
SMT-based Unbounded Model Checking
with IC3 and Approximate QE

Cesare Tinelli

The University of Iowa

ENS and CEA, July 2014 – p.1/37

Acknowledgements

Joint work with Christoph Sticksel and Ruoyu Zhang

ENS and CEA, July 2014 – p.2/37

Modeling Computational Systems

Software or hardware systems can be often represented as a
state transition system M = (S, I, T ,L) where

• S is a set of states, the state space

• I ⊆ S is a set of initial states

• T ⊆ S × S is a (right-total) transition relation

• L : S → 2P is a labeling function where P is a set of state
predicates

Typically, the state predicates denote variable-value pairs x = v

ENS and CEA, July 2014 – p.3/37

Model Checking

Software or hardware systems can be often represented as a
state transition system M = (S, I, T ,L)

M can be seen as a model both

1. in an engineering sense:

an abstraction of the real system

and

2. in a mathematical logic sense:

a Kripke structure in some modal logic

ENS and CEA, July 2014 – p.4/37

Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

ENS and CEA, July 2014 – p.5/37

Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens

ENS and CEA, July 2014 – p.5/37

Invariance Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens

Safety checking can be reduced to invariance checking

ENS and CEA, July 2014 – p.5/37

Basic Terminology

Let M = (S, I, T ,L) be a transition system

The set R of reachable states (of M) is the smallest subset of
S such that

1. I ⊆ R (initial states are reachable)

2. (R ⊲⊳ T) ⊆ R (T -successors of reachable states are reachable)

ENS and CEA, July 2014 – p.6/37

Basic Terminology

Let M = (S, I, T ,L) be a transition system

The set R of reachable states (of M) is the smallest subset of
S such that

1. I ⊆ R (initial states are reachable)

2. (R ⊲⊳ T) ⊆ R (T -successors of reachable states are reachable)

A state property P ⊆ S is invariant (for M) iff R ⊆ P

R
P

S

R

P

S

invariant not invariant
ENS and CEA, July 2014 – p.6/37

Checking Invariance

In principle, to check that P is invariant for M it suffices to

1. compute R and

2. check that R ⊆ P

ENS and CEA, July 2014 – p.7/37

Checking Invariance

In principle, to check that P is invariant for M it suffices to

1. compute R and

2. check that R ⊆ P

This can be done explicitly only if S is finite, and relatively
small (< 10M states)

ENS and CEA, July 2014 – p.7/37

Checking Invariance

In principle, to check that P is invariant for M it suffices to

1. compute R and

2. check that R ⊆ P

This can be done explicitly only if S is finite, and relatively
small (< 10M states)

Alternatively, we can represent M symbolically and use

• BDD-based methods, if S is finite,

• automata-based methods,

• abstract interpretation methods, or

• logic-based methods

ENS and CEA, July 2014 – p.7/37

Checking Invariance

In principle, to check that P is invariant for M it suffices to

1. compute R and

2. check that R ⊆ P

This can be done explicitly only if S is finite, and relatively
small (< 10M states)

Alternatively, we can represent M symbolically and use

• BDD-based methods, if S is finite,

• automata-based methods,

• abstract interpretation methods, or

• logic-based methods

ENS and CEA, July 2014 – p.7/37

Logic-based Model Checking

Applicable if we can encode

M = (S, I, T , L)

in some classical logic L with decidable entailment |=L for
some large enough class of formulas in L

(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

ENS and CEA, July 2014 – p.8/37

Logic-based Model Checking

Applicable if we can encode

M = (S, I, T , L)

in some classical logic L with decidable entailment |=L for
some large enough class of formulas in L

(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

Some (reasonable) additional requirements on L are needed

ENS and CEA, July 2014 – p.8/37

Requirements on L

L = (Σ,F,A, |=L ,V) with

• Σ, a many-sorted first-order signature with equality

• F, language of Σ-formulas closed under all Boolean
operators and quantifiers

• A, a single Σ-structure with decidable satisfiability for
quantifier-free formulas

