
Model Evolution with Equality
Modulo Built-in Theories

Peter Baumgartner1 and Cesare Tinelli2

1 NICTA? and Australian National University, Canberra, Australia
2 The University of Iowa, USA

Abstract. Many applications of automated deduction require reasoning modulo
background theories, in particular some form of integer arithmetic. Developing
corresponding automated reasoning systems that are also able to deal with quan-
tified formulas has recently been an active area of research. We contribute to
this line of research and propose a novel instantiation-based method for a large
fragment of first-order logic with equality modulo a given complete background
theory, such as linear integer arithmetic. The new calculus is an extension of the
Model Evolution Calculus with Equality, a first-order logic version of the propo-
sitional DPLL procedure, including its ordering-based redundancy criteria. We
present a basic version of the calculus and prove it sound and (refutationally)
complete under certain conditions.3

1 Introduction

Many applications of automated deduction require reasoning modulo background theo-
ries, in particular some form of integer arithmetic. Developing sophisticated automated
reasoning systems that are also able to deal with quantified formulas has recently been
an active area of research [6, 8, 10, 3, 1]. We contribute to this line of research and
propose a novel instantiation-based method for a large fragment of first-order logic
with equality modulo a given complete background theory, such as linear integer arith-
metic. The new calculus, MEE(T), is an extension of the Model Evolution calculus with
equality [4], a first-order logic version of the propositional DPLL procedure, including
its ordering-based redundancy criteria as recently developed in [5]. At the same time,
MEE(T) is a generalization wrt. these features of the earlier ME(LIA) calculus [3].

Instantiation based methods, including Model Evolution, have proven to be a suc-
cessful alternative to classical, saturation-based automated theorem proving methods.
This then justifies attempts to develop theory-reasoning versions of them, even if their
input logic or their associated decidability results are not new. As one of these exten-
sions, we think MEE(T) is relevant in particular for its versatility since it combines pow-
erful techniques for first-order equational logic with equality, based on an adaptation of
the Bachmair-Ganzinger theory of superposition, with a black-box theory reasoner. In
this sense, MEE(T) is similar to the hierarchic superposition calculus [1, 2].

? NICTA is funded by the Australian Government’s Backing Australia’s Ability initiative.
3 The full version of this paper, which includes all proofs, is available as a NICTA research

report from http://www.nicta.com.au/research/research publications.

MEE(T) also relates to DPLL(T) [9], a main approach for theorem proving modulo
theories. DPLL(T) is essentially limited to the ground case and resorts to incomplete
or inefficient heuristics to deal with quantified formulas [7, e.g.]. In fact, addressing
this intrinsic limitation by lifting DPLL(T) to the first-order level is one of the main
motivations for MEE(T), much like lifting the propositional DPLL procedure to the
first-order level while preserving its good properties was the main motivation for Model
Evolution.

One possible application of MEE(T) is in finite model reasoning. For example, the
three formulas 1 ≤ a ≤ 100, P(a) and ¬P(x) ← 1 ≤ x ∧ x ≤ 100 together are un-
satisfiable, when a is a constant and T is a theory of the integers. Finite model finders,
e.g., need about 100 steps to refute the clause set, one for each possible value of a.
Our calculus, on the other hand, can reason directly with integer intervals and allows
a refutation in O(1) steps. See Section 7 for further discussion of how this is achieved,
variations of the example, and considerations on MEE(T) as a decision procedure.

The most promising applications of MEE(T) could be in software verification. Quite
frequently, proof obligations arise there that require quantified formulas to define data
structures with specific properties, e.g., ordered lists or ordered arrays, and to prove
that these properties are preserved under certain operations, e.g., when an element is
inserted at an appropriate position. In the array case, one could define ordered arrays
with an axiom of the form “for all i, j with 0 ≤ i < j ≤ m, a[i] ≤ a[j]”, where i and
j are variables and m is a parameter, all integer-valued. Our calculus natively supports
parameters like m and is well suited to reason with bounded quantification like the one
above. In general, parameters like m must be additionally constrained to a finite domain
for the calculus to be effective, see again Section 7.

The general idea behind our calculus with respect to theory reasoning is to use
rigid variables to represent individual, but not yet known, elements of the background
domain, and instantiate them as needed to carry the derivation forward. As a simple
example without parameters, consider the clauses f (x) ≈ g(x) ← x > 5 and ¬(f (y +

y) ≈ g(8)). These clauses will be refuted, essentially, by checking satisfiability of the
set {v1 = v2 + v2, v1 > 5, v1 = 8} of constraints over rigid variables and (ordered)
paramodulation inferences for reasoning with the equations in these clauses.

2 Preliminaries

We work in the context of standard many-sorted logic with first-order signatures com-
prised of sorts and operators (i.e., function symbols and predicate symbols) of given ari-
ties over these sorts. We rely on the usual notions of structure, (well-sorted) term/formula,
satisfiability, and so on. If Σ is a sorted signature and X a set of sorted variables we will
call Σ(X)-term (resp. -formula) a well-sorted term (resp. formula) built with symbols
from Σ and variables from X. The notation Σ(X1, X2) is a shorthand for Σ(X1 ∪ X2).

Syntax. For simplicity, we consider here only signatures with at most two sorts: a back-
ground sort B and a foreground sort F. We assume a background signature ΣB having B
as the only sort and an at most countable set of operators that includes an (infix) equal-
ity predicate symbol = of arity B×B. We will write s , t as an abbreviation of ¬(s = t).
We fix an infinite set XB of B-variables, variables of sort B.

We assume a complete first-order background theory T of signature ΣB all of whose
models interpret = as the identity relation. Since T is complete and we do not extend
ΣB in any essential way with respect to T , we can specify it with no loss of gener-
ality simply as a ΣB-structure. We call the set |B| that T associates to the sort B the
background domain. We assume, again with no loss of generality, that |B| is at most
countably infinite and all of its elements are included in Σ as B-constant symbols.Our
running example for T will be the theory of linear integer arithmetic (LIA). For that ex-
ample, ΣB’s operators are ≤,+ and all the integer constants, all with the expected arities,
T is the structure of the integer numbers with those operators, and |B| = {0,±1,±2, . . .}.

