distinguished set of abstraction variables

Example

$\Sigma_{\mathrm{A}}^{\mathrm{b}}$ basic signature for integer arithmetic (Int, •, $+,-, 0,1, \ldots$) $\Sigma_{\mathrm{A}}^{\mathrm{e}}$ extension signature for integer arithmetic (\times)

$$
\begin{aligned}
& \Sigma_{\mathrm{A}}=\Sigma_{\mathrm{A}}^{\mathrm{b}} \cup \Sigma_{\mathrm{A}}^{\mathrm{e}} \\
\mathrm{~F} & =\left\{x_{6}+x_{5} \times x_{3} \approx x_{5}, x_{5}-3 \approx x_{1} \times x_{2} \vee x_{5}>4\right\} \\
\mathrm{F}_{\mathrm{b}} & =\left\{x_{6}+z_{5,3} \approx x_{5}, x_{5}-3 \approx z_{1,2} \vee x_{5}>4\right\} \\
\mathrm{F}_{\mathrm{e}} & =\left\{z_{5,3} \approx x_{5} \times x_{3}, z_{1,2} \approx x_{1} \times x_{2}\right\} \\
\xi & =\left\{z_{5,3} \mapsto x_{5} \times x_{3}, z_{1,2} \mapsto x_{1} \times x_{2}, \ldots\right\} \\
\left\lceil\mathrm{F}_{\mathrm{b}}\right\rceil & =\mathrm{F}_{\mathrm{b}} \xi=\mathrm{F}
\end{aligned}
$$

Example

$\sum_{\mathrm{A}}^{\mathrm{b}}$ basic signature for integer arithmetic (Int, $\cdot,+,-, 0,1, \ldots$)
$\Sigma_{\mathrm{A}}^{\mathrm{e}}$ extension signature for integer arithmetic (\times)

$$
\begin{aligned}
& \Sigma_{\mathrm{A}}=\Sigma_{\mathrm{A}}^{\mathrm{b}} \cup \Sigma_{\mathrm{A}}^{\mathrm{e}} \\
\mathrm{~F} & =\left\{x_{6}+x_{5} \times x_{3} \approx x_{5}, x_{5}-3 \approx x_{1} \times x_{2} \vee x_{5}>4\right\} \\
\mathrm{F}_{\mathrm{b}} & =\left\{x_{6}+z_{5,3} \approx x_{5}, x_{5}-3 \approx z_{1,2} \vee x_{5}>4\right\} \\
\mathrm{F}_{\mathrm{e}} & =\left\{z_{5,3} \approx x_{5} \times x_{3}, z_{1,2} \approx x_{1} \times x_{2}\right\} \\
\xi & =\left\{z_{5,3} \mapsto x_{5} \times x_{3}, z_{1,2} \mapsto x_{1} \times x_{2}, \ldots\right\} \\
\left\lceil\mathrm{F}_{\mathrm{b}}\right\rceil & =\mathrm{F}_{\mathrm{b}} \xi=\mathrm{F}
\end{aligned}
$$

Observe

$$
\left\lceil\mathrm{F}_{\mathrm{b}}\right\rceil=\mathrm{F} \equiv_{\mathrm{A}} \exists z_{5,3} \exists z_{1,2} \mathrm{~F}_{\mathrm{b}} \wedge \mathrm{~F}_{\mathrm{e}}
$$

Abstract DPLL(T)

Abstractly, the core of a $\operatorname{DPLL}(T)$ solver maintains two evolving data structures:

1. A context M, a sequence of literals from a set \mathcal{L}
2. A clause set F, a set of clauses over \mathcal{L}
M is initially empty
F is initially a CNF of input formula
\mathcal{L} is finite and includes all literals in initial F

Basic theory solver in DPLL(T) systems

$$
\begin{aligned}
\text { type contex } & =\text { literal sequence } \\
\text { type response } & =\text { Learn of clause | Infer of literal } \\
& \mid \text { Sat of model | Unknown }
\end{aligned}
$$

