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Abstract—In the past decade, Satisfiability Modulo Theories
(SMT) solvers have been used successfully in a variety of
applications including verification, automated theorem proving,
and synthesis. While such solvers are highly adept at handling
ground constraints in several decidable background theories,
they primarily rely on heuristic quantifier instantiation methods
such as E-matching to process quantified formulas. The success
of these methods is often hindered by an overproduction of
instantiations which makes ground level reasoning difficult. We
introduce a new technique that alleviates this shortcoming by
first discovering instantiations that are in conflict with the
current state of the solver. The solver only resorts to traditional
heuristic methods when such instantiations cannot be found, thus
decreasing its dependence upon E-matching. Our experimental
results show that our technique significantly reduces the number
of instantiations required by an SMT solver to answer “unsatis-
fiable” for several benchmark libraries, and consequently leads
to improvements over state-of-the-art implementations.

I. INTRODUCTION

Many recent formal methods applications rely heavily on
Satisfiability Modulo Theories (SMT) solvers for answering
logical queries required to solve complex tasks. These sys-
tems typically are composed of multiple cooperating decision
procedures, or theory solvers, each specialized on sets of
ground constraints over some background theory. Thanks to
the widespread success and applicability of SMT solvers, there
has been a push to use them to handle queries based on
richer encodings that include quantified formulas. Handling
such formulas in a general way has been an ongoing challenge
in the SMT community.

To date, E-matching, first described in [13], is the most
popular and successful method used by SMT solvers for
handling quantified formulas. In this method, instances of a
quantified formula are generated by matching selected terms
in the formula (called matching patterns) with ground terms
in the rest of the problem. While solvers based on E-matching
have had widespread success over many applications, their
power is often difficult to wield. One reason is that E-matching
often produces a very large number of instances, which may
exhaust a solver’s memory or generally cause its performance
to degrade. The problem is often compounded by instances that
introduce new ground terms, which subsequently trigger even
more instantiations. This can lead to non-terminating matching
loops in the worst case, in which a repeating pattern of terms
causes an infinite chain of instantiation steps.

It is thus important to limit the number of instances pro-
duced as a result of E-matching. Past research has addressed

this issue in various ways, including the use of user-provided
matching patterns (or triggers) [7], and methods for recog-
nizing or avoiding matching loops [9]. We present a new
quantifier instantiation procedure that aims at decreasing the
number of produced instances by decreasing the dependency
of SMT solvers on E-matching. This is done by looking
for instantiations that lead directly to ground conflicts or to
relevant new constraints. In this scheme, the solver resorts
to E-matching only when it cannot perform instantiations of
this sort. Our goal is to enable the sub-module that handles
quantified formulas in a SMT solver to behave more like an
efficient theory solver for ground constraints. In particular,
our method enables the quantifier module to influence the
search performed by the main engine by reporting conflicts and
propagating relevant ground constraints, as typically done by
efficient theory solvers based on the DPLL(T ) [14] framework.

The instantiation procedure described in this paper applies
to arbitrary SMT inputs containing quantified formulas. How-
ever, it is not intended to be a comprehensive solution for
handling such formulas. Instead, it is meant to supplement
existing instantiation techniques in a principled manner, so that
those, such as E-matching, which are currently cumbersome
and expensive, are invoked as little as possible.

1) Contributions: This paper presents a new technique
for quantifier instantiation in DPLL(T )-based SMT solvers
that on average significantly reduces the number of instan-
tiations required to prove a formula unsatisfiable. We give
a formal argument for various properties of the technique
and the instances it produces. We describe an optimized
implementation that is efficient in practice. Finally, we provide
detailed evidence that our implementation leads to significant
improvements, according to several metrics, over state-of-the-
art SMT solvers handling quantified formulas.

2) Related Work: Various works have focused on methods
for discovering the unsatisfiability of quantified formulas in
SMT. The first implementation of E-matching was given in the
solver Simplify [7], which included various techniques such as
mod-time and pattern-element optimization. These techniques
were used by the SMT solver Z3 [6] and enhanced fur-
ther, as described in [5]. Quantifier instantiation in DPLL(T )
as implemented in the SMT solver CVC3 [3] is described
in [9]. Specifying decision procedures with quantified formulas
through the use of triggers is described in [8]. Techniques also
exist for discovering the satisfiability of quantified formulas
in SMT, including reasoning in local theory extensions [11],



complete instantiation [10] and finite model finding [15].

II. FORMAL PRELIMINARIES

We assume the usual notions from many-sorted first-order
logic with equality (denoted by ≈). We fix a set S of sort
symbols and for every S ∈ S an infinite set of XS of variables
of sort S. We assume the sets XS are pairwise disjoint and let
X be their union. A signature Σ consists of a set Σs ⊆ S
of sort symbols and a set Σf of (sorted) function symbols
fS1···SnS , where n ≥ 0 and S1, . . . , Sn, S ∈ Σs. We drop the
sort superscript from function symbols when it is clear from
context or unimportant. We assume that signatures always
include a Boolean sort Bool and constants > and ⊥ of that
sort (respectively, for true and false).

Given a many-sorted signature Σ, well-sorted terms, atoms,
literals, clauses, and formulas with variables in X are defined
as usual and referred to respectively as Σ-terms, Σ-atoms and
so on.1 A ground term/formula is a Σ-term/formula with no
variables. When x = (x1, . . . , xn) is a tuple of variables
and Q is either ∀ or ∃, we write Qxϕ as an abbreviation
of Qx1 · · ·Qxn ϕ. If e is a Σ-term or formula and x has
no repeated variables, we write e[x] to denote that e’s free
variables are from x; if s = (s1, . . . , sn) and t = (t1, . . . , tn)
are term tuples, we write e[t] for the term or formula obtained
from e by simultaneously replacing each occurrence of xi in
e by ti; we write s ≈ t for the set {s1 ≈ t1, . . . , sn ≈ tn}.