We will consider formulas over an expanded signature ΣΠB and expanded set of
variables XB ∪ V where ΣΠB is obtained by adding to ΣB an infinite set Π of parameters,
free constants of sort B, and V is a set of B-variables not in XB, which we call rigid
variables. The function and predicate symbols of ΣΠB are collectively referred to as the
background operators. We call (background) constraint any formula in the closure of
the set of ΣΠB (XB,V)-atoms under conjunction, negation and existential quantification
of variables.4 A closed constraint is a constraint with no free variables (but possibly
with rigid variables).

Note that rigid variables always occur free in a constraint. We will always inter-
pret distinct rigid variables in a constraint as distinct elements of |B|. Intuitively, in the
calculus presented here, a rigid variable v will stand for a specific, but unspecified, back-
ground domain element, and will be introduced during proof search similarly to rigid
variables in free-variable tableaux calculi. In contrast, parameters will be free constants
in input formulas, standing for arbitrary domain values.

The full signature Σ for our calculus is obtained by adding to ΣΠB the foreground
sort F, function symbols of given arities over B and F, and one infix equality predicate
symbol, ≈, of arity F×F. The new function symbols and ≈ are the foreground operators.
As usual, we do not consider additional foreground predicate symbols because they can
be encoded as function symbols, e.g., an atom of the form P(t1, . . . , tn) can be encoded
as P(t1, . . . , tn) ≈ tt, where tt is a new, otherwise unused, foreground constant. For
convenience, however, in examples we will often write the former and mean the latter.
Since ≈ will always denote a congruence relation, we will identify s ≈ t with t ≈ s.

Let XF be an infinite set of F-variables, variables of sort F, disjoint from XB and V ,
and let X = XB ∪ XF. When we say just “variable” we will always mean a variable in
X, not a rigid variable.

The calculus takes as input Σ(X)-formulas of a specific form, defined later, and
manipulate more generally Σ(X,V) formulas, i.e., formulas possibly containing rigid
variables. We use, possibly with subscripts, the letters {x, y}, {u, v}, {a, b}, and { f , e} to
denote respectively regular variables (those in X), rigid variables, parameters, and fore-
ground function symbols.

To simplify the presentation here, we restrict the return sort of all foreground func-
tion symbols to be F . This is a true restriction for non-constant function symbols (fore-
ground constant symbols of sort B can be supplied as parameters instead). For example,

4 The calculus needs a decision procedure only for the validity of the ∀∃-fragment over the class
of constraints used in input formulas. When such formulas contain no parameters, a decision
procedure for the ∃-fragment is sufficient.

if Σ is the signature of lists of integers, with T being again LIA and F being the list
sort, our logic allows formulas like cdr(cons(x, y)) ≈ y but not car(cons(x, y)) ≈ x, as
car would be integer-sorted. To overcome this limitation somewhat, one could turn car
into a predicate symbol and use car(cons(x, y), x) instead, together with the (univer-
sal) functionality constraint ¬car(x, y) ∨ ¬car(x, z) ← y , z. This solution is however
approximate as it does not include a totality restriction on the new predicate symbols.

A term is a (well-sorted) Σ(X,V)-term, a formula is a (well-sorted) Σ(X,V)-formula.
A foreground term is a term with no operators from ΣΠB . Foreground atoms, literals, and
formulas are defined analogously. An ordinary foreground clause is a multiset of fore-
ground literals, usually written as a disjunction. A background term is a (well-sorted)
ΣΠB (XB,V)-term. Note that background terms are always B-sorted and vice versa. Fore-
ground terms are made of foreground symbols, variables and rigid variables; they are all
F-sorted unless they are rigid variables. A ground term is a term with no variables and
no rigid variables. A Herbrand term is a ground term whose only background subterms
are background domain elements. Intuitively, Herbrand terms do not contain symbols
that need external evaluation, i.e., they contain no parameters, no variables, and no rigid
variables. For example, f (e, 1) and 1 are Herbrand terms, but f (v, 1) and f (a, 1) are not.

A substitution is a mapping σ from variables to terms that is sort respecting, that is,
maps each variable x ∈ X to a term of the same sort. We write substitution application in
postfix form and extend the notation to (multi)sets S of terms or formulas as expected,
that is, Sσ = {Fσ | F ∈ S }. The domain of a substitution σ is the set dom(σ) = {x | x ,
xσ}. We work with substitutions with finite domains only. A Herbrand substitution is a
substitution that maps every variable to a Herbrand term. We denote by fvar(F) the set
of non-rigid variables that occur free in F, where F is a term or formula.

Semantics. An interpretation I is any Σ-structure augmented to include an injective,
possibly partial, mapping from the set V of rigid variables to the domain of B in I. We
will be interested primarily in Herbrand interpretations, defined below.

Definition 2.1 (Herbrand interpretations). A (T -based) Herbrand interpretation is
any interpretation I that (i) is identical to T over the symbols of ΣB, (ii) interprets ev-
ery foreground n-ary function symbol f as itself, i.e., f I(d1, . . . , dn) = f (d1, . . . , dn) for
every tuple (d1, . . . , dn) of domain elements from the proper domain, and (iii) interprets
≈ as a congruence relation on F-sorted Herbrand terms.5

A (parameter) valuation π is a mapping from Π to |B|. An assignment α is an
injective mapping from a (finite or infinite) subset of V to |B|. The range of α is denoted
by ran(α). Since T is fixed, a Herbrand interpretation I is completely characterized by
a congruence relation on the Herbrand terms, a valuation π and an assignment α.

An assignment α is suitable for a formula or set of formulas F if its domain includes
all the rigid variables occurring in F. Since all the elements of |B| are constants of ΣB we
will often treat assignments and valuations similarly to substitutions. For any Herbrand
interpretation I, valuation π and assignment α, we denote by I[π] the interpretation that
agrees with π on the meaning of the parameters (that is, aI = aπ for all a ∈ Π) and is

5 Note that Condition (iii) is well defined because, by Condition (ii), the interpretation of the
sort F is the set of all F-sorted Herbrand terms.

otherwise identical to I; we denote by I[α] the interpretation that agrees with α on the
meaning of the rigid variables in α’s domain and is otherwise identical to I. We write
I[π, α] as a shorthand for I[π][α].