Solve $_{T}(\mathrm{M})$: context \rightarrow response
if $\varphi=\ell_{1} \vee \ldots \vee \ell_{n}, \quad=_{T} \varphi, \mathrm{M} \not \vDash_{\mathrm{p}} \varphi$ for some $\ell_{1}, \ldots, \ell_{n} \subseteq \mathcal{L}$
Learn (φ)
else if $\mathrm{M} \models_{T} \ell$ for some $\ell \in \mathcal{L} \backslash \mathrm{M}$ Infer (ℓ)
else if $\mathcal{I} \models M$ for some T-model \mathcal{I} Sat(I)
else
Unknown

Leveraging the state of the art

Current theory solvers have functionalities that can be leveraged to handle extended contexts $\mathrm{M}=\mathrm{M}_{\mathrm{b}} \cup \mathrm{M}_{\mathrm{e}}$:

- Computing an congruence relation \approx_{M} over terms in $\mathcal{T}(M)$, where $s \approx_{M} t$ only if $\mathrm{M} \models_{T} s \approx t$
- Computing simplified forms $t \downarrow$ of terms t, where $\models_{T} t \approx t \downarrow$

Static simplification

In $\operatorname{DPLL}(T)$ architectures, simplified forms are useful to
theory solvers: to reduce the number of cases

$$
\mathbf{E x}:\left(t_{1}<t 2\right) \downarrow=p>0
$$

the SAT engine: to abstract different atoms by the same var

$$
\text { Ex: }\{(x \times 2>8), \neg(4<x)\} \downarrow=\{(x>4), \neg(x>4)\}
$$

However, they are mostly applied once, to the input formula

Dynamic simplification

Claim

It is helpful to apply the same simplification technique dynamically (as M changes) and modulo \approx_{M}

Context-dependent simplification

Assume $\bar{x} \approx_{M} \bar{s}$ for variables \bar{x} and terms \bar{s} from $\mathcal{T}(M)$. Then,

$$
\mathrm{M} \models_{T} t \approx(t \sigma) \downarrow
$$

where $\sigma=\{\bar{x} \mapsto \bar{s}\}$ (called a derivable substitution)

Context-dependent simplification

Assume $\bar{x} \approx_{M} \bar{s}$ for variables \bar{x} and terms \bar{s} from $\mathcal{T}(M)$. Then,

$$
\mathrm{M} \models_{T} t \approx(t \sigma) \downarrow
$$

where $\sigma=\{\bar{x} \mapsto \bar{s}\}$ (called a derivable substitution)

Reduction to basics

Now suppose $t=f(\bar{x})$ and $z \approx f(\bar{x}) \in M$
If $(t \sigma) \downarrow$ is a \sum_{T}^{b}-term, then

$$
z \approx f(\bar{x}) \text { can be simplified to } z \approx(t \sigma) \downarrow
$$

and handled by the basic solver

Context-dependent simplification

Assume $\bar{x} \approx_{M} \bar{s}$ for variables \bar{x} and terms \bar{s} from $\mathcal{T}(M)$. Then,

$$
\mathrm{M} \models_{T} t \approx(t \sigma) \downarrow
$$

where $\sigma=\{\bar{x} \mapsto \bar{s}\}$ (called a derivable substitution)

Example

Let $\mathrm{M}=\left\{u \approx z_{1,1}, y_{1} \approx w+2, y_{1}-w \approx 2, z_{1,1} \approx y_{1} \times y_{1}\right\}$
$\sigma=\left\{y_{1} \mapsto 3\right\}$ is a derivable substitution

Suppose $\left(y_{1} \times y_{1}\right) \sigma \downarrow=(3 \times 3) \downarrow=9$
Then the theory solver can infer the (basic) equality $u \approx 9$

Context-dependent simplification

Assume $\bar{x} \approx_{M} \bar{s}$ for variables \bar{x} and terms \bar{s} from $\mathcal{T}(M)$. Then,

$$
\mathrm{M} \models_{T} t \approx(t \sigma) \downarrow
$$

where $\sigma=\{\bar{x} \mapsto \bar{s}\}$ (called a derivable substitution)