A Σ-interpretation I maps: each S ∈ Σs to a non-empty set
SI , the domain of S in I, with BoolI = {>,⊥}; each x ∈ X
of sort S to an element xI ∈ IS ; and each fS1···SnS ∈ Σf

to a total function fI : SI1 × · · · × SIn → SI . A satisfiability
relation between Σ-interpretations and Σ-formulas is defined
inductively as usual.

A theory is a pair T = (Σ, I) where Σ is a signature and I
is a class of Σ-interpretations, the models of T , that is closed
under variable reassignment (i.e., every Σ-interpretation that
differs from one in I only for how it interprets the variables is
also in I) and isomorphism. A Σ-formula ϕ[x] is T -satisfiable
(resp., T -unsatisfiable) if it is satisfied by some (resp., no)
interpretation in I. A set Γ of formulas T -entails a Σ-formula
ϕ, written Γ |=T ϕ, if every interpretation in I that satisfies
all formulas in Γ satisfies ϕ as well. The set Γ is T -satisfiable
if Γ 6|=T ⊥. For a given signature Σ the theory of equality
(with uninterpreted functions) or E, consists of the set of all
Σ-interpretations. Informally, we refer to the sort and function
symbols in this theory as uninterpreted.

A substitution σ is a mapping from variables to terms of the
same sort, such that the set {x | σ(x) 6= x}, the domain of σ,
is finite. We say that σ is a grounding substitution for a tuple
x = (x1, . . . , xn) of variables if σ maps each element of x to
a ground term. If t = (t1, . . . , tn), we write x 7→ t to denote
the substitution σ = {x1 7→ t1, . . . , xn 7→ tn}; for a term or

1In this formalization all atoms have the form s ≈ t with s and t of the
same sort. Having ≈ as the only predicate symbol causes no loss of generality
as other predicate symbols can be modeled as function symbols with return
sort Bool.

formula e[x], we write eσ to denote the expression e[t]. This
notation extends to sets of formulas/terms as expected.

III. FINDING CONFLICTS FOR QUANTIFIED FORMULAS

To handle quantified formulas, DPLL(T ) solvers typically
divide the input set of formulas into a set Q of quantified
formulas and a set G of ground ones. To determine if Q ∪G
is unsatisfiable in the background theory T , they heuristically
add to G selected ground instances of formulas from Q, and
succeed when they have added enough instances to make G
T -unsatisfiable. When G is T -satisfiable, they build a truth
assignment for the atoms in G that satisfies all the formulas in
G and is consistent with T . The truth assignment is represented
as a set M of all the ground literals it satisfies, which we will
call a context. In this case, a possible quantifier instantiation
heuristic is to add, when possible, ground instances ϕ of
formulas from Q that are in conflict with the current context
M , in the sense that M ∪{ϕ} is T -unsatisfiable. Adding such
an instance to G will effectively force the solver to discard M
and look for another context, if one exists.

This section presents a new quantifier instantiation pro-
cedure that, as described above, searches for instances of
universally quantified formulas that are in conflict with the
context maintained by the solver. For simplicity, we describe
only a basic version of the procedure here. A more practical
implementation is discussed in the next section.

For the rest of the section we fix a theory T of signature Σ,
a Σ-formula ∀xψ ∈ Q with ψ[x] quantifier-free, and a context
M consisting of a T -satisfiable set of ground Σ-literals. We
will use TM to denote the set of all terms occurring in M .

A. Conflict Finding Instantiation Procedure

Our instantiation procedure tries to construct grounding
substitutions σ for x such that M |=T ¬ψσ. We refer to σ as
a conflicting substitution for (M,ψ). Conflicting substitutions
are of interest since they suffice to show that there is no model
of T that satisfies both M and ∀xψ.

Example 1: If M is {f(a) 6≈ g(b), b ≈ h(a)}, then {x 7→ a}
is a conflicting substitution for (M,f(x) ≈ g(h(x))). 2

To simplify its presentation, we assume our procedure is
run on the flat form of quantified formulas ∀xψ, defined as
follows.

Definition 1: A flat form of a quantified formula ∀xψ is an
equivalent formula ∀x,y (µ⇒ ϕ) where
• µ is a conjunction of equalities x0 ≈ f(x1, . . . , xn),

which we will call the matching constraints, where n ≥ 0
and x0, . . . , xn are variables from x,y;

• ϕ is a quantifier-free formula, which we will call the
flattened body, whose non-ground atoms are all equalities
between variables from x,y.

A flat form of ∀xψ can be computed by starting with µ = >
and ϕ = ψ and repeatedly replacing selected terms t in µ⇒ ϕ
by a fresh variable xt and adding the equation xt ≈ t to µ
until all non-ground terms have the form x or f(x1, . . . , xn).

Definition 2: Let z be a tuple of variables. An assignment
over z is a set of equations of the form z ≈ t with z in z



proc falsify(ϕ0, b0)
if ϕ0 is ground

if M |=T ϕ0 ⇔ b̄0 then {∅} else ∅
else if ϕ0 is x1 ≈ x2

if b0 is > then {{x1 6≈ x2}} else {{x1 ≈ x2}}
else if ϕ0 is ¬ϕ1 then
falsify(ϕ1, b̄0)

else if ϕ0 is ϕ1 ∨ ϕ2

if b0 is > then
{A1 ∪A2 | A1 ∈ falsify(ϕ1, b0), A2 ∈ falsify(ϕ2, b0)}

else
falsify(ϕ1, b0) ∪ falsify(ϕ2, b0)

Fig. 1. The falsify procedure. It returns a set A of constrained assignments
such that M ∪ A |=T (ϕ0 ⇔ b̄0) for each A ∈ A, where b̄0 denotes the
complement of b0.

and t ∈ TM . A constrained assignment over z is a set E ∪ C
where E is an assignment over z and C is a set of equalities
and disequalities over z. A constrained assignment A is M -
feasible if M ∪A is T -satisfiable.

