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Abstract

In many theorem proving applications, a proper treatment of equational theories or
equality is mandatory. In this paper we show how to integrate a modern treatment
of equality in the Model Evolution calculus (ME), a first-order version of the propo-
sitional DPLL procedure. The new calculus, MEE, is a proper extension of the ME

calculus without equality. Like ME it maintains an explicit candidate model, which is
searched for by DPLL-style splitting. For equational reasoning MEE uses an adapted
version of the superposition inference rule, where equations used for superposition are
drawn (only) from the candidate model. The calculus also features a generic, semanti-
cally justified simplification rule which covers many simplification techniques known
from superposition-style theorem proving. Our main theoretical result is the correct-
ness of the MEE calculus in the presence of very general redundancy elimination cri-
teria. We also describe our implementation of the calculus, the E-Darwin system, and
we report on practical experiments with it on the TPTP problems library.

Keywords: Automated Theorem Proving, Instance-Based Methods

1. Introduction

The Model Evolution (ME) Calculus [7, 9] is a refutational calculus for clause
logic developed as a first-order extension of the propositional DPLL procedure [14].
Compared to its predecessor, the FDPLL calculus [4], ME lifts to first-order logic
without equality not just the core of the DPLL procedure, the splitting rule, but also its
simplification rules, which are crucial for its practical feasibility.
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Our implementation of ME, the Darwin theorem prover [6], performs well in some
domains but, unsurprisingly, not on problems with equality which it can treat only with
the explicit addition of equality axioms. This is a serious shortcoming in practice be-
cause the majority of automated reasoning applications work in logics with equality.
In [8] we addressed the problem by proposing an extension of ME with dedicated in-
ference rules for equality reasoning. These rules were centered around a version of
the ordered paramodulation inference rule adapted to ME. This paper presents an ex-
tensively revised and improved version of that calculus, called MEE, that relies more
heavily on notions and techniques originally developed for the Superposition calcu-
lus [2]. As a result, MEE features more powerful redundancy criteria, and, by means of
selection functions, removes some non-determinism from the calculus in [8]. We prove
the soundness and completeness of MEE in full detail and discuss an initial implemen-
tation in the E-Darwin theorem prover, largely based on Darwin. The completeness
proof is obtained as an extension of the ME completeness proof by adapting techniques
from the Bachmair-Ganzinger framework developed for proving the completeness of
superposition [2, 26, e.g.]. The underlying model construction technique allows us to
justify a rather general simplification rule on semantic grounds. The simplification rule
is based on a general redundancy criterion that covers many simplification techniques
known from superposition-style theorem proving.

These adaptations are non-trivial because of the rather different layout of the two
calculi. While superposition maintains clause sets as its main data structure, MEE
works with a set of literals, which we call a context, and a set of (constrained) clauses.
MEE has, correspondingly, two kinds of inference rules, one for modifying contexts,
and one for deriving new (constrained) clauses, with the latter consisting mostly of
unit-superposition style inference rule. Since there is no counterpart to contexts in
superposition calculi, the inference rules on contexts are specific to our calculus, as are
the redundancy criteria we present.

Related Work. Like ME, the MEE calculus is related to instance based methods (IMs),
a family of calculi and proof procedures for first-order (clausal) logic that share the
principle of carrying out proof search by maintaining a set of instances of input clauses
and analyzing it for satisfiability until completion [5, 21]. Most IMs are based on
resolving pairs of complementary literals (connections) from two clauses in order to
determine these instances. In contrast, ME’s main derivation rule (splitting) is based
on evaluating all literals of a single clause against a current candidate model in order
to determine an instance. See [9] for a more detailed discussion of ME in relation to
IMs, which also applies to MEE when equality is not an issue.

There are only a few IMs that include inference rules for equality reasoning. Or-
dered Semantic Hyperlinking (OSHL) by Plaisted and Zhu [29] uses rewriting and
narrowing (paramodulation) with unit equations, but requires some other mechanism
such as Brand’s transformation to handle equations that appear in nonunit clauses.

To our knowledge there are only two IMs that have been extended with dedicated
equality inference rules for full equational clausal logic. One of them is described by
Ganzinger and Korovin [18] as an extension of the earlier IM by the same authors [17].
It is conceptually rather different from MEE: the main inference rule for equational rea-
soning requires, as a subtask, the refutation of a set of unit clauses (which is obtained
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by picking literals from the current clause set). More closely related to MEE is an IM
based on disconnection tableaux by Letz and Stenz, a successor of Billon’s disconnec-
tion method [12].2 Letz and Stenz discuss various ways of integrating equality reason-
ing in disconnection tableaux [22], including a variant based on ordered paramodula-
tion. These paramodulation inferences combine (equational) branch literals and clauses
into new clauses, where the equation used for paramodulation is added in negated form
(as a condition) to the paramodulant. Our main equality inference rules work similarly,
and in this sense the calculus of [22] and MEE are conceptually related. But MEE
features more powerful and general concepts of redundancy detection and elimination.

Finally, ME has been combined with the superposition calculus in a single frame-
work, including equality inference rules by Baumgartner and Waldmann [10]. On the
one hand, by this very combination, their calculus is more general than MEE. On the
other hand, MEE has some features that are not present in that calculus e.g., universal
variables, which enable the optional derivation rules Assert and Compact and lead to
a more powerful redundancy criterion. Another difference lies in the way constrained
clauses are ordered, which enables additional redundancy criteria that would be non-
trivial to integrate in the calculus in [10].