Example

Let $M_{b}=\left\{x_{1} \not \approx x_{2}, w \approx 4 \cdot z, y \approx 2 \cdot z\right\}$
and $M_{\mathrm{e}}=\left\{x_{1} \approx y \times y, x_{2} \approx w \times z\right\}$
Then $\sigma=\{w \mapsto 4 \cdot z, y \mapsto 2 \cdot z\}$ is a derivable substitution
Moreover, $(y \times y) \sigma \downarrow=((2 \cdot z) \times(2 \cdot z)) \downarrow=4 \cdot(z \times z)$

$$
(w \times z) \sigma \downarrow=((4 \cdot z) \times z) \downarrow=4 \cdot(z \times z)
$$

Thus, the solver can infer $x_{1} \approx x_{2}$ from M_{b}

Model-based refinement

What to do if no (more) simplifications apply to $M=M_{b} \cup M_{e}$?

Model-based refinement

What to do if no (more) simplifications apply to $M=M_{b} \cup M_{e}$?

Observation

M_{b} is a conservative abstraction of M in the basic language

Model-based refinement

What to do if no (more) simplifications apply to $M=M_{b} \cup M_{e}$?

Observation

M_{b} is a conservative abstraction of M in the basic language

Abstraction refinement

1. If the basic solver Solve ${ }_{T}^{b}$ finds M_{b} unsat then M is unsat

Model-based refinement

What to do if no (more) simplifications apply to $M=M_{b} \cup M_{e}$?

Observation

M_{b} is a conservative abstraction of M in the basic language

Abstraction refinement

1. If the basic solver Solve ${ }_{T}^{b}$ finds M_{b} unsat then M is unsat
2. If Solve ${ }_{T}^{\mathrm{b}}$ finds a T-model \mathcal{I} s.t. $\mathcal{I} \models \mathrm{M}_{\mathrm{b}}$
2.1 If $\mathcal{I} \models \mathrm{M}_{\mathrm{e}}$ then M is sat
2.2 Otherwise, add to F a refinement lemma, a $\sum^{\text {b }}$-clause $\varphi \xi$ s.t. $\mathrm{M}_{\mathrm{e}} \models T \varphi$ and $\mathcal{I} \not \vDash \varphi$

Model-based refinement

What to do if no (more) simplifications apply to $M=M_{b} \cup M_{e}$?

Refinement Example

Let $\mathrm{M}_{\mathrm{b}}=\{z \not \approx 0\}$ and $\mathrm{M}_{\mathrm{e}}=\{z \approx y \times y\}$
Let \mathcal{I} be a model of IA satisfying M_{b} with $\mathcal{I}(z)=-1$
A refinement lemma for (M, \mathcal{I}) is $z \geq 0$

Model-based refinement

What to do if no (more) simplifications apply to $M=M_{b} \cup M_{e}$?

Refinement Example

Let $M_{b}=\{z \not \approx 0\}$ and $M_{e}=\{z \approx y \times y\}$
Let \mathcal{I} be a model of IA satisfying M_{b} with $\mathcal{I}(z)=-1$
A refinement lemma for (M, \mathcal{I}) is $z \geq 0$

Note

$\lceil z \geq 0\rceil=y \times y \geq 0$ is valid in IA

A Strategy for Extended Theory Solvers

Solve ${ }_{T}^{e}\left(M_{b} \cup M_{e}\right)$: Perform the following steps

1. (Context-Dependent Simplification)
2. (Basic Solver)
3. (Model-Based Refinement)

A Strategy for Extended Theory Solvers

Solve $_{T}^{e}\left(M_{b} \cup M_{e}\right)$: Perform the following steps

1. (Context-Dependent Simplification)

While there is a $\sigma=\{\bar{y} \mapsto \bar{s}\}$
with $\bar{y}, \bar{s} \in \mathcal{T}\left(\mathrm{M}_{\mathrm{b}}\right)$ and $\mathrm{M}_{\mathrm{b}} \neq_{T} \bar{y} \approx \bar{s}$
do
1.1 (Ext-Reduce)
1.2 (Ext-Equal)
2. (Basic Solver)
3. (Model-Based Refinement)