Given the context M and a flat form ∀x,y (µ ⇒ ϕ) of
∀xψ, our instantiation procedure will attempt to construct a
constrained assignment A over the variables x,y that summa-
rizes the conditions under which one can build a conflicting
substitution for (M,ψ). When it succeeds in building A, the
procedure is also able to return one such substitution.

1) Quantifier Instantiation Procedure: A basic, unopti-
mized version of the procedure consists of three steps. The first
step returns constrained assignments A which by construction
falsify the flattened body ϕ; more precisely, constrained as-
signments A such that M∪A |=T ¬ϕ. The second step returns
constrained assignments A′ which by construction entail the
matching constraints µ, that is, M ∪ A′ |=T µ. The third
step considers unions of the constrained assignments A ∪ A′
constructed in steps one and two, and tries to extract from
A ∪ A′ a grounding substitution x 7→ s ∪ y 7→ t such that
M, x ≈ s, y ≈ t |=T A ∪ A′. If such a substitution exists,
the procedure returns x 7→ s as a conflicting substitution for
(M,ψ); otherwise, it fails. We discuss these three steps in
more detail in the following.

a) Step 1: Construct constrained assignments conflicting
with the flattened body ϕ: This step is executed by the
recursive subprocedure falsify shown in Figure 1 (where for
brevity we assume that the only Boolean connectives in ϕ are
¬ and ∨), which takes as input a subformula ϕ0 of the flattened
body ϕ, and a Boolean constant b0 ∈ {>,⊥} indicating
the polarity of ϕ0 in ϕ, and returns a set of constrained
assignments computed according to that polarity.2 Its initial
inputs are (ϕ,>).

b) Step 2: Construct constrained assignments that entail
the matching constraints µ: This step constructs a set A of
constrained assignments each of which entails µ. It does so
by using the subprocedure match shown in Figure 2, which

2Formula ϕ0 has positive polarity in ϕ (indicated by >) if and only if it
occurs below an even number of ¬ symbols.

proc match(S0)
if S0 is {y ≈ f(z)} ∪ S1 then
{A ∪ {y ≈ f(t)} ∪ z ≈ t | A ∈ match(S1), f(t) ∈ TM}

else
{∅}

Fig. 2. The match procedure. It returns a set A of constrained assignments
such that M ∪A |=T S0 for each A ∈ A.

is called on the set of all the constraints Sµ in µ. For each
matching constraint z ≈ f(z1, . . . , zn) ∈ Sµ, the subprocedure
considers all terms of the form f(t1, . . . , tn) ∈ TM , and adds
to A the constraints z ≈ f(t1, . . . , tn), z1 ≈ t1, . . . , zn ≈ tn.

c) Step 3: Extract a conflicting substitution from con-
strained assignment: This step tries to generate a conflicting
substitution for (M,ϕ), if there exists one. To do so, it con-
siders all M -feasible constrained assignments A′ = A′f ∪A′m,
where A′f ∈ falsify(ϕ,>) and A′m ∈ match(Sµ). It partitions
A′ into two sets B′ and C ′ such that the equivalence closure
of B′ contains at most one ground term per equivalence class.
Using B′, the procedure constructs a grounding substitution
σ = (x 7→ s ∪ y 7→ t), which we call a completion of A′, by
computing the equivalence closure of B′, and then mapping
every variable in the same equivalence class to the ground term
in that class if there is one, or to an arbitrary one from TM

otherwise. If it succeeds in constructing a completion σ such
that M |= C ′σ, the procedure ends, returning the substitution
x 7→ s. Otherwise, it tries to extract a conflicting substitution
from a different constrained assignment in A′.

Example 2: To see how substitutions like σ above are
computed, suppose T is E, the theory of equality, M =
{f(a) 6≈ f(b)}, B′ = {x ≈ y, z ≈ a, z ≈ w}, and
C ′ = {x 6≈ w}. Note that A′ = B′ ∪ C ′ is an M -feasible
constrained assignment. The set B′ induces the equivalence
relation {{x, y}, {w, z, a}}. Adding b to the equivalence class
of x leads to the grounding substitution σ = {x 7→ b, y 7→
b, z 7→ a, w 7→ a} which is such that M |=E C

′σ. 2

We remark that, in our experience, guessing ground terms
to add to the equivalence classes in the equivalence closure
of B′ in the third step of the procedure is rarely needed. The
reason is that B′ typically contains a grounding equation z ≈ t
(with t ∈ TM ) for each variable z in it. When this is not the
case, it is because either z does not occur as an argument of
a function symbol in the flattened form ∀x,y (µ ⇒ ϕ), or it
is not relevant to the falsification of that formula.

We illustrate our procedure as a whole with a simple
example where T is again the theory E of equality.