Paper organization. We start with an informal explanation of the main ideas behind
the MEE calculus in Section 2. After some technical preliminaries in Section 3, we
provide a more formal treatment of the main data structures of the calculus in Section 4,
where we describe contexts and their associated interpretations, and Section 5, where
we describe constrained clauses and inference rules for performing equality reasoning
on them. We then present the MEE calculus in Section 6, and discuss its correctness
in Section 7. In Section 8 we discuss an initial implementation of the calculus together
with comparative experimental results. We conclude in Section 9, suggesting a few
directions for further research. Detailed proofs of all the results in the paper can be
found in the appendix.

2. Main Ideas

Similarly to the ME calculus, MEE is informally best described with an eye to the
propositional DPLL procedure it extends. DPLL can be viewed as a procedure that
searches the space of possible interpretations for a given clause set until it finds one
that satisfies the clause set, if it exists. This can be done by keeping a current candidate
model and repairing it as needed until it satisfies every input clause. The repairs are
done incrementally by changing the truth value of one (propositional) clause literal
at a time, and involve a non-deterministic guess, a “split”, on whether the value of a
selected literal should be changed or kept as it is. The number of guesses is reduced
thanks to a constraint propagation process, usually referred to as “unit propagation”,
that is able to deduce deterministically the value of some input literals.

Both ME and MEE lift this idea to first-order logic by (i) maintaining a first-order
candidate model, (ii) deriving new clauses based on that model, (iii) identifying in-

2Even in that early paper a paramodulation-like inference rule was considered, albeit a rather weak one.
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stances of derived clauses that are falsified by the model, and (iv) repairing the model
incrementally until it satisfies all of those instances. The main difference between the
two calculi is that ME works with Herbrand models while MEE works with equational
models, or E-interpretations, that is, Herbrand interpretations in which the equality
symbol is the only predicate symbol and always denotes a congruence relation. The
current E-interpretation is constructed from the current context, a finite set of oriented
equational literals processed by the calculus. As we will show, each context Λ deter-
mines a (convergent) ground rewrite system RΛ. The E-interpretation associated with
the context is the congruence closure R?

Λ
of RΛ.

Context literals can be of two types: universal and parametric. As we will see later,
the difference between the two lies in how they constrain the possible modifications of
a context and, as a consequence, the possible repairs to its induced E-interpretation.
As far as determining the induced E-interpretation, however, the two types of context
literals are interchangeable.

For convenience, let us say that a context Λ satisfies/falsifies a literal or a clause if
its associated E-interpretation R?

Λ
does so. As mentioned above, during the course of

a derivation, the current context Λ is modified if it falsifies a current, derived clause.
Such a repair involves in essence two steps: (i) identifying an instance of a current
clause that is falsified by the current context, and (ii) adding a new literal to the context
so that the new context satisfies that instance. The first step is achieved by deriving new
clauses by applying (unit) superposition-style inference rules to literals in the context
and clauses in the current clause set until an empty clause is derived.

Each derived clause carries with it a constraint recording all the equalities and
disequalities of Λ involved in the inferences used to derive it. In particular, a derived
empty clause D has the form � · Γ where � is the empty disjunction and Γ, a set of
equational literals, is the constraint. A (ground) constraint is satisfied by a context Λ if
all of its equalities are contained in RΛ, the ground rewrite system induced by Λ, and
none of its disequalities is. The clause D is then falsified if for some substitution σ, Γσ
is satisfied in this sense. In that case, the calculus addresses the problem by adding to
Λ, if possible, (a variant of) the complement K of some literal K in Γ.3 This typically
ensures that the new context satisfies some (possibly, all) ground instances of K and, as
a consequence, some ground instances of D. If some instances of D remain falsified, a
new empty clause reflecting that will be derivable later.

Note that the rules of MEE do not actually work with RΛ but with the literals in Λ

and their instances obtained by unification with clause literals. The rewrite system RΛ,
a conceptual construction we use to explain the calculus and prove its completeness,
is only approximated at the calculus level. In practice, this may sometimes lead to
unnecessary inferences. That, however, is not a problem from a correctness perspective
as long as all inferences theoretically necessary for completeness are carried out.

The choice to repair the context with the complement of a constraint literal K of
� · Γ is don’t-know non-deterministic since it just produces a local repair that may fail
to lead to a model for the input clause set. Hence, it must be paired in the calculus

3Adding K is not possible if it is contradictory with Λ (see later) because then Λ ∪ {K} denotes no
E-interpretation.

4



with a corresponding complementary action. When K shares variables with some other
literal in Γ, this action consists in adding (a parametric variant of) K instead of K, a la
DPLL. Otherwise, it consists in replacing � · Γ with � · (Γ \ K). While neither of these
alternative complementary actions repairs the context, each one constitutes progress in
the derivation since it effectively forces the calculus to look at other constraint literals
in� ·Γ for the repair. When no literals in Γ can be used, the context is unrepairable and
backtracking to a previous choice point is necessary. With a fair derivation strategy, the
calculus guarantees that whenever no more clauses are derivable (modulo redundancy)
and the context has been repaired, perhaps in the limit, to satisfy all current constrained
empty clauses, its associated E-interpretation is a model of the input clause set.