The symbols I, α and πwe will always denote respectively Herbrand interpretations,
assignments and valuations. Hence, we will often use the symbols directly, without
further qualification. We will do the same for other selected symbols introduced later.
Also, we will often implicitly assume that α is suitable for the formulas in its context.

Definition 2.2 (Satisfaction of constraints). Let c be a closed constraint. For all π
and all α suitable for c, the pair (π, α) satisfies c, written as (π, α) |= c, if T |= cπα in
the standard sense.6 If α is suitable for a set Γ of closed constraints, (π, α) satisfies Γ,
written (π, α) |= Γ, iff (π, α) satisfies every c ∈ Γ.

The set Γ above is satisfiable if (π, α) |= Γ, for some π and α. Since constraints contain
no foreground symbols, for any interpretation I[π, α], I[π, α] |= c iff (π, α) |= c.

The satisfiability of arbitrary closed constraints, which may contain rigid variables,
reduces in a straightforward way to the satisfiability of ΣB-constraints without rigid
variables, and so can be decided by any decision procedure for the latter. It requires
only to read parameters and rigid variables as variables in the usual sense, and to conjoin
disequality constraints u , v for all distinct rigid variables u and v that occur in c.

Finally, we assume a reduction ordering � that is total on the Herbrand terms.7 We
also require that � is stable under assignments, i.e., if s � t then sα � tα, for every
suitable assignment α for s and t. The ordering � is extended to literals over Herbrand
terms by identifying a positive literal s ≈ t with the multiset {s, t}, a negative literal
¬(s ≈ t) with the multiset {s, s, t, t}, and using the multiset extension of �. Multisets of
literals are compared by the multiset extension of that ordering, also denoted by �.

3 Contexts and Constrained clauses

Our calculus maintains two data structures for representing Herbrand interpretations: a
foreground context Λ, a set of foreground literals, for the foreground operators; and a
background context Γ, a set of closed constraints, for valuations and assignments. The
elements of Λ are called context literals. We identify every foreground context Λwith its
closure under renaming of (regular) variables, and assume it contains a pseudo-literal of
the form ¬x. A foreground literal K is contradictory with Λ if K ∈ Λ, where K denotes
the complement of K. Λ itself is contradictory if it contains a literal that is contradictory
with Λ. We will work only with non-contradictory contexts.

For any foreground literals K and L, we write K & L iff L is an instance of K, i.e.,
iff there is a substitution σ such that Kσ = L. We write K ∼ L iff K and L are variants,
equivalently, iff K & L and L & K. We write K � L iff K & L but L ! K.

6 Observe that the test T |= cπα is well formed because cπα is closed and contains neither
parameters nor rigid variables.

7 A reduction ordering is a strict, well-founded ordering on terms that is compatible with con-
texts, i.e., s � t implies f [s] � f [t], and stable under substitutions, i.e., s � t implies sσ � tσ.

Definition 3.1 (Productivity). Let K, L be foreground literals. We say that K produces
L in Λ if (i) K & L, and (ii) there is no K′ ∈ Λ such that K � K′ & L.

Since foreground contexts contain the pseudo-literal ¬x, it is not difficult to see that Λ
produces at least one of K and K, for every Λ and literal K.

The calculus works with constrained clauses, expressions of the form C ← R · c
where R is a multiset of foreground literals, the set of context restrictions, C is an
ordinary foreground clause, and c is a (background) constraint with fvar(c) ⊆ fvar(C) ∪
fvar(R). When C is empty we write it as �. When R is empty, we write the constrained
clause more simply as C ← c. The calculus takes as input only clauses of the latter
form, hence we call such clauses input constrained clauses. Below we will often speak
of (input) clauses instead of (input) constrained clauses when no confusion can arise.

We can turn any expression of the form C ← c where C is an arbitrary ordinary
Σ-clause and c a constraint into an input clause by abstracting out offending subterms
from C, moving them to the constraint side of←, and existentially quantifying variables
in the constraint side that do not occur in the clause side. For example, P(a, v, x + 5)←
x > v becomes P(x1, v, x2) ← ∃x (x > v ∧ x1 = a ∧ x2 = x + 5). As will be clear later,
this transformation preserves the semantics of the original expression.

The variables of input clauses are implicitly universally quantified. Because the
background domain elements (such as, e.g., 0, 1,−1, . . .) are also background constants,
we can define the semantics of input clauses in terms of Herbrand interpretations. To
do that, we need one auxiliary definition first.

If γ is a Herbrand substitution and C ← c an input clause, the clause (C ← c)γ =

Cγ ← cγ is a Herbrand instance of C ← c. For example, (P(v, x, y) ← x > a)γ is
P(v, 1, f (1, e)) ← 1 > a if γ = {x 7→ 1, y 7→ f (1, e), . . .}. A Herbrand instance C ← c
can be evaluated directly by an interpretation I[α], for suitable α: we say that I[α]
satisfies C ← c, written I[α] |= C ← c if I[α] |= C ∨ ¬c. For input clauses C ← c we
say that I[α] satisfies C ← c iff I[α] satisfies every Herbrand instance of C ← c.

Definition 3.2 (Satisfaction of sets of formulas). Let ∆ be a set of input clauses and
closed constraints. We say that I[α] satisfies ∆, written as I[α] |= ∆, if I[α] |= F, for
every F ∈ ∆.

We say that ∆ is satisfiable if some I[α] satisfies F. Let G be an input clause or closed
constraint. We say that ∆ entails G, written as ∆ |= G, if for every suitable assignment
α for ∆ and G, every interpretation I[α] that satisfies ∆ also satisfies G.

The definition of satisfaction of general constrained clauses C ← R · c, with a non-
empty restriction R, is more complex because in our completeness argument for the
calculus C is evaluated semantically, with respect to Herbrand interpretations induced
by a context, whereas R is evaluated syntactically, with respect to productivity in a
context. Moreover, constrained clause satisfaction is not definable purely at the ground
level but requires a suitable notion of Herbrand closure.