Example 3: Say M is {f(a) 6≈ g(b), b ≈ h(a)} and consider
the formula ∀xψ where ψ is f(x) ≈ g(h(x)). A flattened form
of ∀xψ is

∀x, y1, y2, y3 (y1 ≈ f(x) ∧ y2 ≈ h(x) ∧ y3 ≈ g(y2))︸ ︷︷ ︸
µ

⇒ y1 ≈ y3︸ ︷︷ ︸
ϕ

If we run our procedure on this formula, falsify(y1 ≈ y3,>)
returns the set of constrained assignments {{y1 6≈ y3}}. The
procedure then invokes match(Sµ) where Sµ is {y1 ≈



f(x), y2 ≈ h(x), y3 ≈ g(y2)}. The recursive calls of match
when processing each equality in Sµ are as follows:

equation output
{∅}

y3 ≈ g(y2) {{y3 ≈ g(b), y2 ≈ b}}
y2 ≈ h(x) {{y3 ≈ g(b), y2 ≈ b, y2 ≈ h(a), x ≈ a}}
y1 ≈ f(x) {{y3 ≈ g(b), y2 ≈ b, y2 ≈ h(a), x ≈ a, y1 ≈ f(a)}}

Let A′ be the union of the (single) constrained assignments
produced by falsify and match. Notice that A′ is M -feasible.
Splitting A′ into B′ = {x ≈ a, y1 ≈ f(a), y2 ≈ h(a), y3 ≈
g(b)} and C ′ = {y2 ≈ b, y1 6≈ y3}, say, the procedure
can generate (in this case only) the substitution σ = {x 7→
a, y1 7→ f(a), y2 7→ h(a), y3 7→ g(b)}. Since M |=E C ′σ,
the procedure returns the substitution {x 7→ a}. Note that
M |=E f(a) 6≈ g(h(a)), that is, M |=E ¬ψ[a], which shows
that the returned substitution is indeed conflicting. 2

One can show by structural induction that the subprocedures
falsify and match have the following properties.

Lemma 1: For all A ∈ falsify(ϕ,>) and A′ ∈ match(Sµ),
M,A |=T ¬ϕ, and M,A′ |=T µ.

Lemma 2: Let ∀x,y (µ ⇒ ϕ) be the flat form of ∀xψ[x].
Let A′f ∈ falsify(ϕ,>), A′m ∈ match(Sµ), A′[x,y] = A′f ∪
A′m, and σ = x 7→ s ∪ y 7→ t. If M,x ≈ s,y ≈ t |=T C,
then M,ψ[s] |=T ¬(A′ \ C)[s, t].

Proof: Let σ,A′f , A
′
m and A′ be as above. By Lemma 1,

M,A′f |=T ¬ϕ and M,A′m |=T µ. Thus, we have that
M,A′ |=T µ ∧ ¬ϕ or, equivalently, M,A′ |=T ¬(µ ⇒ ϕ).
By our assumption, we have that M,x ≈ s,y ≈ t |=T C.
Hence, M,x ≈ s,y ≈ t, (A′ \ C) |=T ¬(µ ⇒ ϕ) which
implies that M, (µ ⇒ ϕ)[s, t] |=T ¬(A′ \ C)[s, t]. The claim
then follows by the equivalence of (µ⇒ ϕ)[s, t] and ψ[s].

This justifies the correctness result for our procedure.
Proposition 1: Every substitution returned by the instantia-

tion procedure is conflicting for (M,ψ).
Proof: Let σ, A′f , A′m and A′ be as in Lemma 2. Recall

our instantiation procedure in Step 3 partitions A′ into B′ ∪
C ′. We have that M |=T B′σ due to our construction of
σ. Furthermore, by assumption the procedure returns σ only
such that M |=T C ′σ. Hence, M,x ≈ s,y ≈ t |=T A′,
and by Lemma 2 with C = A′, we have that M,ψ[s] |=T

¬(A′ \A′)[s, t], thus, M,ψ[s] |=T ⊥.
2) Constraint-Inducing Substitutions: Even when no con-

flicting substitutions exist for (M,ψ), it may be useful to
find other substitutions that help the solver deduce useful
information about the terms in M . This can be done by
relaxing one of the requirements on the substitutions returned
by our instantiation procedure. Let σ = x 7→ s ∪ y 7→ t and
A′ = B′ ∪ C ′ be as in Step 3 of the procedure, except that
M |=T Dσ does not hold for a non-empty subset D ⊆ C ′.
Since the proof of Lemma 2 does not rely on that entailment,
we still have M ∪ ψ[s] |=T ¬D[s, t], even though σ is no
longer conflicting for (M,ψ). We refer to σ as a constraint-
inducing substitution for (M,ψ). If D is a conjunction of
disequalities, we refer to σ as an equality-inducing substitution
for (M,ψ). Observe that since each predicate symbol in D is
applied to variables, and s and t are tuples of terms from TM ,
the entailed formula ¬D[s, t] is a disjunction of constraints

over terms in TM . As a consequence, it may be beneficial to
generate the instance ψ[s] anyway since it causes the solver to
deduce constraints over terms from TM . This contrasts with
instantiations produced by E-matching, which often introduce
constraints over fresh terms.

Example 4: Consider the quantified formula ∀xψ[x] from
Example 3, and say M is {f(a) ≈ c, d ≈ g(b), b ≈ h(a)}. Our
procedure produces the same constrained assignment A′ as in
that example. In this case too, A′ is M -feasible. However, the
completion σ = {x 7→ a, y1 7→ f(a), y2 7→ h(a), y3 7→
g(b)}, corresponding to the partition B′ ∪ C ′ of A′ with
C ′ = {y2 ≈ b, y1 6≈ y3}, is not such that M |=E (y1 6≈ y3)σ.
In fact, it is not difficult to see there are no conflicting
substitutions for ψ. However, M together with the instance
ψ[a], i.e. f(a) ≈ g(h(a)), allows the solver to deduce that the
terms f(a) and g(b) from TM are equal. 2

3) An Instantiation Strategy: A strategy can be used that
produces both conflicting and constraint-inducing substitutions
for a given context M and set of quantified formulas Q. First,
if a conflicting substitution can be found for one quantified
formula in Q, add the corresponding instance to the set of
ground clauses G. This will cause the solver to backtrack
some decision in M . Otherwise, if no conflicting substitution
can be found, add instances corresponding to every constraint-
inducing substitution found for each quantified formulas in Q.