For an example of how a derivation might proceed consider the following input
clause set Φ0:

Q(x, a) ≈ t ∨ P( f (x)) ≈ t (1)
g(x) ≈ x (2)

f (g(x)) ≈ x ∨ h(x) ≈ x (3)

where x is a variable and t a constant.
The initial context, Λ0, consists of a pseudo-literal of the form ¬v. Its associated

E-interpretation, as we will become clear later, is the identity relation over the set T (Σ)
of all ground terms, where Σ is the signature of Φ0. Note that such an E-interpretation
falsifies each clause in Φ0. In fact, it falsifies every ground instance of each clause. This
situation is reflected in the calculus by the fact that a unit resolution-like rule applies
to the pseudo-literal ¬v and a clause in Φ0. Repeated applications of such a rule may
lead to the derivation of the constrained clauses below.4

Q(x, a) ≈ t · P( f (x)) 0 t (4)
� · Q(x, a) 0 t, P( f (x)) 0 t (5)
� · g(x) 0 x (6)

f (g(x)) ≈ x · h(x) 0 x (7)

The constraint of each derived clause can be understood as a set of preconditions for
the clause. Roughly speaking, it represents a set of ground facts that held in the current
interpretation at the time the clause was derived. If later one of these ground facts
does not hold anymore because of changes to the context, the corresponding ground
instances of the constrained clause are, in essence, removed from consideration. For
instance, the constraint of clause (4) states that when the clause was derived (from
clause (1)) all ground instances of P( f (x)) 0 t were satisfied in the current context.
The derivation of empty constrained clauses, like (5) and (6) above, indicates that the
current context needs to be repaired. For clause (6) the only possible repair is to add
the universal literal g(x) ≈ x to Λ0. In this case, the alternative, namely replacing
�·g(x) 0 x with�·∅, not only fails to repair the context, it also makes it unrepairable—
because of the addition of the unconstrained empty clause � · ∅ to the clause set.

4Later in the paper we will use → instead of ≈ in constraint and context literals to stress that they are
oriented (dis)equalities. But we can overlook this technicality for now.
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With the new context Λ1 = {¬v, g(x) ≈ x}, the induced rewrite system RΛ1 is a
certain subset of E = {g(t) ≈ t | t ∈ T (Σ)} having the same congruence closure as
E.5 The associated interpretation (the congruence closure of RΛ1 ) now satisfies every
ground instance of clause (6). A superposition rule applied to the new context literal
g(x) ≈ x and to clause (3) derives the clause

f (x) ≈ x ∨ h(x) ≈ x · g(x) ≈ x (8)

The fact that g(x) ≈ x in Λ1 is universal guarantees that any later extensions of Λ1
will satisfy every ground instance of the constraint literal g(x) ≈ x. This allows the
simplification of (8) to the unconstrained clause

f (x) ≈ x ∨ h(x) ≈ x (9)

From that clause, the calculus can derive

� · f (x) 0 x, h(x) 0 x (10)

because the current context Λ1 satisfies every ground instance of f (x) 0 x and of
h(x) 0 x. Since clause (10) is empty, a repair is necessary. That can be done with
the addition of the parametric literal f (u) ≈ u, resulting in the new context Λ2 =

{¬v, g(x) ≈ x, f (u) ≈ u}. From this context and clause (4) it is possible to derive, in
order, the clauses

P(x) ≈ t · Q(x, a) 0 t, f (x) 0 x (11)
� · Q(x, a) 0 t, f (x) 0 x, P(x) 0 t (12)

Clause (12) requires another repair for the context, for instance into Λ3 = {¬v, g(x) ≈
x, f (u) ≈ u, P(v) ≈ t} with P(v) ≈ t parametric. At this point, no new clauses can be
derived. Furthermore, no more repairs are needed, or in fact possible, since the latest
one took care of both clause (12) and clause (5)—the latter of which was also pending.
At this point the calculus stops. The E-interpretation associated to Λ3 is the congruence
closure of

{g(t) ≈ t | t ∈ T (Σ)} ∪ { f (t) ≈ t | t ∈ T (Σ)} ∪ {P(t) ≈ t | t ∈ T (Σ)} .

This interpretation is indeed a model of the initial clause set {Q(x, a) ≈ t ∨ P( f (x)) ≈
t, g(x) ≈ x, f (g(x)) ≈ x ∨ h(x) ≈ x}.

If the clause set also contained the clause C = P(x) 0 t, say, the context Λ3 would
not only still fail to satisfy the clause set, for falsifying C; it would also be unrepairable
with respect to C. In that case, the addition of P(v) 0 t to Λ2 instead of P(v) ≈ t would
have to be considered, leading then to a repair with Q(v, a) ≈ t from clause (12).

Because of the splitting rules the MEE calculus formally generates derivation trees.
What we described in the example above is essentially one branch of a derivation tree

5RΛ1 is a proper subset of E. For instance, if it contains the rewrite rule g(a) ≈ a it will not contain the
superfluous rule g(g(a)) ≈ g(a).
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for the given clause set that ends with a model. As discussed in that example, some
derivation tree branches may end with a context that still falsifies some input clause
but is unrepairable. The generation of a closed tree, a tree all of whose branches end
with an unrepairable context, is a proof that the initial clause set is unsatisfiable in
first-order logic with equality. This makes the MEE calculus refutationally sound for
that logic. The calculus is also refutationally complete, that is, guaranteed to generate
a closed derivation tree starting from any unsatisfiable clause set when used with a
fair derivation strategy. As expected, MEE is not terminating for all input clause sets.
Specifically, for a satisfiable clause set it can generate a derivation tree all of whose
non-closed branches need infinitely-many repairs to produce a model. We will show
however that, similarly to ME, it is terminating for input sets that are clause forms
of sets of ∃∗∀∗-formulas with equality, a well known decidable fragment of first-order
logic [11, 30].

3. Formal Preliminaries

Most of the notions and notation we use in this paper are the standard ones in the
field (see, e.g., [32]). We report here only notable differences and additions.