A Strategy for Extended Theory Solvers

Solve $_{T}^{e}\left(M_{b} \cup M_{e}\right)$: Perform the following steps

1. (Context-Dependent Simplification)

While there is a $\sigma=\{\bar{y} \mapsto \bar{s}\}$
with $\bar{y}, \bar{s} \in \mathcal{T}\left(\mathrm{M}_{\mathrm{b}}\right)$ and $\mathrm{M}_{\mathrm{b}} \neq T \bar{y} \approx \bar{s}$
do
1.1 (Ext-Reduce)

If there is a $x \approx t \in \mathrm{M}_{\mathrm{e}}$ s.t. $s=(t \sigma) \downarrow$ is basic and $x \approx s \in \mathcal{L}$ return $\operatorname{Infer}(x \approx s)$
1.2 (Ext-Equal)
2. (Basic Solver)
3. (Model-Based Refinement)

A Strategy for Extended Theory Solvers

Solve $_{T}^{e}\left(M_{b} \cup M_{e}\right)$: Perform the following steps

1. (Context-Dependent Simplification)

While there is a $\sigma=\{\bar{y} \mapsto \bar{s}\}$

$$
\text { with } \bar{y}, \bar{s} \in \mathcal{T}\left(\mathrm{M}_{\mathrm{b}}\right) \text { and } \mathrm{M}_{\mathrm{b}} \models T \bar{y} \approx \bar{s}
$$

do

```
1.1 (Ext-Reduce)
1.2 (Ext-Equal)
If there are }\mp@subsup{x}{1}{}\approx\mp@subsup{t}{1}{},\mp@subsup{x}{2}{}\approx\mp@subsup{t}{2}{}\in\mp@subsup{M}{\textrm{e}}{\mathrm{ s.t.}
    (t1\sigma)\downarrow=(t2\sigma)\downarrow and }\mp@subsup{x}{1}{}\approx\mp@subsup{x}{2}{}\in\mathcal{L
return Infer( }\mp@subsup{x}{1}{}\approx\mp@subsup{x}{2}{}
```

2. (Basic Solver)
3. (Model-Based Refinement)

A Strategy for Extended Theory Solvers

Solve ${ }_{T}^{e}\left(M_{b} \cup M_{e}\right)$: Perform the following steps

1. (Context-Dependent Simplification)
2. (Basic Solver)
3. (Model-Based Refinement)

A Strategy for Extended Theory Solvers

Solve $_{T}^{e}\left(M_{b} \cup M_{e}\right)$: Perform the following steps

1. (Context-Dependent Simplification)
2. (Basic Solver)

Let res $=\operatorname{Solve}_{T}^{\mathrm{b}}\left(\mathrm{M}_{\mathrm{b}}\right)$
Unless res $=\operatorname{Sat}(\mathcal{I})$ return res
3. (Model-Based Refinement)

A Strategy for Extended Theory Solvers

Solve $_{T}^{e}\left(M_{b} \cup M_{e}\right)$: Perform the following steps

1. (Context-Dependent Simplification)
2. (Basic Solver)

Let res $=\operatorname{Solve}_{T}^{\mathrm{b}}\left(\mathrm{M}_{\mathrm{b}}\right)$
3. (Model-Based Refinement)

A Strategy for Extended Theory Solvers

Solve $_{T}^{e}\left(M_{b} \cup M_{e}\right)$: Perform the following steps

1. (Context-Dependent Simplification)
2. (Basic Solver)

Let res $=\operatorname{Solve}_{T}^{\mathrm{b}}\left(\mathrm{M}_{\mathrm{b}}\right)$
3. (Model-Based Refinement)

If res $=\operatorname{Sat}(\mathcal{I})$
3.1 (Check)
return res if $\mathcal{I} \models M_{e}$
3.2 (Refine)
return $\operatorname{Learn}(\lceil\varphi\rceil)$ if there is a ref. lemma φ s.t. $\mathcal{L i t}(\varphi) \subseteq \mathcal{L}$
3.3 (Give up)
return Unknown