IV. PRACTICAL IMPLEMENTATION

For greater clarity, the description of the instantiation pro-
cedure given in Section III favors simplicity over efficiency.
Our actual implementation relies on one major restriction and
numerous enhancements, briefly discussed in the following.

A. Restriction to the Theory of Equality

In our current implementation, the instantiation procedure
does not reason modulo the actual background theory T
but only modulo the theory E of equality. Concretely, this
means that all function symbols in M and ∀xψ (includ-
ing arithmetic symbols) are treated as uninterpreted. This
is done both for uniformity and efficiency since checking
T -entailment/satisfiability is generally expensive for theories
other than E. Since every theory T is a refinement of E (in
the sense that it allows less interpretations), this restriction
is sound: any conflicting substitution with respect to E is
also conflicting with respect to a stronger theory. The obvious
downside of this naı̈ve approach is that for stronger theories
the procedure returns only a coarse under-approximation of
the set of conflicting substitutions for (M,ϕ).

Example 5: Let M = {f(a) ≈ b, (g(a) ≥ b+ 1) ≈ >} and
let ∀xψ be ∀x f(x) ≈ g(x) where f, g, a, b are uninterpreted
symbols and ≥,+, 1 are from the theory A of integer arith-
metic. In this case, the background theory T is the union of E
and A. Consider the following flat form of ∀x f(x) ≈ g(x):

∀x, y1, y2 (y1 ≈ f(x) ∧ y2 ≈ g(x))⇒ y1 ≈ y2 .

By treating the arithmetic symbols as symbols of E, our
procedure will not discover any conflicting substitutions in



this example. To see this, note that equating y1 to f(a) and
y2 to g(a) in match (the only possibility) would produce
the M -feasible constrained assignment {y1 6≈ y2, y1 ≈
f(a), y2 ≈ g(a), x ≈ a}. The corresponding substitution
σ = {y1 7→ f(a), y2 7→ g(a), x 7→ a} is not conflicting for
(M,ψ) in E because M 6|=E (f(x) 6≈ g(x))σ, so our current
implementation of the procedure will return no substitutions in
this case. In contrast, M |=E∪A (f(x) 6≈ g(x))σ when ≥,+, 1
are treated as symbols of A. Hence, if our procedure did so
and were able to determine the latter entailment it would be
able to return the substitution {x 7→ a}. 2

We point out that reasoning modulo the actual background
theory instead of E is not enough in general to return all possi-
ble conflicting substitutions, since the match sub-procedure is
in fact incomplete for general theories T . To see this, observe
that in A, an assignment containing y ≈ x + y1, y1 ≈ 2 will
match with the term 3+2, but fail to match with the equivalent
term 2 + 3. That said, for our purposes, using incomplete yet
efficient theory matching and entailment tests may lead to the
best performance, where conflicting substitutions are found
only when it is reasonably easy for the procedure to do so.

B. Enhancements to the Basic Procedure

The most important enhancement with respect to the basic
procedure described in Section III is that its three main steps
are interleaved, as demonstrated in Figure 3. With respect to
the basic procedure, falsifyi and matchi take two additional
arguments: a constrained assignment A and a set of matching
constraints S. Intuitively, A is the current constrained assign-
ment we are building, and S is the matching constraints that
are left to process. When considering a quantified formula with
flat form ∀x. µ⇒ ϕ, we initially call falsifyi with arguments
(ϕ,>, ∅, Sµ), where Sµ is the set of matching constraints from
µ. This builds a set of pairs A, such that for each (A,S) ∈ A,
we have M,A |=T ¬((Sµ \ S) ⇒ ϕ). It can be shown that
when S 6= ∅, the matching constraints in S do not need to be
entailed when constructing a completion for A.

This procedure has several important advantages over the
basic one. First, constrained assignments are built incremen-
tally, which (although not shown here) allows us to discard a
constrained assignment A as soon as it becomes M -infeasible.
Second, matching constraints are processed for a variable x as
soon as any constraint involving x is added to A, as in the
second branch of falsifyi and in matchi, allowing us to eagerly
determine cases where the current constrained assignment will
not lead to a conflicting substitution. Third, we compute the
set A = falsifyi(ϕ,>, ∅, Sµ) lazily, which allows us to check
whether there exists a conflicting substitution for a returned
constrained assignment before producing the entire set A.

C. Implementation Details

The ground theory solver maintains an equivalence relation
≡M over the terms in TM induced by the constraints in
M (whereby s ≡M t only if M |=E s ≈ t). For each
t ∈ TM , let [t]M denote the equivalence class of t in ≡M

proc falsifyi(ϕ0, b0, A, S)
if ϕ0 is ground

if M |=T ϕ0 ⇔ b̄0 then {(A,S)} else ∅
else if ϕ0 is x1 ≈ x2

if b0 is > then
matchi(S |{x1,x2}, A ∪ {x1 6≈ x2}, S \ S |{x1,x2})

else
matchi(S |{x1,x2}, A ∪ {x1 ≈ x2}, S \ S |{x1,x2})

else if ϕ0 is ¬ϕ1 then
falsifyi(ϕ1, b̄0, A, S)

else if ϕ0 is ϕ1 ∨ ϕ2

if b0 is > then⋃
(A′,S′)∈falsifyi(ϕ1,b0,A,S)

falsifyi(ϕ2, b0, A
′, S′)

else
falsifyi(ϕ1, b0, A, S) ∪ falsifyi(ϕ2, b0, A, S)

proc matchi(S0, A, S)
if S0 is {y ≈ f(z)} ∪ S1 then
S′0 := S1 ∪ S |z; S′ := S \ S |z;⋃
f(t)∈TM

matchi(S
′
0, A ∪ {y ≈ f(t)} ∪ z ≈ t, S′)

else
{(A,S)}

Fig. 3. The falsifyi and matchi procedures. We have that M,A |=T ¬((S0\
S)⇒ ϕ0) for each (A,S) ∈ falsifyi(ϕ0,>, ∅, S0). S |V denotes the set of
matching constraints from S whose left hand side is in V .