ENS and CEA, July 2014 – p.9/37

Requirements on L

L = (Σ,F,A, |=L ,V) with

• |=L , same as entailment in A

• V, set of values in A,
variable-free terms with unique interpretation in A

• Quantifier-free formulas satisfied by values:

for all qffs F [x] ∈ F satisfiable in A,
there is a v ∈ V such that

F [v] is true in A

ENS and CEA, July 2014 – p.9/37

Examples of L

Any modular combination of the logics of

• Boolean formulas (with variables belonging to a single Boolean sort)

• linear integer, rational or floating point arithmetic

• fixed size bit vectors

• algebraic data types

• strings

• finite sets

... with a suitable choice of function and predicate symbols

ENS and CEA, July 2014 – p.10/37

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V: values in L

Not.: if x = (x1, . . . , xn) and s = (v1, . . . , vn), φ[s] := φ[v1/x1, . . . , vn/xn]

ENS and CEA, July 2014 – p.11/37

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V: values in L

Not.: if x = (x1, . . . , xn) and s = (v1, . . . , vn), φ[s] := φ[v1/x1, . . . , vn/xn]

• states s ∈ S encoded as n-tuples of Vn

ENS and CEA, July 2014 – p.11/37

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V: values in L

Not.: if x = (x1, . . . , xn) and s = (v1, . . . , vn), φ[s] := φ[v1/x1, . . . , vn/xn]

• states s ∈ S encoded as n-tuples of Vn

• I encoded as a formula I[x] with free variables x such that

s ∈ I iff |=L I[s]

ENS and CEA, July 2014 – p.11/37

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V: values in L

Not.: if x = (x1, . . . , xn) and s = (v1, . . . , vn), φ[s] := φ[v1/x1, . . . , vn/xn]

• states s ∈ S encoded as n-tuples of Vn

• I encoded as a formula I[x] with free variables x such that

s ∈ I iff |=L I[s]

• T encoded as a formula T [x,x′] such that

|=L T [s, s′] for all (s, s′) ∈ T

ENS and CEA, July 2014 – p.11/37

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V: values in L

Not.: if x = (x1, . . . , xn) and s = (v1, . . . , vn), φ[s] := φ[v1/x1, . . . , vn/xn]

• states s ∈ S encoded as n-tuples of Vn

• I encoded as a formula I[x] with free variables x such that

s ∈ I iff |=L I[s]

• T encoded as a formula T [x,x′] such that

|=L T [s, s′] for all (s, s′) ∈ T

• State properties encoded as formulas P [x]

ENS and CEA, July 2014 – p.11/37

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[s] iff s ∈ R

ENS and CEA, July 2014 – p.12/37

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[s] iff s ∈ R

Suppose we can compute R from I and T . Then,

checking that a property P [x] is invariant for M reduces to
checking that R[x] |=L P [x]

ENS and CEA, July 2014 – p.12/37

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[s] iff s ∈ R

Problem: R may be very expensive or impossible to compute,
or not even representable in L

ENS and CEA, July 2014 – p.12/37

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[s] iff s ∈ R

Problem: R may be very expensive or impossible to compute,
or not even representable in L

One Strategy: Property-Directed Reachability. Try to

construct an over-approximation R̂ of R that entails P in L

ENS and CEA, July 2014 – p.12/37

Property Directed Reachability

Two main methods:

• Interpolation-based model checking [McMillan’03]

• Incremental Construction of
Inductive Clauses for
Indubitable Correctness (IC3) [Bradley’10]

ENS and CEA, July 2014 – p.13/37

Property Directed Reachability

Two main methods:

• Interpolation-based model checking [McMillan’03]

• Incremental Construction of
Inductive Clauses for
Indubitable Correctness (IC3) [Bradley’10]

ENS and CEA, July 2014 – p.13/37

Property Directed Reachability

Two main methods:

• Interpolation-based model checking [McMillan’03]

• Incremental Construction of
Inductive Clauses for
Indubitable Correctness (IC3) [Bradley’10]