A Strategy for Extended Theory Solvers

Solve ${ }_{T}^{e}\left(M_{b} \cup M_{e}\right)$: Perform the following steps

1. (Context-Dependent Simplification)
2. (Basic Solver)
3. (Model-Based Refinement)

An application

Extending

a theory of string with concatenation and length in the CVC4 solver

An extended theory of strings

Basic signature:

$$
\Sigma_{S}^{b}=\left(\text { Int, String, } \circ,\left|_\right|, \epsilon, a, a b, \ldots\right)
$$

Extension signature:

$\Sigma_{\mathrm{S}}^{\mathrm{e}}=($ substr, contains, indexof, replace, ...)
Full signature:

$$
\Sigma_{\mathrm{A}}=\Sigma_{\mathrm{S}}^{\mathrm{b}} \cup \Sigma_{\mathrm{S}}^{\mathrm{e}}
$$

CVC4 has an efficient and competitive theory solver for the basic theory

We recently worked an extending it to the full theory

Context-based simplification for strings

Simplification rules are highly non-trivial (2,000 LOC in $\mathrm{C}++$)

Sample reductions:

$$
\begin{aligned}
\operatorname{contains}(y \circ \times \circ \mathrm{abc}, x \circ \mathrm{a}) \downarrow & =\top \\
\operatorname{contains}(\mathrm{abcde}, \mathrm{~d} \circ \times \circ \mathrm{a}) \downarrow & =\perp \\
\operatorname{contains}(\mathrm{a} \circ \times, \mathrm{b} \circ \times \circ \mathrm{a}) \downarrow & =\perp \\
\operatorname{indexof}(\mathrm{a} \circ \times \circ \mathrm{b}, \mathrm{~b}, 0) \downarrow & =1+\operatorname{index} \circ \mathrm{f}(x, \mathrm{~b}, 0) \\
\operatorname{indexof}(\mathrm{abc} \circ x, \mathrm{a} \circ x, 1) \downarrow & =-1 \\
\text { replace }(\mathrm{a} \circ x, \mathrm{~b}, y) \downarrow & =\mathrm{a} \circ \operatorname{replace}(x, \mathrm{~b}, y)) \\
\text { replace }(x, y, y) \downarrow & =x \\
\operatorname{substr}(x \circ \mathrm{abcd}, 1+|x|, 2) \downarrow & =\mathrm{bc}
\end{aligned}
$$

Model-based refinement

When a S-model \mathcal{I} satisfying M_{b} falsifies M , the extended solver

1. identifies relevant falsified equations $z \approx f(\bar{x})$ in M
2. expands $z \approx f(\bar{x})$ lazily based on recursive axioms for extension functions

Built-in axioms for extension string operators

$$
\begin{aligned}
& \llbracket x \approx \operatorname{substr}(y, n, m) \rrbracket \equiv \\
& \quad \text { ite }(0 \leq n<|y| \wedge 0<m \\
& \left.\qquad y \approx z_{1} \circ x \circ z_{2} \wedge\left|z_{1}\right| \approx n \wedge\left|z_{2}\right| \approx|y|-m, x \approx \epsilon\right) \\
& \llbracket x \approx \operatorname{contains}(y, z) \rrbracket \equiv \\
& \qquad \begin{array}{l}
(x \approx \perp) \Leftrightarrow \bigwedge_{n=0}^{K} n \leq|y|-|z| \Rightarrow \neg \llbracket z \approx \operatorname{substr}(y, n,|z|) \rrbracket
\end{array} \\
& \begin{array}{l}
\llbracket x \approx \operatorname{replace}(y, z, w) \rrbracket \equiv \\
\quad \text { ite }(z \not \approx \epsilon \wedge \llbracket \top \approx \operatorname{contains}(y, z) \rrbracket \\
\quad x \approx z_{1} \circ w \circ z_{2} \wedge y \approx z_{1} \circ z \circ z_{2} \wedge \llbracket\left|z_{1}\right| \approx \operatorname{indexof}(y, z, 0) \rrbracket \\
\quad x \approx y) \\
\llbracket x \approx
\end{array} \\
& \begin{array}{l}
\text { indexof }(y, z, n) \rrbracket \equiv \ldots
\end{array}
\end{aligned}
$$