3.1. Terms and Substitutions

We will use two disjoint, infinite sets of variables: a set X of universal variables,
which we will refer to just as variables, and another set V , which we will always refer
to as parameters. We will use u and v to denote elements of V and x and y to denote
elements of X. We fix a signature Σ throughout the paper, which is left implicit when
we speak of terms, formulas, and interpretations. We assume that Σ contains at least
one constant symbol. If t is a term we denote by Var(t) the set of t’s variables and
by Par(t) the set of t’s parameters. A term t is parameter-free iff Par(t) = ∅, it is
variable-free iff Var(t) = ∅, and it is ground iff Var(t) = Par(t) = ∅. A substitution
ρ is a renaming on W ⊆ (V ∪ X) iff its restriction to W is a bijection of W onto itself;
ρ is simply a renaming if it is a renaming on V ∪ X. A substitution σ is p-preserving
(short for parameter preserving) if it is a renaming on V . If s and t are two terms, we
write s & t, iff there is a substitution σ such that sσ = t.6 We say that s is a variant
of t, and write s ∼ t, iff s & t and t & s or, equivalently, iff there is a renaming ρ such
that sρ = t. We write s � t if s & t but s � t. We write s ≥ t and say that t is a
p-instance of s iff there is a p-preserving substitution σ such that sσ = t. We say that
s is a p-variant of t, and write s ' t, iff s ≥ t and t ≥ s; equivalently, iff there is a
p-preserving renaming ρ such that sρ = t. The expression s[t]p denotes, as usual, the
term obtained from term s by replacing the subterm of s at position p by term t.

3.2. Clauses

Essentially without loss of generality, we assume that the signature Σ contains only
one predicate symbol, ≈ (equality) although it may contain a finite set of function

6Note that many authors would write s . t in this case.
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symbols of given arity; 0-ary function symbols are called constants. Because equality
is the only predicate symbol, an atom is always a (positive) equation s ≈ t, where s
and t are terms, which is identified with the multiset {s, t}. Consequently, the equations
s ≈ t and t ≈ s are the same. A literal is an atom, a positive literal, or the negation
of an atom, a negative literal. Negative literals are generally written s 0 t instead of
¬(s ≈ t).

We call a literal universal iff it is parameter-free. In particular, ground literals are
universal. Non-universal, or parametric, literals then contain at least one parameter.

In the examples below we often write non-equational literals like P(t1, . . . , tn) as an
abbreviation for the equational literal P(t1, . . . , tn) ≈ t, where t is a distinguished con-
stant. We denote literals by the letters K and L. We write L to denote the complement
of a literal L, i.e. A = ¬A and ¬A = A, for any atom A. We denote clauses by the letters
C and D, and the empty clause by �.

A clause is a parameter-free multiset of literals {L1, . . . , Ln}, generally written as a
disjunction L1 ∨ · · · ∨ Ln. We write L ∨ C to denote the clause {L} ∪ C. The empty
clause is written as �.

All the notions on substitutions above are extended from terms to atoms, literals
and clauses in the obvious way.

3.3. Orderings and Rewrite Systems

A reduction ordering is a well-founded partial ordering � on terms that is closed
under context, i.e., s � s′ implies t[s]p � t[s′]p for all terms t and positions p, and
liftable, i.e., s � t implies sσ � tσ for every substitution σ.

We assume as given a reduction ordering � that is total on ground terms and that
the constant t is the smallest ground term in this ordering. As usual, we will use � to
denote the reflexive closure of �.

A (rewrite) rule is an expression of the form l → r where l and r are terms. A
rewrite system is a set of rewrite rules. We say that a rewrite system R is ordered by
� iff l � r, for every rule l → r ∈ R. We will consider only ground rewrite systems
ordered by �. A term t is reducible by l → r iff t = t[l]p for some position p, and t is
reducible wrt. R if it is reducible by some rule in R. Irreducible means “not reducible”.
A rewrite system R is left-reduced (fully reduced) iff for every rule l → r ∈ R, l is (l
and r are) irreducible wrt R \ {l→ r}. In other words, in a fully reduced rewrite system
no rule is reducible by another rule, neither its left hand side nor its right hand side. A
rewrite system is convergent iff it is confluent and terminating.

3.4. Interpretations

A (Herbrand) interpretation I is a set of ground Σ-atoms—those meant to be true
in the interpretation. Satisfiability of first-order formulas in a Herbrand interpretation
is defined as usual. In particular, if F is a literal, a clause or a clause (set), we say that
I satisfies F, or is a model of F, and write I |= F, if I satisfies every ground instance of
(every element of) F. An E-interpretation is an interpretation that is also a congruence
relation on the ground terms. We say that F is E-(un)satisfiable if it is satisfied by
(no) E-interpretations. We say that F E-entails F′, written F |=E F′, iff every E-
interpretation that satisfies F also satisfies F′. Since this is the only notion of entailment
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considered in the paper, we will often write just F |= F′. If I is an interpretation, we
denote by I? the congruence closure of I, i.e., the smallest congruence relation on
all ground terms that includes I, which is an E-interpretation. The above notions are
applied to ground rewrite systems instead of interpretations by considering their rewrite
rules as equations. For instance, we write R? |= F and mean {l ≈ r | l → r ∈ R}? |= F.
It is well-known that every left-reduced (and hence also every fully reduced) ground
ordered rewrite system R is convergent and that any ground equation s ≈ t is E-satisfied
by R (i.e., R? |= s ≈ t) if and only if s and t have the same (unique) normal form wrt.
R [1].