Definition 3.3 (Herbrand closure). Let γ be a Herbrand substitution. The pair (C ←
R · c, γ) is a Herbrand closure (of C ← R · c).

Context restrictions are evaluated in terms of productivity by applying an assignment to
the involved rigid variables first. To this end, we will use evaluated contexts Λα = {Kα |

K ∈ Λ}. By the injectivity of α, the notions above on contexts apply isomorphically
after evaluation by α. For instance, K produces L in Λ iff Kα produces Lα in Λα.

Definition 3.4 (Satisfaction of context restrictions). Let R be a set of context re-
strictions and γ a Herbrand substitution. The pair (Λ, α) satisfies (R, γ), written as
(Λ, α) |= (R, γ), if

(i) Rαγ contains no trivial literals, of the form t ≈ t or ¬(t ≈ t), and for every l ≈ r ∈
Rαγ, if l � r then l is not a variable, and

(ii) for every K ∈ Rα there is an L ∈ Λα that produces both K and Kγ in Λα.

Point (i) makes paramodulation into variables unnecessary for completeness in the
calculus.

Definition 3.5 (Satisfaction of Herbrand closures). A triple (Λ, α, I) satisfies (C ←
R · c, γ), written as (Λ, α, I) |= (C ← R · c, γ), iff (Λ, α) 6|= (R, γ) or I |= (C ← c)γ.

We will use Definition 3.5 always with I = I[α]. The component Λ in the previous
definition is irrelevant for input clauses (where R = ∅), and satisfaction of Herbrand
closures and Herbrand instances coincide then. Formally, (Λ, α, I[α]) |= (C ← ∅ · c, γ)
if and only if I[α] |= (C ← c)γ.

In our soundness arguments for the calculus a constrained clause C ← R·c will stand
for the Σ-formula C ∨ (

∨
L∈R L) ∨ ¬c. We call the latter the clause form of C ← R · c

and denote it by (C ← R · c)c. If Φ is a set of clauses, Φc = {Fc | F ∈ Φ}.

4 Core Inference Rules

The calculus works on sequents of the form Λ · Γ ` Φ, where Λ · Γ is a context and
Φ is a set of constrained clauses. It has five core inference rules: Ref, Para, Pos-Res,
Split and Close. In their description, if S is a set and a is an element, we will write S , a
as an abbreviation of S ∪ {a}.

The first two inference rules perform equality reasoning at the foreground level.

Ref
Λ · Γ ` Φ

Λ · Γ ` Φ, (C ← R · c)σ

if Φ contains a clause ¬(s ≈ t) ∨ C ← R · c, the selected clause, and σ is an mgu of s
and t. The new clause in the conclusion is the derived clause.

The next inference rule is a variant of ordered paramodulation.

Para
Λ · Γ ` Φ

Λ · Γ ` Φ, (L[r] ∨C ← (R ∪ {l ≈ r}) · c)σ

if l ≈ r ∈ Λ and Φ contains a clause L[s] ∨ C ← R · c, the selected clause, such that
(i) σ is an mgu of l and s, (ii) s is neither a variable nor a rigid variable, (iii) rσ � lσ,
and (iv) l ≈ r produces (l ≈ r)σ in Λ. The context literal l ≈ r is the selected context
equation, and the new clause in the conclusion is the derived clause.

We can afford to not paramodulate into rigid variables s, as these are B-sorted, and
the resulting unifier with (an F-sorted variable) l would be ill-sorted. The equation l ≈ r
is added to R to preserve soundness.

For example, if Λ = { f (x, y, e) ≈ x} then the clause P(f (x, e, y))∨y ≈ e ← ∅ · x > 5
paramodulates into P(x) ∨ e ≈ e ← f (x, e, e) ≈ x · x > 5.

Let C = L1 ∨ · · · ∨ Ln be an ordinary foreground clause with n ≥ 0. We say that a
substitution σ is a context unifier of C against Λ if there are literals K1, . . . ,Kn ∈ Λ such
that σ is a simultaneous most general unifier of the sets {K1, L1}, . . . , {Kn, Ln}. We say
that σ is productive iff Ki produces Liσ in Λ, for all i = 1, . . . , n.

For any ordinary foreground clause, let C = {L | L ∈ C}.

Pos-Res
Λ · Γ ` Φ

Λ · Γ ` Φ, (�← (R ∪ C) · c)σ

if Φ contains a clause of the form C ← R · c, the selected clause, such that (i) C , �
and C consists of positive literals only, and (ii) σ is a productive context unifier of C
against Λ. The new clause in the conclusion is the derived clause.

For example, if Λ = {¬P(e)}, from f (x, y, z) ≈ g(y) ∨ P(x) ← ∅ · y > 5 one gets
�← {¬(f (e, y, z) ≈ g(y)),¬P(e)} · y > 5. (Recall that Λ implicitly contains ¬x.)

Intuitively, Pos-Res is applied when all literals in the ordinary clause part of a
clause have been sufficiently processed by the equality inference rules Para and Ref
and turns them into context restrictions. Deriving an empty constrained clause this way
does not necessary produce a contradiction, as the clause could be satisfied, in an in-
terpretation that falsifies its context restriction or falsifies its constraint. The Split rule
below considers this possibility.

The rule has side conditions that treat context literals as constrained clauses. For-
mally, let Λ(e,n) = {K(e,n) ← > | K ∈ Λ} be the clause form of Λ, where K(e,n) is
the context literal obtained from K by replacing every foreground variable by a fixed
foreground constant e and replacing every background variable by a fixed background
domain element n. We say that (C ← R · c)δ is a domain instance of a clause C ← R · c
if δ moves every B-sorted variable of fvar(c) to a rigid variable and does not move the
other variables of fvar(c).

Split
Λ · Γ ` Φ

Λ,K · Γ, c ` Φ Λ,K · Γ? ` Φ

if there is a domain instance (� ← R · c) of some clause in Φ such that (i) K ∈ R and
neither K nor K is contradictory with Λ, (ii) for every L ∈ R, Λ produces L, (iii) Γ ∪ {c}
is satisfiable, and (iv) Γ? is any satisfiable background context such that Γ ∪ {c} ⊆ Γ?

and (Λ ∪ K)(e,n) ∪ Φc ∪ Γ? is not satisfiable, if such a Γ? exists, or else Γ? = Γ ∪ {c}.
The clause �← R · c is the selected clause, and the literal K is the split literal.