Experimental evaluation

25, 386 benchmarks generated by PyEx

PyEx is an SMT-based symbolic execution engine for Python
Benchmarks heavily involve string functions in the extended signature

Experimental evaluation

Compared our implementation in CVC4 against the string solvers in Z3-STR and Z3

Both use eager reductions to handle extended string functions
Tested two configurations of CVC4:

1. cvc4+m, which uses model-based refinement (m)
2. cvc4+sm, which also uses context-dependent simplification (s)

30s timeout for each benchmark

Experimental results

	PyEx-c (5557)		PyEx-z3		(8399)	PyEx-z32 (11430)		Total (25386)	
Solver	$\#$	time	$\#$	time	$\#$	time	$\#$	time	
cvc4+sm	5485	52 m	$\mathbf{1 1 2 9 8}$	2 h 33 m	7019	1 h 43 m	$\mathbf{2 3 8 0 2}$	5 h 8 m	
cvc4+m	5377	1 h 8 m	10355	2 h 29 m	6879	3 h 6 m	22611	6 h 44 m	
z3	4695	2 h 44 m	8415	5 h 18 m	6258	3 h 30 m	19368	11 h 33 m	
z3str2	3291	3 h 47 m	5908	7 h 24 m	4136	4 h 48 m	13335	16 h 1 m	

Another application

Lightweight extension

of linear arithmetic theory solver to non-linear arithmetic in CVC4

Integer and real arithmetic

Basic signature:

$$
\Sigma_{\mathrm{A}}^{\mathrm{b}}=(\text { Int, Real, }+,-, \cdot, 0,1, \ldots, 1 / 2,1 / 3, \ldots,)
$$

Extension signature:

$$
\Sigma_{\mathrm{A}}^{\mathrm{e}}=(\times)
$$

Full signature:

$$
\Sigma_{\mathrm{A}}=\Sigma_{\mathrm{A}}^{\mathrm{b}} \cup \Sigma_{\mathrm{A}}^{\mathrm{e}}
$$

CVC4 has an efficient and competitive theory solver for the basic theory based on several methods

We working an extending it to the full theory

Integer and real arithmetic

Context-dependent simplification linearizes non-linear terms when their variables become equivalent to constants

Integer and real arithmetic

Context-dependent simplification linearizes non-linear terms when their variables become equivalent to constants

All literals are first normalized to the form $p \sim 0$
where \sim is a relational operator and
p a sum of monomials of the form $c \cdot x_{1} \times \ldots \times x_{n}$

Integer and real arithmetic

All computed derivable substitutions σ are into constants
They are constructed from linear equalities in M_{b} by a Gaussian elimination process

Example

If $\mathrm{M}_{\mathrm{b}}=\{x+y \approx 4, x-y \approx-2, \ldots\}$ then $\sigma=\{x \mapsto 1, y \mapsto 3\}$ will be computed

Model-based refinement

When a A-model \mathcal{I} satisfying M_{b} falsifies M, the extended solver

1. identifies relevant falsified equations $z \approx t_{1} \times t_{2}$ in M
2. adds selected instances of (candidate) axiom templates for extension functions

Templates for model-based refinement in A

Sign

$$
t_{1} \sim_{1} 0 \wedge t_{2} \sim_{2} 0 \Rightarrow z \sim 0
$$

Magnitude

$$
\begin{aligned}
& \left|t_{1}\right| \sim_{1}\left|s_{1}\right| \wedge\left|t_{2}\right| \sim_{2}\left|s_{2}\right| \Rightarrow|z| \sim\left|s_{1} \times s_{2}\right| \\
& \text { where }\left(s_{1} \times s_{2}\right) \downarrow \in \mathcal{T}\left(\mathrm{M}_{\mathrm{e}}\right)
\end{aligned}
$$