4. Contexts

The Model Evolution calculus as presented in [7] works with sequents of the form
Λ ` Φ, where Λ is a finite set of literals possibly with variables or with parameters,
called a context, and Φ is a finite set of clauses possibly with variables. As in [7], we
will consider for simplicity only contexts whose literals do not contain both parameters
and variables.7 In [8] a context Λ consisted of equational literals, and we treated Λ as if
it contained the symmetric versions of each of its equations, negated or not. We depart
from that by working with rewrite literals now, which is simpler and more practical.
More formally, when l and r are terms, a rewrite literal is an expression of the form
l→ r or its negation ¬(l→ r), the latter generally written as l 9 r. By treating→ as a
predicate symbol, all operations defined on equational literals apply to rewrite literals
as well. For instance, l→ r = l 6→ r and l 9 r = l → r. If clear from the context, we
use the term “literal” to refer to equational literals as introduced earlier or to rewrite
literals.

Definition 4.1 A context is a set of the form {¬v} ∪ S where v ∈ V and S is a finite
set of rewrite literals, each of which is parameter-free or variable-free.

For brevity, we will omit writing the pseudo-literal ¬v in examples of contexts. For a
context Λ, we will denote with Λ≥ the set of all p-instances of the literals in Λ.

A literal L is contradictory with a context Λ iff Lσ ∈ Λ≥ for some p-preserving
substitution σ. A context Λ is contradictory iff it contains a literal that is contradictory
with Λ. We will work only with non-contradictory contexts. Note that membership in
Λ≥ is (efficiently) decidable for being reducible to a syntactic unification problem over
Λ. The same is true for contradiction with Λ.

Example 4.2 If Λ = { f (u) → a, f (x) 9 x} then f (v) → a, f (a) 9 a ∈ Λ≥ but
f (x)→ a < Λ≥, Furthermore, f (v) 9 a and f (a)→ a are contradictory with Λ8 while
f (a) 9 a and a→ f (a) are not.

7In [9] we have shown how this limitation can be overcome.
8 The complement of the former is a p-instance of f (u)→ a, the complement of the latter is a p-instance

of f (x) 6→ x.
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Q(v, a)→ t Q(v, a) 6→ t

f (g(v)) 6→ vf (g(v))→ v

g(x)→ x

Λ1 Λ2

Λ3

Figure 1: Contexts derivable by the calculus from the clauses (1), (2) and (3) in Section 2. The pseudo-literal
¬v, which goes into the root node, is not written.

We will also regularly return to our main example in Section 2 and use it to illustrate
key ideas. When we speak of clauses (1), (2) and (3) we mean those given there.

Example 4.3 (Main Example) The MEE calculus is based, essentially, on growing
contexts and using context literals for paramodulation and resolution type inferences.
How the contexts grow exactly will be explained below. Intuitively, unit clauses like
(2) can be directly inserted into a context as universal literals, whereas literals that
share variables with other clause literals, like Q(x, a) ≈ t in (1) are turned into para-
metric variants first and are subject to complementary splitting. As a result, the context
structure in Figure 1 could evolve in a concrete derivation.

Thanks to the notions introduced next, contexts can be used as finite denotations of
(certain) Herbrand interpretations.

Definition 4.4 (Productivity [7]) Let L be a rewrite literal and Λ a context. A rewrite
literal K produces L in Λ iff (i) K & L9 and (ii) there is no K′ ∈ Λ≥ such that K �
K′ & L. The context Λ produces L iff some K ∈ Λ produces L in Λ. We say that K
strongly produces L in Λ iff K produces L in Λ but Λ does not produce L, and that Λ

strongly produces L iff some K ∈ Λ strongly produces L in Λ.

For instance, the context Λ in Example 4.2 produces f (a) 9 b, as per ¬v ∈ Λ, and Λ

produces f (b)→ a but it does not produce f (a)→ a. Instead Λ produces f (a) 9 a as
per f (a) 9 a ∈ Λ≥.

Example 4.5 (Main Example) The ground literals produced by the context Λ1 in Fig-
ure 1 are Q(a, a) → t, Q( f (a), a) → t, Q(g(a), a) → t,. . ., g(a) → a, g( f (a)) → f (a),

9In [7] condition (i) is replaced by the stronger condition “K is an msg of L in Λ”, where K is a most
specific generalization (msg) of L in Λ iff K & L and there is no K′ ∈ Λ such that K � K′ & L. Working
with K & L alone is somewhat simpler and achieves the same for all purposes.
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g(g(a))→ g(a), . . ., f (g(a))→ a, f (g( f (a)))→ f (a), f (g(g(a)))→ g(a), . . .. Similarly
for Λ2, which produces the literals in last segment negated.

The ground literals produced by a context serve as an approximation of a canonical
interpretation for the given clause set, as explained next.

4.1. Model Construction

In this section, we show how a context Λ induces a canonical E-interpretation rep-
resented by a ground rewrite system RΛ. It is this “model construction” that, ultimately,
justifies defining powerful notions of redundancy for MEE and enables proving its com-
pleteness.10 It is a key component to understand the working of the calculus and this is
why we introduce it here already.

The general technique for defining RΛ is borrowed from the completeness proof of
the Superposition calculus [2, 25], but adapted to our needs. One difference is that MEE
requires the construction of a fully reduced rewrite system, whereas for Superposition
a left-reduced rewrite system is sufficient.11

Let Λ be a non-contradictory context. By identifying a rewrite rule l → r with the
multiset {l, r} and using the multiset extension of the term ordering �, again denoted
by � itself, we define by well-founded induction, and with respect to Λ, sets of ground
rewrite rules εK and RK , for every ground rewrite rule K. Assume that εL has already
been defined for all such L with K � L and let RK =

⋃
K�L εL. Then, εK is generally

defined as follows.