For example, if Λ = {¬P(e)} and Φ contains �← {¬(f (e, y, z) ≈ g(y)),¬P(e) ·y > 5,
where y is B-sorted and the sort of z is irrelevant, the domain instance could be � ←
{¬(f (e, v1, z) ≈ g(v1)),¬P(e)} · v1 > 5, and the split literal then is f (e, v1, z) ≈ g(v1).

The set Φ can also be seen to implicitly contain with each clause all its domain
instances, and taking one of those as the selected clause for Split.

While splitting is done in a complementary way, as in earlier ME calculi, back-
ground contexts are global to derivations. Moreover, all constraints added to Γ in the
course of the further derivation of the left branch need to be present in the right branch
as well. This is modeled by Condition (iv). The branch Γ? can be obtained in a construc-
tive way by trying to extend the left branch to a refutation sub-tree, which, if successful,
gives the desired Γ?. If not successful, no matter if finite or infinite, the input clause set
is satisfiable, and the derivation need not return to the right branch anyway. We remark
that extending background constraints, as done by Split (and Close and Restrict below)
causes no soundness problems, as our soundness theorem applies relative to derived
background contexts only. See Section 7 for details and how soundness in the usual
sense is recovered.

Close
Λ · Γ ` Φ

Λ · Γ, c ` Φ, (�← ∅ · >)

if Φ contains a clause �← R · c such that (i) R ⊆ Λ, and (ii) Γ ∪ {c} is satisfiable. The
clause �← R · c is the selected clause.

5 Model Construction, Redundancy and Static Completeness

In this section we show how to derive from a sequent Λ · Γ ` Φ an intended inter-
pretation I[Λ, π, α] as a canonical candidate model for Φ. Its components π and α will
be determined first by Γ, and its congruence relation will be presented by a convergent
ground rewrite system RΛ,α extracted from Λ and α. The general technique for defining
RΛ,α is borrowed from the completeness proof of the Superposition calculus and the
earlier MEE calculus.

A rewrite rule is an expression of the form l → r where l and r are F-sorted Her-
brand terms. A rewrite system is a set of rewrite rules. The rewrite systems constructed
below will be ordered, that is, consist of rules of the form l → r such that l � r. For a
given Λ and suitable assignment α, we define by induction on the term ordering � sets
εK and RK for every ground equation K between F-sorted Herbrand-terms. Assume that
εL has already been defined for all such L with K � L. Let RK =

⋃
K�L εL, where

εl≈r =

{
{l→ r} if Λα produces l ≈ r, l � r, and l and r are irreducible wrt Rl≈r

∅ otherwise

Finally define RΛ,α =
⋃

K εK . If εl≈r = l→ r we say that l ≈ r generates l→ r in RΛ,α.
For example, if Λ = {P(x),¬P(v)} and α = {v 7→ 1} then RΛ,α contains P(0) → tt,

P(−1)→ tt, P(−2)→ tt, P(2)→ tt, P(−3)→ tt, P(3)→ tt, . . . but not P(1)→ tt, which
is irreducible, but P(1)→ tt is not produced by Λα.

Definition 5.1 (Induced interpretation). Let Λ be a context, π a valuation, and α
a suitable assignment for Λ. The interpretation induced by Λ, π and α, written as
I[Λ, π, α], is the Herbrand interpretation I[π, α] that interprets foreground equality as
R?Λ,α, the congruence closure of RΛ,α (as a set of equations) over the Herbrand terms.

The rewrite system RΛ,α is fully reduced by construction (no rule in RΛ,α rewrites any
other rule in it). Since � is well-founded on the Herbrand terms, RΛ,α is convergent. It

follows from well-known results that equality of Herbrand terms in R?Λ,α can be decided
by reduction to normal form using the rules in RΛ,α.

The rewrite system RΛ,α will also be used to evaluate evaluated context restrictions:

Definition 5.2 (Satisfaction of variable-free foreground literals). Let R be a set of
literals over Herbrand terms. We say that RΛ,α satisfies R, and write RΛ,α |= R, iff

(i) for every l ≈ r ∈ R, if l � r then l→ r ∈ RΛ,α, and
(ii) for every ¬(l ≈ r) ∈ R, l and r are irreducible wrt. RΛ,α.

For example, if Λ = { f (v) ≈ e2}, α = {v 7→ 1}, and f (1) � e1 � e2 � 1 then RΛ,α =

{ f (1) → e2} and RΛ,α 6|= {¬(f (1) ≈ e1), e2 ≈ e1} because the left-hand side of ¬(f (1) ≈
e1) is reducible wrt. RΛ,α, and because e1 → e2 is not in RΛ,α.

Our concepts of redundancy require comparing Herbrand closures. To this end, de-
fine (C1 ← R1 · c1, γ1) � (C2 ← R2 · c2, γ2) iff C1γ1 � C2γ2, or else C1γ1 = C2γ2
and R1γ1 � R2γ2. Note that even if it ignores constraints, this ordering is not total, as
constrained clauses may contain rigid variables.

Definition 5.3 (Redundant clause). Let Λ · Γ ` Φ be a sequent, and D and (C ←
R ·c, γ) Herbrand closures. We say that (C ← R ·c, γ) is redundant wrtD and Λ ·Γ ` Φ
iff (a) there is a K ∈ R that is contradictory with Λ, (b) Γ ∪ {cγ} is not satisfiable, or
(c) there exist Herbrand closures (Ci ← Ri · ci, γi) of clauses in Φ, such that all of the
following hold:

(i) for every L ∈ Ri there is a K ∈ R such that L ∼ K and Lγi = Kγ,
(ii) Γ ∪ {cγ} |= ciγi,

(iii) D � (Ci ← Ri · ci, γi), and
(iv) {C1γ1, . . . ,Cnγn} |= Cγ.