Multiply

$t_{1} \sim_{1} p \wedge t_{2} \sim_{2} 0 \Rightarrow z \sim\left(t_{2} \times p\right)$
where $\operatorname{deg}\left(t_{1}\right) \geq \operatorname{deg}(p)$ and $\left(t_{1} \sim_{1} p\right) \downarrow \in \mathrm{M}_{\mathrm{b}}$
$t_{1}, t_{2}, s_{1}, s_{2}$ are monomials, p is a polynomial
$\sim_{1}, \sim_{2}, \sim \in\{\approx,>,<, \leq, \geq\}$

Experimental evaluation

All benchmarks QF_NRA and QF_NIA from SMT-LIB 2
Tested two configurations of CVC4:

1. cvc4+m, which uses model-based refinement (m)
2. cvc4+sm, which also uses context-dependent simplification (s)

Experimental evaluation

All benchmarks QF_NRA and QF_NIA from SMT-LIB 2
Tested two configurations of CVC4:

1. cvc4+m, which uses model-based refinement (m)
2. cvc4+sm, which also uses context-dependent simplification (s)

QF_NRA

Compared against YICES2, z3 and RASAT
RASAT has an incomplete interval-based solver
Z3 and YICES2 have complete solvers based on NLSAT/MCSAT

Experimental evaluation

All benchmarks QF_NRA and QF_NIA from SMT-LIB 2
Tested two configurations of CVC4:

1. $\mathbf{c v c} 4+\mathbf{m}$, which uses model-based refinement (\mathbf{m})
2. cvc4+sm, which also uses context-dependent simplification (s)

QF_NIA

Compared against Yices2, z3, and APROVE
APROVE relies on bit-blasting
Z3 relies on bit-blasting aided by linear and interval reasoning
YICES2 extends NLSAT with branch-and-bound

Experimental results

QF_NIA	aprove	calypto	lranker	lctes	leipzig	mcm		uauto	ulranker	Total		
	\# time	\#	time	\# time								
yices	$\mathbf{8 7 0 6}$	1761	$\mathbf{1 7 3}$	83	98	102	0	0	92	30	4	32
$\mathbf{7}$	0	$\mathbf{3 2}$	11	$\mathbf{9 1 1 2} 2021$								
z3	8253	7636	172	146	93	767	0	0	157	173	$\mathbf{1 6}$	180
$\mathbf{7}$	0	32	43	87308947								
cvc4+m	8234	4799	164	43	$\mathbf{1 1 1}$	52	$\mathbf{1}$	0	69	589	0	0
6	0	32	84	86175569								
cvc4+sm	8190	3723	170	61	108	57	$\mathbf{1}$	0	68	375	3	107
7	7	1	32	86	85794413							
AProVE	8028	3819	72	110	3	2	0	0	$\mathbf{1 5 7}$	169	0	0
0	0	6	4	82664106								

QF_NRA	hong	hycomp	kissing	Iranker	mtarski	uauto	zankl	Total
	\# time							
z3	916	24423903	27443	2351165	7707370	60175	$87 \quad 23$	105676098
yices	$7 \quad 59$	2379594	$10 \quad 0$	2133110	7640707	50210	$91 \quad 61$	103904744
raSat	$20 \quad 1$	1933409	$12 \quad 32$	0 0	6998504	0	$54 \quad 52$	9017999
cve4+sm	$20 \quad 0$	2246718	50	6238375	54343711	$11 \quad 31$	$33 \quad 36$	837212874
cve4+m	20	2236491	6	6036677	54403532	$10 \quad 33$	$31 \quad 25$	834610761

$60 s$ timeout for each benchmark

Conclusions

- General modular approach for theory solver extensions
- Extended constraints processed with context-dependent simplification and model-based refinement techniques
- Provides new light-weight solutions for handling constraints in the theory of strings and in non-linear arithmetic
- Experimental data shows that the approach is
- highly effective for strings
- conferms some advantages over the state of the art in non-linear arithmetic

Future work

Use approach in part to develop further theory extensions

Extensions of interest include

- a stratified approach for floating-point constraints
- commonly used type conversion functions (e.g., bv_to_int, int_to_str)
- transcendental functions in real arithmetic
- catamorphisms on algebraic datatypes
- HOL constraints