εl→r =

 {l→ r} if Λ produces l→ r, l � r, and l and r are irreducible wrt. Rl→r

∅ otherwise

When εl→r = {l → r}, we say that Λ generates l → r. Finally, the rewrite system
associated with Λ is the set

RΛ =
⋃
l→r

εl→r .

Example 4.6 Let Λ = {a → x, b → c, a 9 c}. With a � b � c the associated
rewrite system RΛ is {b → c}. To see why, observe that the candidate rule a → c is
not included in RΛ, as Λ does not produce a → c, and that the other candidate a → b,
although produced in Λ, is reducible by the smaller rule b→ c. Had we chosen to omit
in the definition of εl→r the condition “r is irreducible wrt. Rl→r” 12 the construction
would have given RΛ = {a → b, b → c}. This leads to the undesirable situation that a
constrained clause, say, a 0 c · ∅ is falsified by R?

Λ
, the E-interpretation induced by RΛ.

But the calculus cannot modify Λ to revert this situation, and to detect the inconsistency
(ordered) paramodulation into variables would be needed.

10The proof of soundness relies on different, and simpler, arguments.
11Because of this difference, reflected also in the preconditions of the Sup-Pos rule defined later, one

could argue that our approach is more similar to ordered paramodulation [26, e.g.] than to Superposition.
12This condition is absent in the model construction in the superposition calculus. Its presence explains

why paramodulation into smaller sides of positive split literals in clauses is necessary.
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Example 4.7 (Main Example) Consider Figure 1 again. For Λ1 = {Q(v, a)→ t, g(x)→
x, f (g(v)) → v} the induced rewrite system, which must be a subset of its produced
ground literals (see Example 4.3), is

RΛ1 = {Q(a, a)→ t, Q( f (a), a)→ t, Q( f ( f (a)), a)→ t, . . . ,
g(a)→ a, g( f (a))→ f (a), g( f ( f (a)))→ f ( f (a)), . . .} .

Notice that, e.g., g(g(a)) → g(a), although produced by Λ1 cannot be in RΛ1 because
Rg(g(a))→g(a) contains g(a) → a, which reduces g(g(a)) → g(a). It is straightforward
to check that every ground instance of the literal f (g(v)) → v in Λ1, which are all
produced by Λ1 are all reducible by smaller rules. In other words, f (g(v)) → v does
not generate a single rule. The same applies to Λ2, as with f (g(v)) 6→ v ∈ Λ2 no such
instance is even produced.

It is not difficult to see that RΛ is a fully reduced rewrite system. Since � is a well-
founded ordering, RΛ is convergent. It follows from standard results in term rewriting
that the satisfaction of ground literals s ≈ t (or s 0 t) in R?

Λ
can be decided by checking

if the normal forms of s and t wrt. RΛ are the same.

Lemma 4.8 Let l and r be ground terms with l � r.

(i) If l→ r ∈ RΛ then Λ produces l→ r.
(ii) If l and r are irreducible wrt. RΛ then Λ strongly produces l 9 r.

The lemma above establishes an important relationship between ground rewrite literals
produced by Λ and the rewrite system RΛ. It connects membership in RΛ, a theoretical
construction, with productivity, a syntactical notion that can be readily used in infer-
ence rules. More technically, say that l → r is a rule candidate if l � r and both l
and r are irreducible wrt. Rl→r. Then either the rule candidate l → r is in RΛ and by
Lemma 4.8-(i) it is produced, or l→ r is not in RΛ. In the latter case, as l and r are irre-
ducible wrt. Rl→r, it follows that l and r are irreducible wrt. RΛ.13 But then, Lemma 4.8
gives us that Λ (strongly) produces l 9 r. In other words, productivity approximates
membership of (possibly negated) rules in RΛ and it is precise for membership of (pos-
sibly negated) rule candidates in RΛ.

5. Constrained Clauses

A constraint is a finite multiset of pairs Γ = {K′1 B K1, . . . ,K′m B Km}, where m ≥ 0
and for i = 1, . . . ,m, K′i is a rewrite literal, and Ki is a parameter-free rewrite literal
with the same sign, but is not of the form x → t, where x is a variable and t is a term.
We will consider only constraints where each K′i is taken from a context Λ, and we call
K′i a context literal (of Γ) and Ki a constraint literal (of Γ). Intuitively, a pair K′i B Ki

is satisfied if K′i produces Ki in Λ, among other properties, as explained below. For

13The only rules that could reduce l or r would have to be smaller or equal than l→ r. The former case is
excluded explicitly, and the latter case is impossible because l→ r < RΛ.
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economy of notation we let Γ stand also for the multiset of its constraint literals (only),
and thus leave the context literals implicit. This allows us to write, e.g., l → r ∈ Γ

instead of the more verbose “K′ B l → r ∈ Γ, for some K′”. Whether Γ is taken
this way or not will always be clear from context. The application of a substitution
σ to Γ, written as Γσ, means to apply σ to each constraint literal of Γ (only), i.e.,
Γσ = {K′1 B K1σ, . . . ,K′m B Kmσ}. A constraint is ground iff each of its constraint
literals Ki is ground. A substitution γ is a grounding substitution for Γ iff Γγ is ground.