Note: PDR is used typically to refer to IC3

ENS and CEA, July 2014 – p.13/37

IC3’s Main Idea

Given M = (I[x], T [x,x′]) and P [x], construct R̂ incrementally

Maintain list R̂0 R̂1 · · · R̂k R̂k+1 where

•
R̂0 = {I[x]}

R̂k+1 = {P [x]}

• for each i = 1, . . . , k

R̂i is a set of one-state formulas over x

R̂i over-approximates the states reachable in i-steps

R̂i under-approximates R̂i+1

ENS and CEA, July 2014 – p.14/37

IC3’s Main Idea

I

P

R1 R2 · · · R

ENS and CEA, July 2014 – p.15/37

IC3’s Main Idea

I

P

R1 R2 · · · R

R̂1

ENS and CEA, July 2014 – p.15/37

IC3’s Main Idea

I

P

R1 R2 · · · R

R̂1 R̂2

ENS and CEA, July 2014 – p.15/37

IC3’s Main Idea

I

P

R1 R2 · · · R

R̂1 R̂2 · · · R̂

ENS and CEA, July 2014 – p.15/37

Recursively Refining R̂i

R̂k−1 R̂k
P

b
b

ENS and CEA, July 2014 – p.16/37

Recursively Refining R̂i

R̂k−1 R̂k
P

b

b

s

b
b

Suppose there are s, s′ s.t. R̂k[s] ∧ T [s, s′] ∧ ¬P [s′] is satisfiable

ENS and CEA, July 2014 – p.16/37

Recursively Refining R̂i

R̂k−1 R̂k
P

sb

b

b
b

Find B[x] s.t. B[s] is satisfiable and B[x], T [x,x′] |=L ¬P [x′]

ENS and CEA, July 2014 – p.16/37

Recursively Refining R̂i

R̂k−1 R̂k
P

sB

b
b

If R̂k−1[x], T [x,x
′] |=L ¬B[x′] let R̂k := R̂k−1 ∪ {¬B}

ENS and CEA, July 2014 – p.16/37

Recursively Refining R̂i

R̂k−1 R̂k
P

sB
b

b
s

Else there are s, s′ s.t. R̂k−1[s] ∧ T [s, s′] ∧ ¬P [s′] is satisfiable.

Refine R̂k−1

ENS and CEA, July 2014 – p.16/37

Frame Sequences

IC3 constructs (initial segments of) sequences (Ri)i≥0 of
frames, sets of one-state formulas, satisfying the following

Frame Conditions

(1) R0 = {I}

(2) Ri ⊇ Ri+1 for all i > 0

(3) Ri ⊇ {P} for all i > 0

(4) Ri[x] ∧ T [x,x′] |=L Ri+1[x
′] for all i ≥ 0

ENS and CEA, July 2014 – p.17/37

Extension of a Formula

The extension of an m-state formula F [y1, . . . ,ym] of L is the
following subset of Sm :

JF K
def
= {(s1, . . . , sm) ∈ Sm | F [s1, . . . , sm] is satisfiable in L}

Note: I will sometimes identify a state formula F with its extension JF K

ENS and CEA, July 2014 – p.18/37

Properties of Frame Sequences

Frame Conditions

(1) R0 = I (3) Ri ⊇ {P} for all i > 0

(2) Ri ⊇ Ri+1 for all i > 0 (4) Ri[x] ∧ T [x,x
′] |=L Ri+1[x

′] for all i ≥ 0

ENS and CEA, July 2014 – p.19/37

Properties of Frame Sequences

Frame Conditions

(1) R0 = I (3) Ri ⊇ {P} for all i > 0

(2) Ri ⊇ Ri+1 for all i > 0 (4) Ri[x] ∧ T [x,x
′] |=L Ri+1[x

′] for all i ≥ 0

Lemma 1 [Soundness] Suppose (Ri)i≥0 satisfies the frame
conditions and R0[x] |=L P [x]. If there is an i > 0 such that
Ri = Ri+1, then P is invariant.

ENS and CEA, July 2014 – p.19/37

Properties of Frame Sequences

Frame Conditions

(1) R0 = I (3) Ri ⊇ {P} for all i > 0

(2) Ri ⊇ Ri+1 for all i > 0 (4) Ri[x] ∧ T [x,x
′] |=L Ri+1[x

′] for all i ≥ 0

Lemma 2 [Termination, non-invariant case] If P is not
invariant, there is a k ≥ 0 such that for all frame sequences
(Ri)i≥0 satisfying the frame conditions, JRkK contains a
k-reachable error state.