We say that a Herbrand closure (C ← R · c, γ) is redundant wrt Λ · Γ ` Φ iff it is
redundant wrt (C ← R · c, γ) and Λ · Γ ` Φ, and that a clause C ← R · c is redundant
wrt Λ · Γ ` Φ iff every Herbrand closure of C ← R · c is redundant wrt. Λ · Γ ` Φ.

If case (a) or (b) in the previous definition applies then (C ← R·c, γ) is trivially satis-
fied by (Λ, α, I[α]), for every suitable α that satisfies Γ and every I[α]. Case (c) provides
with (ii) and (iv) conditions under which (C ← c)γ follows from the (Ci ← ci)γi’s (in
the sense of Definition 3.2). The context restrictions are taken into account by condition
(i), which makes sure that evaluation of the pairs (Ri, γi) in terms of Definition 3.4 is the
same as for (R, γ). In condition (iv), entailment |= is meant as entailment in equational
clause logic between sets of ordinary ground clauses and an ordinary ground clause.

Given a Pos-Res, Ref or Para inference with premise Λ · Γ ` Φ, selected clause
C ← R · c, selected context equation l ≈ r in case of Para, and a Herbrand substitution
γ. If applying γ to C ← R · c, the derived clause, and l ≈ r satisfies all applicability
conditions of that inference rule, except (C ← R · c)γ ∈ Φ and (l ≈ r)γ ∈ Λ, we call the
resulting ground inference a ground instance via γ (of the given inference). This is not
always the case, as, e.g., ordering constraints could be unsatisfied after application of γ.

Definition 5.4 (Redundant inference). Let Λ · Γ ` Φ and Λ′ · Γ′ ` Φ′ be sequents.
An inference with premise Λ · Γ ` Φ and selected clause C ← R · c is redundant wrt
Λ′ · Γ′ ` Φ′ iff for every Herbrand substitution γ, (C ← R · c, γ) is redundant wrt.
Λ′ · Γ′ ` Φ′ or the following holds, depending on the inference rule applied:

Pos-Res, Ref, Para: Applying γ to that inference does not result in a ground instance
via γ, or (C′ ← R′ · c′, γ) is redundant wrt. (C ← R · c, γ) and Λ′ · Γ′ ` Φ′, where
C′ ← R′ · c′ is the derived clause of that inference.

Split (C = �): (a) there is a literal K ∈ R such that Λ′ does not produce K or (b) the
split literal is contradictory with Λ′.

Close (C = �): �← ∅ · > ∈ Φ′ .

Definition 5.5 (Saturated sequent). A sequent Λ·Γ ` Φ is saturated iff every inference
with a core inference rule and premise Λ · Γ ` Φ is redundant wrt. Λ · Γ ` Φ.

We note that actually carrying out an inference makes it redundant wrt. the (all) con-
clusion(s), which already indicates that saturated sequents, although possibly infinite in
each of its components, can be effectively computed.

Our first completeness result holds only for saturated sequents with respect to rele-
vant closures. We say that a clause (C ← R·c, γ) is relevant wrt. Λ and α iffRΛ,α |= Rαγ.
All Herbrand closures of input clauses are always relevant.

Theorem 5.6 (Static completeness). Let Λ·Γ ` Φ be a saturated sequent, π a valuation
and α a suitable assignment for Λ·Γ ` Φ. If (π, α) |= Γ, ran(α) = |B| and (�← ∅·>) < Φ
then the induced interpretation I[Λ, π, α] satisfies all Herbrand closures of all clauses in
Φ that are relevant wrt. Λ and α. Moreover, I[Λ, π, α] |= C ← c, for every C ← c ∈ Φ.

The stronger statement I[Λ, π, α] |= Φ does in general not follow, as I[Λ, π, α] possibly
does not satisfy a non-relevant closure of a clause in Φ. See [5] for a discussion why.

6 The MEE(T) Calculus

We now turn to the process of deriving saturated sequents. First, we introduce two more
inference rules. The first one, Simp, is a generic simplification rule.

Simp
Λ · Γ ` Φ,C ← R · c

Λ · Γ ` Φ,C′ ← R′ · c′

if (1) C ← R ·c is redundant wrt. Λ ·Γ ` Φ,C′ ← R′ ·c′, and (2) Γ ∪ Λ(e,n) ∪ (Φ ∪ {C ←
R · c})c |= (C′ ← R′ · c′)c. The first condition is needed for completeness, the second for
soundness.

For example, if Λ contains a ground literal K, then every constrained clause of the
form C ← ({K} ∪ R) · c can be deleted, and every constrained clause of the form C ←
({K} ∪ R)·c can be replaced by C ← R·c. The Simp rule encompasses various additional
forms of simplification of the literals in C based on rewriting and subsumption, see [5].

Restrict
Λ · Γ ` Φ

Λ · Γ, c ` Φ

if c is a closed constraint such that Γ ∪ {c} is satisfiable.

For example, by 10-fold application of restrict one can construct a background con-
text {1 ≤ v1 ≤ 10, . . . , 1 ≤ v10 ≤ 10} that represents the numbers 1, . . . , 10 in a “nonde-
terministic” way. The purpose of Restrict is to construct finitely committed branches,
as formally introduced below.

We are now ready to introduce derivation formally. In the following, we will use κ
to denote an at most countably infinite ordinal. Let Ψ be a set of input clauses and Γ a
satisfiable set of closed constraints, both rigid variable-free. A derivation from Ψ and Γ
is a sequence ((Ni, Ei))0≤i<κ of trees of sequents (called derivation trees) with nodes Ni

and edges Ei, such that T0 consists of the root-only tree whose sequent is ¬x · Γ ` Ψ ,
and Ti is obtained by one single application of one of the core inference rules, Simp or
Restrict to a leaf of Ti−1, for all 1 ≤ i < κ.

A refutation is a derivation that contains a refutation tree, that is, a derivation tree
that contains in each leaf a sequent with �← ∅ · > in its clauses.

Every derivation determines a possibly infinite limit tree T = (
⋃

i<κ Ni,
⋃

i<κ Ei). In
the following, let Λi · Γi ` Φi be the sequent labeling the node i in some branch B with
κ nodes of a limit tree T, for all i < κ. Let

– ΓB =
⋃

i<κ Γi the limit background context,
– ΛB =

⋃
i<κ Λi be the limit foreground context, and

– ΦB =
⋃

i<κ
⋂

i≤ j<κΦi be the persistent clauses.