Let C = L1 ∨ · · · ∨ Ln be a clause and Γ a constraint. The expression C · Γ is a con-
strained clause (with constraint Γ). With the convention explained above, and dropping
the set braces, we will often write C · K1, . . . ,Km instead of C · K′1 B K1, . . . ,K′m B Km,
thus leaving the constraint’s context literals implicit. The notation C · Γ,K′ B K means
C · Γ ∪ {K′ B K}. Sometimes we write C · Γ,K instead C · Γ,K′ B K, again leaving
K′ implicit. The application of a substitution σ to C · Γ, written as (C · Γ)σ, yields the
constrained clause (Cσ · Γσ). A constrained clause C · Γ is ground iff both C and Γ

are ground. When C · Γ is a constrained clause and γ is a grounding substitution for
C · Γ, i.e., a substitution with domain Var(C) ∪ Var(Γ) and whose range consists of
ground terms, we call the pair (C · Γ, γ) a ground closure (of C · Γ), or just closure (of
C · Γ). For a set of constrained clauses Φ, Φgr denotes the set of all ground closures of
all constrained clauses in Φ.

Constrained clauses are compared by associating to every constraint clause C · Γ
the multiset of multisets of terms

{{l, l, l, l, r, r, r, r} | l 0 r ∈ C}

∪ {{l, l, l, r, r, r} | l ≈ r ∈ C}

∪ {{l, l, r, r} | l 9 r ∈ Γ}

∪ {{l, r} | l→ r ∈ Γ}

and then using the two-fold multiset extension of the term ordering � on the associated
multisets. Again we use the symbol � to denote this (strict) ordering on constrained
clauses. It follows from well-known results (see, e.g., [32]) that � is a well-founded
ordering and is total on ground constrained clauses. For instance, if a � b then

a 0 b · ∅ � b 0 b · a→ b � � · a→ b .

All inference rules on constrained clauses defined in Section 5.1 are order-decreasing
at the ground level. While different orderings exist that also satisfy this property,
the particular definition above also enables a certain redundancy concept based on re-
ducible constraints, explained below.

To obtain a total and well-founded ordering on ground closures, we combine the or-
dering on constrained clauses lexicographically with an arbitrary ordering �′ on ground
closures that is total (up to variable renaming),14 that is, we define (C ·Γ, γ) � (C′ ·Γ′, γ′)
iff (C · Γ)γ � (C′ · Γ′)γ′ or (C · Γ)γ = (C′ · Γ′)γ′ and (C · Γ, γ) �′ (C′ · Γ′, γ′).

14Since for every ground closure (C · Γ, γ) there are only finitely many closures (C′ · Γ′, γ′) such that
(C · Γ)γ = (C′ · Γ′)γ′, the lexicographic combination is well-founded even if �′ is not well-founded.
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To reason about the soundness of the MEE calculus it is enough to treat each con-
strained clause

C · l1 → r1, . . . , lk → rk, lk+1 9 rk+1, . . . , ln 9 rn

as the ordinary clause

C ∨ l1 0 r1 ∨ · · · ∨ lk 0 rk ∨ lk+1 ≈ rk+1 ∨ · · · ∨ ln ≈ rn .

From a completeness perspective, however, a different reading of constrained clauses
is appropriate. The clause part C of a (ground) constrained clause C · Γ is evaluated in
an E-interpretation I, whereas the literals in Γ are evaluated wrt. a context Λ in terms
of productivity. The definitions below make this precise.

A ground constraint Γ is ordered (wrt. �) iff l � r for every l → r ∈ Γ and every
l 9 r ∈ Γ. A non-ground constraint Γ is ordered (wrt. �) iff Γγ is ordered, for some
grounding substitution γ for Γ.

Definition 5.1 (Satisfaction of Constraints) Let Λ be a context, Γ a constraint and
γ a grounding substitution for Γ. We say that Λ satisfies the pair (Γ, γ), and write
Λ |= (Γ, γ), iff

(i) Γγ is ordered, and
(ii) for every K′ B K ∈ Γ, K′ produces both K and Kγ in Λ.

We say that Γ is satisfiable in Λ, or that Λ satisfies Γ, written as Λ |= ∃Γ, iff Λ |= (Γ, γ)
for some γ.

Definition 5.2 (Satisfaction of Constrained Clauses) Let Λ be a context, I an E-inter-
pretation, and (C · Γ, γ) a ground closure. We say that the pair (Λ, I) satisfies (C · Γ, γ)
and write (Λ, I) |= (C · Γ, γ) iff Λ 6|= (Γ, γ) or I |= Cγ.

The pair (Λ, I) satisfies a possibly non-ground constrained clause (set) F, written as
(Λ, I) |= F iff (Λ, I) satisfies all ground closures of (all elements in) F. For a set of
constrained clauses Φ and C · Γ a (possibly non-ground) constrained clause, we say
that Φ entails C · Γ, and write Φ |= C · Γ iff for every (Λ, I) we have (Λ, I) 6|= Φ or
(Λ, I) |= (C · Γ).

The definitions above also apply to pairs (Λ,R), where R is a rewrite system, by
implicitly taking (Λ,R?). In the main applications of Definition 5.2 such a rewrite
system R will be determined by the model construction in Section 4.1 above.

Example 5.3 Let

Λ = { f (x)→ x, f (c) 9 c} γa = {x 7→ a},
R = { f (a)→ a, f (b)→ b}, γb = {x 7→ b},
C · Γ = f ( f (a)) ≈ x · f (x)→ xB f (x)→ x γc = {x 7→ c} .