and let [t]M denote ([t1]M , . . . , [tn]M ) if t = (t1, . . . , tn).3

For every function symbol f of arity n in the input for-
mula, we build an index If containing entries of the form
[t]M 7→ f(t), mapping an n-tuple [t]M of equivalence classes
to some term f(t) ∈ TM . The index is functional, that is, if
f(s), f(t) ∈ TM with s ≡M t at most one of f(s) and f(t)
is in If . This data structure is used by the falsify procedure
when checking entailment of ground equalities thanks to the
following invariant maintained within the solver:

M |=E f(t) ≈ g(s) iff


[t]M 7→ f(u) ∈ If ,
[s]M 7→ g(v) ∈ Ig, and
[f(u)]M = [g(v)]M .

To process matching constraints we build an extended index
Jf with entries of the form ([f(t)]M , [t]M ) 7→ f(t) for
terms f(t) ∈ TM . When considering a matching constraint
x ≈ f(x1, . . . , xn), the match procedure enumerates, modulo
≡M , the terms in TM with top symbol f by traversing the
index Jf — and backtracking whenever it determines that the
constrained assignment it is constructing is not M -feasible.

Constrained assignments are represented as a pair (U,C),
where U is a partial map from variables x,y to a term they are
equated to (either a representative term from TM or another
variable), and C is a set of flat constraints over x∪y. Finally,
formulas ∀xψ are not actually flattened. Instead of replacing
a term t in ψ with a fresh variable y, we treat t itself as y
when needed.

3In the implementation, [t]M is represented by a distinguished term in it.



V. RESULTS

We implemented our instantiation procedure with the re-
strictions and enhancements mentioned in Section IV within
the SMT solver CVC4 [1] (version 1.3). In this section,
we compare the performance of our implementation against
various state-of-the-art SMT solvers.4

We considered three different configurations of CVC4 that
vary on the instantiation strategy they use. All of them apply
quantifier instantiation lazily, that is, after the solver produces
a T -satisfiable context M that propositionally satisfies the set
G of current ground formulas. Given a set of active quantified
formulas Q, each configuration of CVC4 runs one or more of
the following steps in succession until a ground instance is
added to G.

1) Add the instance ψ[t] if there exists a conflicting sub-
stitution x 7→ t for (M,ψ) for some ∀xψ ∈ Q.

2) Add the instances ψ[t] for a subset of the equality-
inducing substitutions x 7→ t for (M,ψ), for each
∀xψ ∈ Q.

3) Add all instances based on E-matching for (M,Q).
The first configuration, which we will refer to as cvc4,

performs Step 3 only. The second configuration, cvc4+c, per-
forms Step 1 and Step 3. The third, cvc4+ci, performs all three
steps. In Step 2, configuration cvc4+ci considers at most one
equality-inducing substitution for each constrained assignment
produced by the first two steps of our instantiation procedure;
that is, it does not add instances for multiple completions of
the same constrained assignment. Configurations cvc4+c and
cvc4+ci use the naı̈ve approach for handling interpreted theory
symbols described in Section IV-A. A single run of these steps
we will refer to as an instantiation round.

A. Comparison with SMT solvers

We compared these three configurations of CVC4 with the
SMT solvers Z3 (version 4.3.2) [6] and CVC3 [3], both of
which rely on quantifier instantiation to reason about quanti-
fied formulas. We report results on unsatisfiable benchmarks
from various collections from the verification and automated
theorem proving communities: the TPTP library (version
6.0.0) [17]; a set of benchmarks produced as proof obligations
from Isabelle [4]; and SMT-LIB [2]. We considered 12,406
unsatisfiable benchmarks from TPTP which contain primarily
quantified formulas and are all over the theory of equality.5

We considered 13,041 Isabelle benchmarks (many of whom
are classified as satisfiable or unknown) which also primarily
contain quantified formulas, but also include both integer and
real arithmetic constraints. Many of the SMT-LIB benchmarks
represent software verification conditions, and make heavy use
of symbols over several theories. We considered all 26,320
benchmarks from SMT-LIB that contained quantified formulas
but no non-linear arithmetic constraints, which CVC4 does

4Details can be found at http://cvc4.cs.nyu.edu/papers/FMCAD2014-qcf/.
5We did not consider TPTP benchmarks having TFF syntax (which includes

theory constraints), since Z3 and CVC3 do not have a parser for this format,
and no translator from this format was available.

TABLE I
NUMBER OF SOLVED UNSATISFIABLE BENCHMARKS.

Set Class cvc3 z3 cvc4 cvc4+c cvc4+ci
TPTP EPR 596 840 809 768 769

NEQ 910 1,406 1,346 1,374 1,373
PEQ 641 656 668 690 824
SEQ 3,087 3,366 3,277 3,581 3,650
Sub-Total 5,234 6,268 6,100 6,413 6,616

Isabelle ArrowOrder 321 178 307 339 371
FFT 296 277 288 291 288
FTA 1,124 917 990 1,012 1,018
Hoare 607 549 563 579 621
NS Shared 105 108 117 140 143
QEpres 297 325 360 361 362
StrongNorm 207 241 242 251 253
TwoSquares 643 620 708 712 719
TypeSafe 227 291 283 298 307
Sub-Total 3,827 3,506 3,858 3,983 4,082

SMT- boogie 653 741 678 692 706
LIB simplify 2,070 2,478 2,334 2,358 2,360

why 380 385 369 371 373
other 304 379 299 300 308
Sub-Total 3407 3,983 3,680 3,721 3,747
Total 12,468 13,757 13,638 14,117 14,445

not yet support. Of all of these SMT-LIB benchmarks, we
report results only for the 4,633 that were non-trivial, which
we define here as taking more than 0.1 seconds to solve
for at least one configuration of one solver. We ran all the
experiments with a 300 second timeout per benchmark and
analyzed the results according to two metrics: the performance
of all solvers in terms of time and number of (unsatisfiable)
benchmarks solved, and their efficiency in terms of the number
of instantiations needed to answer unsatisfiable.