The tuple ΛB · ΓB ` ΦB is the limit sequent (of B). To prove a completeness result,
derivations in MEE(T) need to construct limit sequents with certain properties:

Definition 6.1 (Exhausted branch). We say that B is exhausted iff for all i < κ:

(i) every Pos-Res, Ref, Para, Split and Close inference with premise Λi ·Γi ` Φi and
a persistent selected clause is redundant wrt. Λ j ·Γ j ` Φ j for some j with i ≤ j < κ.

(ii) (�← ∅ · >) < Φi .

While the above notion is similar to the one already used in MEE, MEE(T) has addi-
tional requirements on the limit background context ΓB, introduced next.

Definition 6.2 (Finitely committed branch). We say that B is finitely committed iff
(a) ΓB is finite or (b) for all i < κ, there are πi and αi such that (πi, αi) |= Γi, and

(i)
⋃

i<κ
⋂

i≤ j<κ ran(α j) = |B|,
(ii) for every n ∈ |B|, the set {v | αi(v) = n, for some i < κ} is finite,

(iii) for every rigid variable v occuring in ΓB, the set {αi(v) | v ∈ dom(αi), for some i <
κ} is finite, and

(iv) for every parameter a occuring in ΓB, the set {πi(a) | i < κ} is finite.

The set in condition (i) consists of those background domain elements that are repre-
sented by some (not necessarily the same) rigid variable from some point on forever.
The condition requires that this must be the case for all background domain elements.
Condition (ii) says that only finitely many rigid variables can be used for that. Condition
(iii) says that no rigid variable occuring in ΓB can be assigned infinitely many values as
the context evolves. Condition (iv) is similar, but for parameters. (Recall that parameter
valuations are total, hence πi(a) is defined for every parameter a.)

The purpose of Definition 6.2 is to make sure that a valuation π and a suitable
assignment α for Γ always exists, and moreover, that (π, α) satisfies ΓB:

Proposition 6.3 (Compactness of finitely committed branches). If B is finitely com-
mitted then there is a π and an α such that ran(α) = |B| and (π, α) |= ΓB.

To see one of the issues that Proposition 6.3 addresses consider Γi =
⋃

n≤i{v1 > n},
then ΓB is not satisfiable, although every finite subset is satisfiable. On the other hand,
condition (iii) in Definition 6.2 is not satisfied.

With enough Restrict applications finitely committed limit branches can be con-
structed in a straightforward way if the input background constraints confine every
parameter to a finite domain. In the LIA case, e.g., one could “slice” the integers in
intervals of, say, 100 elements and enumerate, with Restrict, declarations like 1 ≤ v1 ≤

100, . . . , 1 ≤ v100 ≤ 100 before any rigid variable vi is used for the first time (in Split),
and do that for all intervals. In certain cases it is possible to determine a priori that limit
background contexts will be finite, and then Restrict is not required at all, see Section 7.

Definition 6.4 (Fairness). A derivation is fair iff it is a refutation or its limit tree has
an exhausted and finitely committed branch.

Theorem 6.5 (Completeness). Let Ψ be a set of input clauses and Γ a satisfiable set
of closed constraints, both rigid variable-free. Suppose a fair derivation from Ψ and Γ
that is not a refutation. Let B be any exhausted and finitely committed branch of its limit
tree, and let ΛB · ΓB ` ΦB be the limit sequent of B.

Then there is a valuation π and a suitable assignment α for ΓB such that ran(α) = |B|
and (π, α) |= ΓB, and it holds I[ΛB, π] |= Γ ∪ Ψ , where I[ΛB, π, α] is the interpretation
induced by ΛB, π, and α.

The proof exploits Proposition 6.3 to show that π and α exist as claimed. It then
proceeds by showing that ΛB · ΓB ` ΦB is saturated, as a link with Theorem 6.5.

7 Soundness and Special Cases

Theorem 7.1 (Relative refutational soundness). Let Ψ be a set of input clauses and
Γ a satisfiable set of closed constraints, both rigid variable-free. Suppose a refutation
fromΨ and Γ and let ΓB be its limit background context. Then, ΓB ⊇ Γ, ΓB is satisfiable,
and ΓB ∪ Ψ is not satisfiable.

Here, by the limit background context ΓB of a refutation we mean the background
context of the sequent in the leaf of the rightmost branch in its refutation tree.

Suppose the conditions of Theorem 7.1 hold, and let I[π, α] be such that (π, α) |=
ΓB, as claimed. It follows I[π, α] 6|= Ψ and, as Ψ is rigid variable-free, I[π] 6|= Ψ . (If
additionally Ψ is parameter-free then ΓB and Ψ are independent, and so Ψ alone is not
satisfiable.) For example, if Ψ = {P(x)← x = a, ¬P(x)← x = 5} and Γ = {a > 2} then
there is a refutation with, say, ΓB = {a > 2, v1 = a, v1 = 5}. Notice that (π, α) |= ΓB
entails π = {a 7→ 5} , and, obviously, I[π] 6|= Ψ . But of course Ψ ∪ Γ is satisfiable,
take, e.g., π = {a 7→ 3}. A usual soundness result can thus be not based on single
refutations, and this is why we call the soundness result above “relative”. To fix that,
we work with sequences of refutations whose limit background contexts collectively

cover the initially given Γ. In the example, the next derivation starts with (essentially)
Γ = {a > 2,¬(a = 5)}, which leads to a derivation that provides the expected model.