ENS and CEA, July 2014 – p.19/37

Properties of Frame Sequences

Frame Conditions

(1) R0 = I (3) Ri ⊇ {P} for all i > 0

(2) Ri ⊇ Ri+1 for all i > 0 (4) Ri[x] ∧ T [x,x
′] |=L Ri+1[x

′] for all i ≥ 0

Lemma 2 [Termination, non-invariant case] If P is not
invariant, there is a k ≥ 0 such that for all frame sequences
(Ri)i≥0 satisfying the frame conditions, JRkK contains a
k-reachable error state.

Lemma 3 [Termination, invariant case] If JP K is finite,
there is no frame sequence (Ri)i≥0 satisfying the frame
conditions such that JRiK (JRi+1K for all i ≥ 0.

ENS and CEA, July 2014 – p.19/37

The IC3 Procedure: Our Version

Defined by verify(R0R1)

where
R0 = {I}, R1 = {P}
I[x] |=L P [x]
I[x], T [x,x′] |=L P [x′]

Require: Ri−1[x] ∧ T [x,x′] |=L Ri[x
′]

for i = 1, . . . , k with Rk = P

1: function verify(R0 · · ·Rk)
2: let R0 · · ·Rk = strengthen(R0 · · ·Rk) in
3: let R0 · · ·Rk = propagate(R0, R1 · · ·Rk) in
4: verify(R0 · · ·Rk {P})

ENS and CEA, July 2014 – p.20/37

Backward Pass

Require: Ri−1[x] ∧ T [x,x′] |=L Ri[x
′] for i = 1, . . . , k

Ensure: Ri−1[x] ∧ T [x,x′] |=L Ri[x
′] for i = 1, . . . , k + 1

with Rk+1 = {P}

1: function strengthen(R0 · · ·Rk)
2: if Rk[x] ∧ T [x,x′] |=L P [x′] then
3: R0 · · ·Rk

4: else
5: let B = generalize(Rk, ¬P) in
6: let R0 · · ·Rk = block(R0 · · ·Rk−1, ({B}, Rk)) in
7: strengthen(R0 · · ·Rk)

Not. A :: R denotes {A} ∪R

ENS and CEA, July 2014 – p.21/37

Blocking Bad States (simplified)

Require: v ∈ JRiK, v reaches ¬P in k − i+ 1 steps

for each v ∈ JBK, B ∈ Qj , i = j, . . . , k

Invariant: Ri−1[x] ∧ T [x,x
′] |=L Ri[x

′] for i = 1, . . . , k

1: function block(R0 · · ·Rj−1, (Qj , Rj) · · · (Qk, Rk))

2: let B ∈ Qj , Qj = Qj \ {B} in

3: if ¬B[x] ∧Rj−1[x] ∧ T [x,x
′] |=L ¬B[x′] then

4: let R0 · · ·Rk = R0 (¬B :: R1) · · · (¬B :: Rj)Rj+1 · · ·Rk in

5: if Qj 6= ∅ then

6: block(R0 · · ·Rj−1, (Qj , Rj)(B :: Qj+1, Rj+1) · · · (B :: Qk, Rk))

7: else if j = k then R0 · · ·Rk

8: else block(R0 · · ·Rj , (B :: Qj+1, Rj+1) · · · (B :: Qk, Rk))

9: else

10: let B̄ = generalize(Rj−1 ∧ Cj , B) in

11: block(R0 · · ·Rj−2, ({B̄}, Rj−1) (Qj , Rj) · · · (Qk, Rk))

ENS and CEA, July 2014 – p.22/37

The IC3 Procedure

Require: 0 ≤ j < k

Invariant: Ri−1[x] ∧ T [x,x′] |=L Ri[x
′] for i = 1, . . . , k

1: function propagate(R0 · · ·Rj, Rj+1 · · ·Rk)

2: if

(

there is C ∈ Rj \Rj+1 s.t.