1) Problems Solved: Table I reports the number of bench-
marks solved by the solvers for the three benchmark sets.
For TPTP benchmarks, cvc4+ci is the overall winner, solving
6,616 within the time limit. This is 347 more than z3 and 516
more than cvc4. At least one configuration of CVC4 solves
34 unsatisfiable problems from TPTP with current rating 1.0,
which is given to benchmarks that no ATP system can solve.
In particular, 15 of these problems were solved using the
new techniques (configurations cvc4+c and cvc4+ci) only. For
Isabelle benchmarks, cvc4+ci is again the overall winner, solv-
ing noticeably more problems than the other solvers (4,082 vs.
3,858 for cvc4, 3,827 for cvc3, and 3,506 for z3). This shows
that our techniques are quite effective on problems with mostly
uninterpreted symbols. For SMT-LIB benchmarks, z3 is the
clear winner, with 3,983 solved problems. The new techniques
yield a small improvement in performance, as cvc4+ci solves
67 more problems than cvc4. However, their performance still
trails z3’s significantly, by 236 benchmarks. We conjecture
that this is partially due to the fact that our procedure handles
interpreted symbols naı̈vely, although several implementation
differences exist between CVC4 and Z3.6

Overall, over the three benchmark sets, cvc4+ci solves
more problems than any other configuration. In particular, it
consistently outperforms cvc4+c (14,445 vs. 14,117), solving
404 problems that cvc4+c cannot, while cvc4+c only solves

6In particular, CVC4 does not use eager quantifier instantiation, clause
deletion, or relevancy (see Section 7 of [5]) for SMT-LIB benchmarks.
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Fig. 4. cvc4+ci vs cvc4 over all benchmarks. Data shown on a log-log scale.

TABLE II
NUMBER OF REPORTED INSTANTIATIONS FOR SOLVED UNSATISFIABLE

BENCHMARKS.

TPTP Isabelle SMT-LIB
Solved Inst Solved Inst Solved Inst

cvc3 5,245 627.0M 3,827 186.9M 3,407 42.3M
z3 6,269 613.5M 3,506 67.0M 3,983 6.4M
cvc4 6,100 879.0M 3,858 119.0M 3,680 60.7M
cvc4+c 6,413 190.8M 3,983 54.0M 3,721 41.0M
cvc4+ci 6,616 150.9M 4,082 28.2M 3,747 32.4M

76 that cvc4+ci cannot. This shows that computing constraint-
inducing substitutions in addition to conflicting substitutions
is beneficial. The scatter plot in Figure 4(a) shows that the
new instantiation techniques (cvc4+ci) typically improve the
runtime performance of CVC4—although there are several
cases where they do not. Over the benchmarks they both
solve, cvc4+ci solves 4,419 benchmarks at least 20% faster
than cvc4, whereas cvc4 solves 1,845 benchmarks at least
20% percent faster than cvc4+ci. We believe the improvement
in performance is due to the reduction in the number of
instances produced by cvc4+ci, as discussed later. Over all
benchmark sets, cvc4 solves 235 that cvc4+ci cannot solve,
while cvc4+ci solves 1,042 benchmarks that cvc4 cannot. At
least one configuration of either cvc4+ci or cvc4+c solves 359
benchmarks that no implementation of E-matching (either Z3,
CVC3, CVC4) can solve, indicating that our techniques can be
used to improve the precision of SMT solvers for unsatisfiable
problems containing quantified formulas.

2) Instances Generated: Table II gives the cumulative
number of generated instances reported by each solver for the
three benchmarks sets. For both the TPTP and the Isabelle
set, in addition to solving the most benchmarks, configuration
cvc4+ci requires by far the least number of instantiations

(a) On TPTP and Isabelle benchmarks.

(b) On SMT-LIB benchmarks.

Fig. 5. Cactus plot showing the cumulative number of instantiations reported
by all solvers on the benchmarks they solve.

to do so. For TPTP, cvc4+ci produces about 151 million
instances to solve 6,616 problems, which is 5.8 times fewer
than what cvc4 requires for solving 6,100 problems. Similarly
for Isabelle, cvc4+ci requires 28M instantiations to solve 4,082
problems, which is 4.2 times fewer than what cvc4 requires for
solving 3,858 problems. For SMT-LIB, z3 is by far the most
efficient solver, solving 3,983 problems while requiring only
6.4M instantiations. The new techniques in CVC4 reduce the
instantiations by approximately half, which is less dramatic
than the improvements seen on TPTP and Isabelle. This is
again likely due to the prevalence of theory symbols in the
encodings used by SMT-LIB benchmarks.

The scatter plot in Figure 4(b) compares the reported num-
ber of instances produced by configurations cvc4 and cvc4+ci
on the benchmarks they both solve. The plot clearly shows
that cvc4+ci consistently requires many fewer instantiations,
confirming that the instances it produces are generally effective
at contributing towards finding refutations.