Define mods(Γ) = {π | (π, α) |= Γ, for some suitable α}. Then, the intuition above
leads to the following general procedure:

1: D← a fair derivation from Ψ and Γ {both Ψ and Γ assumed rigid-variable free}
2: while D is a refutation do
3: ΓB ← the limit background context of D
4: if mods(ΓB) = mods(Γ) then
5: return unsatisfiable
6: else
7: Γ′ ← any background context s.t. mods(Γ′) = mods(Γ) \mods(ΓB)
8: Γ ← Γ′; D← a fair derivation from Ψ and Γ
9: return satisfiable

At line 4, mods(Γ) is the set of parameter valuations under which the unsatisfiability
of Ψ is yet to be established. If the current refutation D from Ψ and Γ does not further
constrain Γ, i.e., if mods(ΓB) = mods(Γ), then nothing remains to be done. Otherwise
mods(Γ) \ mods(ΓB) is non-empty, and in the next iteration Γ is taken to stand for
exactly those parameter valuations that are not sanctioned by the current refutation, i.e.,
those that satisfy the current Γ but not ΓB. It follows easily with Theorem 7.1 that if the
procedure terminates with “unsatisfiable” on line 5 then Ψ ∪ Γ is indeed unsatisfiable,
the desired standard soundness result. If on the other hand D is not a refutation then the
procedure returns “satisfiable”, which is sanctioned by Theorem 6.5.

Notice that the test in line 4 can be made operational by checking the validity of the
formula (∃∧c∈Γ c) ≡ (∃∧c∈ΓB c), where ∃F denotes the existential quantification over all
rigid variables occurring in F. Similarly, Γ′ on line 7 can be taken as Γ ∪ {¬∃ ∧c∈ΓB c}.
If the background theory admits quantifier elimination (e.g., LIA extended with divisi-
bility predicates) the existential quantifiers can be removed and further simplifications
may take place. In the example, the background context Γ′ computed in the first itera-
tion is Γ′ = {a > 2,¬∃v1 (a > 2 ∧ v1 = a ∧ v1 = 5)} ≡ {a > 2,¬(a = 5)}.

The derivation D might not be finite. In this case the procedure does not terminate,
but this is acceptable as by Ψ ∪ Γ is satisfiable then. Another source of non-termination
comes from growing the sets Γ′ without bound. This is theoretically acceptable, as
our logic is not even semi-decidable. In practice, one could add to Γ finite domain
declarations for all parameters involved, such as 1 ≤ a ≤ 100. This leads to finitely
many Γ′ only. Moreover, the sets Γ′ can then be computed in a conflict-driven way. For
example, if Ψ = {P(x) ← x = a, ¬P(x) ← 1 ≤ x ≤ 50} and Γ = {1 ≤ a ≤ 100},
the procedure will derive in the first iteration a refutation (in O(1) time). The second
iteration will then result in a derivation (a non-refutation) that restricts a to the range
[51, 100] and the procedure will stop with “satisfiable”.

Another special case is when all clauses are of the form C ← R · (c ∧ x1 =

t1 ∧ · · · ∧ xn = tn), where {x1, . . . , xn} = fvar(C) ∪ fvar(R), and c and the ti’s are
ground. Such clauses, where initially R = ∅, are obtained from abstraction of formulas
of the form C ← c, where C is an ordinary ground Σ-clause and c is a ground constraint.
(This is the fragment over which MEE(T) overlaps with typical SMT methods.) It is not
too difficult to argue that all derivable clauses then have that form as well. As a conse-

quence, (i) all split literals are variable-free, and hence so are all derivable foreground
contexts, and (ii) there is only one instantiation of the xi’s in Split, since no (satisfiable)
background context can contain v1 = t and v2 = t for different rigid variables v1 and v2.
It follows that the limit background contexts are finite for any input background context,
hence no finite domain declarations for parameters are needed. Moreover, as the set of
(non-rigid variable) background terms ti is fixed a priori, there are only finitely many
non-equivalent background contexts. Therefore, the procedure above cannot grow Γ
indefinitely. Furthermore, all derivations are guaranteed to be final because context lit-
erals are variable-free and can use only finitely-many rigid variables. As a consequence,
MEE(T) provides a decision procedure for ground problems in the combination of the
background theory and uninterpreted (F-sorted) function symbols with equality.

8 Conclusions

We presented the new MEE(T) calculus, which properly generalizes the essentials of
two earlier Model Evolution calculi, MEE [4], and ME(LIA) [3], one with equational
inference rules but without theory reasoning, and the other with theory reasoning by
without equality over non-theory symbols.

Much remains to be done. Further work includes extending the calculus with “uni-
versal variables” and additional simplification rules. A further extension, which could
be done along the lines of [2], would allow also B-sorted (non-constant) function sym-
bols. Another important question is how to strengthen the model-building capabilities
of the calculus, to guarantee termination in more cases of practical relevance.

References
1. E. Althaus, E. Kruglov, and C. Weidenbach. Superposition modulo linear arithmetic

SUP(LA). In S. Ghilardi and R. Sebastiani, eds., Proc. FroCos, LNCS 5749, Springer, 2009.
2. L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for hierachic

first-order theories. Appl. Algebra Eng. Commun. Comput, 5:193–212, 1994.
3. P. Baumgartner, A. Fuchs, and C. Tinelli. ME(LIA) – Model Evolution With Linear Integer

Arithmetic Constraints. In I. Cervesato, H. Veith, and A. Voronkov, eds., Proc. LPAR’08,
LNAI 5330, Springer, 2008.

4. P. Baumgartner and C. Tinelli. The Model Evolution Calculus With Equality. In R. Nieuwen-
huis, ed., Proc. CADE-20, LNAI 3632, Springer, 2005.

5. P. Baumgartner and U. Waldmann. Superposition and Model Evolution Combined. In
R. Schmidt, ed., Proc. CADE-22, LNAI 5663, Springer, 2009.

6. H. Ganzinger and K. Korovin. Theory Instantiation. In Proc. LPAR’06, LNCS 4246,
Springer, 2006.

7. Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using satisfiability
modulo theories. In F. Pfenning, eds., Proc. CADE-21, LNCS, Springer, 2007.

8. K. Korovin and A. Voronkov. Integrating linear arithmetic into superposition calculus. In
Proc. CSL’07, LNCS 4646, Springer, 2007.

9. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: from
an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM,
53(6):937–977, Nov. 2006.

10. P. Rümmer. A constraint sequent calculus for first-order logic with linear integer arithmetic.
In I. Cervesato, H. Veith, and A. Voronkov, eds., Proc. LPAR’08, LNAI 5330, Springer, 2008.