Rj [x] ∧ T [x,x′] |=L C[x′]

)

then

3: propagate(R0 · · ·Rj, (C :: Rj+1) · · ·Rk)
4: else if Rj = Rj+1 then
5: raise Success
6: else if j + 1 < k then
7: propagate(R0 · · ·Rj+1, Rj+2 · · ·Rk)
8: else
9: R0 · · ·Rk

ENS and CEA, July 2014 – p.23/37

The IC3 Procedure

Require: JF [x] ∧ T [x,x′] ∧B[x′]K 6= ∅

1: function generalize(F , B)
2: let (s, s′) ∈ JF [x] ∧ T [x,x′] ∧B[x′]K in
3: let B̄[x] = extrapolate (s, s′, F [x] ∧ T [x,x′] ∧ B[x′]) in
4: if I[x], B̄[x] |=L ⊥ then
5: B̄[x]
6: else
7: raise Counterexample

ENS and CEA, July 2014 – p.24/37

Key Point of non-Boolean IC3

The critical component in generalizing IC3 beyond propositional
logic is extrapolate

extrapolate encapsulates IC3’s idea of generalizing induction
counterexamples

Producing lemmas that eliminate whole sets of induction
counterexamples is crucial for refining the frame sequence

Eliminating these states one by one is either impractical or even
impossible

It is imperative to find a finite number of lemmas that eliminate
all induction counterexamples from a frame

ENS and CEA, July 2014 – p.25/37

Generalizing Induction Conterexamples

The set of all induction counterexamples in a frame F wrt bad
states B′ has an exact and compact representation:

G[x] := ∃x′(F [x] ∧ T [x,x′] ∧ B[x′])

ENS and CEA, July 2014 – p.26/37

Generalizing Induction Conterexamples

The set of all induction counterexamples in a frame F wrt bad
states B′ has an exact and compact representation:

G[x] := ∃x′(F [x] ∧ T [x,x′] ∧ B[x′])

This formula typically cannot be used because it is not
quantifier-free

ENS and CEA, July 2014 – p.26/37

Generalizing Induction Conterexamples

The set of all induction counterexamples in a frame F wrt bad
states B′ has an exact and compact representation:

G[x] := ∃x′(F [x] ∧ T [x,x′] ∧ B[x′])

This formula typically cannot be used because it is not
quantifier-free

Quantifier elimination, when possible at all, can be very
expensive (e.g., doubly exponential in the length of x′)

ENS and CEA, July 2014 – p.26/37

Generalizing Induction Conterexamples

The set of all induction counterexamples in a frame F wrt bad
states B′ has an exact and compact representation:

G[x] := ∃x′(F [x] ∧ T [x,x′] ∧ B[x′])

This formula typically cannot be used because it is not
quantifier-free

Quantifier elimination, when possible at all, can be very
expensive (e.g., doubly exponential in the length of x′)

Our approach: compute quantifier-free under-approximations
of G driven by specific counterexamples

ENS and CEA, July 2014 – p.26/37

Our Approach

Additional requirement: L has quantifier elimination

ENS and CEA, July 2014 – p.27/37

Our Approach

Additional requirement: L has quantifier elimination

Given E[x,x′] := F [x] ∧ T [x,x′] ∧B′[x′] and (s, s′) ∈ JEK,

ENS and CEA, July 2014 – p.27/37

Our Approach

Additional requirement: L has quantifier elimination

Given E[x,x′] := F [x] ∧ T [x,x′] ∧B′[x′] and (s, s′) ∈ JEK,

Step 1 Extract from E a conjunction H[x,x′] of literals s.t.

(s, s′) ∈ JHK and H[x,x′] |=L F [x] ∧ T [x,x′] ∧B′[x′]

ENS and CEA, July 2014 – p.27/37

Our Approach

Additional requirement: L has quantifier elimination

Given E[x,x′] := F [x] ∧ T [x,x′] ∧B′[x′] and (s, s′) ∈ JEK,

Step 1 Extract from E a conjunction H[x,x′] of literals s.t.