Figure 5 shows the cumulative number of instances reported
by each of the solvers on the benchmarks they solve. For
benchmarks with low theory content (from the TPTP and
Isabelle libraries), the configuration cvc4+ci consistently pro-
duces fewer instances while solving more benchmarks than the
other solvers and configurations. For SMT-LIB benchmarks,
the plot shows that the configuration cvc4+ci uses considerably
fewer instances than z3 to solve its first 1,750 benchmarks.
However, cvc4+ci requires more instantiations overall to solve
fewer benchmarks than z3. This suggests that our techniques



TABLE III
DETAILS ON INSTANCES PRODUCED BY THREE CONFIGURATIONS OF

CVC4.

E-matching Conflicting Sub. C-Inducing Sub.
IR %IR # Inst %IR # Inst %IR # Inst

TPTP
cvc4 71.6K 100.0 879.0M
cvc4+c 202.0K 21.7 190.6M 78.3 158.2K
cvc4+ci 209.0K 20.3 150.4M 76.4 159.7K 3.3 415.8K
Isabelle
cvc4 7.0K 100.0 119.0M
cvc4+c 18.2K 28.9 54.0M 71.1 12.9K
cvc4+ci 21.8K 22.4 28.2M 64.0 13.9K 13.6 130.9K
SMT-LIB
cvc4 14.0K 100.0 60.7M
cvc4+c 51.7K 24.3 41.0M 75.7 39.1K
cvc4+ci 58.0K 20.0 32.3M 71.6 41.5K 8.4 51.5K

are highly effective at handling a subset of the SMT-LIB
benchmarks, but require further enhancements to account for
the encodings used by these benchmarks.

Table III shows a detailed view of the instances produced by
the three configurations of CVC4. The first column (IR) gives
the cumulative number of instantiation rounds each configura-
tion requires for the benchmarks it solves. The remaining six
columns give the percentage of instantiation rounds where they
produce instances based respectively on E-matching, conflict-
ing substitutions, and constraint-inducing substitutions; and the
total number of instances produced for each of these types. We
can see that while configurations cvc4+c and cvc4+ci require
significantly more instantiation rounds on average to answer
unsatisfiable on each benchmark library, they require much
fewer instances overall. Overall, a conflicting substitution was
found on 77.3% of the instantiations rounds performed by
cvc4+c and on 74.5% of the instantiation rounds performed
by cvc4+ci. These percentages are fairly consistent across
the three benchmark classes, indicating that a majority of
satisfying assignments found at the ground level can be
ruled out by an instance from a conflicting substitution. For
cvc4+ci, a conflicting substitution was found on 78.5% of the
instantiation rounds where a constraint-inducing substitution
was not produced, which is slightly higher than the percentage
found by cvc4+c alone (77.3%). This suggests that constraint-
inducing substitutions help the solver find conflicting sub-
stitutions. In total, E-matching was called 1.57 fewer times
by cvc4+ci than by cvc4, which led to a factor of 5 fewer
instances produced as a result of such calls.

Overall, 12,165 of the 14,445 benchmarks that cvc4+ci
solved required at least one instantiation round by all con-
figurations of CVC4, and 2,520 of these 12,216 benchmarks
(20.7%) could be solved by cvc4+ci using only instances re-
sulting from conflicting and constraint-inducing substitutions.
In other words, for 20.7% of the benchmarks it solves, cvc4+ci
did not rely on E-matching at all to answer unsatisfiable.
Moreover, 94 of these 2,251 benchmarks could not be solved
by cvc4 within the timeout, showing that difficult benchmarks
can be solved solely by the techniques mentioned in this paper.

B. Comparison with Automated Theorem Provers

We do not give a detailed comparison with automated
theorem provers, which are capable of handling benchmarks
from the TPTP library, but do so using entirely different
methods than SMT solvers. For a brief and informal overview,
a recent (multi-strategy) run script for iProver [12] solves
6,508 unsatisfiable benchmarks from the TPTP library, while
a recent run script for E [16] solves 9,751. A version of both
of these scripts as well as the systems themselves were used
in CASC 24, the latest competition for automated theorem
provers. Using a run script devised for a similar purpose, which
incorporates several configurations of E-matching as well as
the techniques described here, CVC4 solves 7,227 unsatisfiable
TPTP benchmarks, making CVC4 highly competitive with a
state-of-the-art instantiation-based prover like iProver.

VI. CONCLUSION

We have presented a technique for quantifier instantiation
in SMT that increases the ability of an SMT solver to detect
unsatisfiable problems containing quantified formulas. The
method relies on a more principled heuristic for choosing
instances, focusing on those that communicate conflicts or
relevant constraints to the ground-level sub-solver. It handles
any set of quantified formulas by treating theory symbols (at
worst) as uninterpreted. Our experiments show that the number
of instantiations necessary to solve unsatisfiable benchmarks is
on average decreased by almost an order of magnitude when
compared to implementations using E-matching only. As a
result, our implementation shows a noticeable improvement in
performance in terms of average runtime and overall number
of unsatisfiable benchmarks solved.

In future work, we plan to implement a more incremental
version of our instantiation procedure to recognize conflicts
while the SMT is reasoning at the ground level, which has
been shown to lead to performance improvements in other
implementations of quantifier instantiation in SMT [5], [9]. We
also plan to extend the procedure beyond its naı̈ve treatment
of interpreted symbols to increase the number of conflicting
substitution found for formulas containing such symbols. As
discussed in Section IV-A, doing so requires devising fast,
if incomplete, T -satisfiability tests for theories other than
equality. Finally, we would like to identify language fragments
and investigate extensions of our techniques that are complete,
that is, guaranteeing the existence of a model for the input
set when they fail to produce additional instances. A main
challenge for this will be to ensure that the extension is also
as efficient (or better) than competitive implementations of E-
matching when the input problem is unsatisfiable.
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