(s, s′) ∈ JHK and H[x,x′] |=L F [x] ∧ T [x,x′] ∧B′[x′]

Step 2 Compute a conjuction B[x] of literals s.t.

s ∈ JBK and B[x] |=L ∃x′H[x,x′]

ENS and CEA, July 2014 – p.27/37

Extracting a Conjunctive Implicant

H[x,x′] := e+(F [x] ∧ T [x,x′] ∧ B′[x′])

where

e+(F) :=

e+(F1) if F = F1 ∨ · · · ∨ Fn and |=L F1[s, s
′]

e+(F1) ∧ · · · ∧ e+(Fn) if F = F1 ∧ · · · ∧ Fn

e−(F1) if F = ¬F1

F if F is an atom

e−(F) :=

e−(F1) ∧ · · · ∧ e−(Fn) if F = F1 ∨ · · · ∨ Fn

e−(F1) if F = F1 ∧ · · · ∧ Fn and |=L ¬F1[s, s
′]

e+(F1) if (3)if F = ¬F1

¬F if (4)if F is an atom

ENS and CEA, July 2014 – p.28/37

Computing One-state Cube

Use a under-approximating version of QE to compute B[x]
from H[x,x′]

Currently done for linear integer arithmetic

Based on Cooper’s QE procedure for LIA

Idea applies similarly to other logics with QE
(e.g., real arithmetic)

ENS and CEA, July 2014 – p.29/37

Experimental Evaluation

Implementation in Kind 2 model checker with L = LIA

Kind 2 is written in OCaml and uses several SMT solvers as
reasoning engines

Used Z3 in this case (as it has does QE)

Step 2 of extrapolate can be configured to use either

• our approximate QE for LIA or

• precise QE provided by Z3

ENS and CEA, July 2014 – p.30/37

Experimental Evaluation

883 benchmark problems, each containing a transition system
specified in Lustre and a single property

About half are valid, i.e., their property is invariant

Timeout: 300s of wall clock time

Hardware: AMD Opteron 24-core 2.1GHz with 32GB RAM

ENS and CEA, July 2014 – p.31/37

Precise vs. Approximate QE in Kind 2

ENS and CEA, July 2014 – p.32/37

Precise QE on Implicants

ENS and CEA, July 2014 – p.33/37

Kind 2 vs. Kind 1 with Invariants

ENS and CEA, July 2014 – p.34/37

Kind 2 vs. Z3’s PDR

ENS and CEA, July 2014 – p.35/37

Conclusions

General version of IC3 procedure applying beyond propositional
logic

A QE-based method for generalizing induction counterexamples
for frame refinement

Explicit use of the counterexamples to guide approximate QE

Developed simple under-approximate QE method for LIA
IC3 procedure and QE mentor implemented within a new,
multi-engine version of Kind model checker

Implementation competitive with other IC3-based system for
same logic

ENS and CEA, July 2014 – p.36/37

Future Work

• Develop and integrate approximate QE methods for logics
besides LIA

• Developing methods akin to ternary simulation in the
propositional case to generalize approximate QE further

• In general, find new methods to weaken refinement lemmas
to include more reachable states so as to enable or
accelerate convergence in logics of interest

ENS and CEA, July 2014 – p.37/37

	
	Acknowledgements
	Modeling Computational Systems
	Model Checking
	�romSlide *{3}{emph {Invariance} sout {Model} Checking} untilSlide *{2}{Model Checking}
	Basic Terminology
	Checking Invariance
	Logic-based Model Checking
	Requirements on ms {lo }
	Examples of ms {lo }
	Logical encodings of transitions systems
	Strongest Inductive Invariant
	Property Directed Reachability
	IC3's Main Idea
	IC3's Main Idea
	Recursively Refining ms {hat {R}_i}
	Frame Sequences
	Extension of a Formula
	Properties of Frame Sequences
	The IC3 Procedure: Our Version
	Backward Pass
	Blocking Bad States (simplified)

	The IC3 Procedure
	The IC3 Procedure
	Key Point of non-Boolean IC3
	Generalizing Induction Conterexamples
	Our Approach
	Extracting a Conjunctive Implicant
	Computing One-state Cube
	Experimental Evaluation
	Experimental Evaluation
	Precise vs.~Approximate QE in Kind 2
	Precise QE on Implicants
	Kind 2 vs.~Kind 1 with Invariants
	Kind~2 vs. Z3's PDR
	Conclusions
	Future Work