Suppose that a � b � c and observe that Γγa, Γγb and Γγc are ordered. Then, Λ |=

(Γ, γa), as f (x) → x produces both f (x) → x and f (a) → a in Λ, and so we need
to check R? |= f ( f (a)) ≈ a, which is the case, to conclude (Λ,R) |= (C · Γ, γa). As
Λ |= (Γ, γb) but R? 6|= f ( f (a)) ≈ b we have (Λ,R) 6|= (C · Γ, γb). Finally, f (x)→ x does
not produce f (c)→ c in Λ, and with Λ 6|= (Γ, γc) it follows (Λ,R) |= (C · Γ, γc)
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Example 5.4 (Main Example) Clause (1) in Figure 1 can be written as the constrained
clause C · Γ = Q(x, a) ≈ t ∨ P( f (x)) ≈ t · ∅ by attaching an empty constraint, and
analogously for (2) and (3). Let γ = {x 7→ g(g( f (a)))}. As Γ = ∅, to check that
(Λ1,RΛ1 ) satisfies (C · Γ, γ) we only need to check that RΛ1 |= Q(g(g( f (a))), a) ≈
t ∨ P( f (g(g( f (a))))) ≈ t. Indeed, by using the second part of the rewrite rules in RΛ1 ,
as shown in Example 4.7, we obtain first Q( f (a), a) ≈ t ∨ P( f ( f (a))) ≈ t and then
t ≈ t ∨ P( f ( f (a))) ≈ t, which is trivially satisfied in RΛ1 . In fact, this holds for every
ground closure of C · Γ, and so C · Γ is already satisfied in RΛ1 . As a consequence, the
calculus does not need to work on modifying Λ1 to become a model of C · Γ.

By contrast, RΛ3 does not satisfy any ground closure of C · Γ. Notice that RΛ3 = ∅,
and hence for every ground closure (C · Γ, γ) the clause Cγ is irreducible wrt. RΛ3 . By
Lemma 4.8 then Λ3 produces the complement of every literal in Cγ, a situation the
calculus can detect and make progress on by splitting.

Now let C ·Γ = f (g(x)) ≈ x∨h(x) ≈ x ·∅ be the constrained clause version of clause
(2). By taking, e.g., γ = {x 7→ a} one sees that (Λ1,RΛ1 ) does not satisfy (C ·Γ, γ). More
explicitly, RΛ1 6|= f (g(a)) ≈ a ∨ h(a) ≈ a because the normal form f (a) ≈ a ∨ h(a) ≈ a
of Cγ wrt. RΛ1 does not contain a trivial equation of the form t ≈ t. On the other
hand, the calculus can reflect this normal form computation at the first-order level by
a superposition step from the rewrite literal g(x) → x taken from Λ1 into clause (2),
which gives the constrained clause

C′ · Γ′ = f (x) ≈ x ∨ h(x) ≈ x · g(x)→ xB g(x)→ x . (13)

Observe that (C′ · Γ′, {x 7→ a}) is still not satisfied by (Λ1,RΛ1 ) as Λ |= ({g(x) →
xBg(x)→ x}, {x 7→ a}) but RΛ1 6|= f (a) ≈ a∨h(a) ≈ a. Progress has been made though,
as (C′ · Γ′, {x 7→ a}) is smaller wrt. � than (C · Γ, {x 7→ a}). As will be explained below
in Example 6.2, the calculus will make sure, by extending Λ1 with, say, f (v)→ v, that
f (a)→ a will go into the induced rewrite system, so that the considered ground closure
will be satisfied afterwards.

In summary, the main idea of the calculus is to (i) identify, at the first-order level,
ground closures whose (instantiated) clause part is normalized with respect to the
rewrite system induced by the current context, and, (ii) modify the context as needed so
that the new context and its induced rewrite system satisfy one of the previously falsified
clauses.

It follows from the above that the (instantiated) constraints of these ground closures
are always satisfied in terms of Definition 5.5. This leads immediately to the definition
of relevant closures introduced below, which are the only ones the calculus needs to
consider satisfying.

Definition 5.5 (Satisfaction of Constraints wrt. Rewrite Systems) Let Γ be a ground
constraint. We say that RΛ satisfies Γ, and write RΛ |= Γ, iff

(i) l→ r ∈ RΛ for all l→ r ∈ Γ, and
(ii) l and r are irreducible wrt. RΛ for all l 9 r ∈ Γ.
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Note 5.6 The previous definition can be understood to evaluate a set Γ of (possibly
negated) rule candidates wrt. a set of rewrite rules: RΛ satisfies a ground constraint Γ

if and only if l → r is a rule candidate, for every l → r ∈ Γ or l 6→ r ∈ Γ, and in the
former case l → r is included in RΛ because Λ produces l → r, and in the latter case
l→ r is not included in RΛ only because Λ does not produce l→ r. As a consequence,
if Λ is modified such that it produces l → r, it will no longer satisfy Γ. Example 6.2
below demonstrates the relevance of these properties.

By combining Definition 5.5 and Lemma 4.8, we immediately conclude that Λ

produces every rewrite literal in a ground constraint Γ if RΛ |= Γ. The relevance of this
result is that for relevant closures the syntactic notion of productivity can be used to
identify relevant constrained clauses C · Γ that are falsified by (Λ,RΛ), as introduced
next.

Definition 5.7 (Relevant Closure wrt. Λ) Let Λ be a context and (C · Γ, γ) a ground
closure. We say that (C · Γ, γ) is a relevant (ground) closure wrt. Λ iff RΛ |= Γγ.

Note that, by definition, all ground closures of a clause with an empty constraint are
relevant. Also note that for C · Γ to have relevant closures it does not have to belong to
a specific clause set.

Example 5.8 Assume constants a, b and c with a � b. Let Λ = {P(x) → t, a →
b, P(b) 6→ t}, which results in RΛ = {P(c) → t, a → b}. (Notice that P(a) → t < RΛ

as P(a) → t is reducible by the smaller rule a → b, and P(b) → t < RΛ as Λ does not
produce P(b)→ t.) If C ·Γ = x ≈ c ·P(x)→ tBP(x)→ t, the substitution γ = {x 7→ a}
gives a non-relevant ground closure (C · Γ, γ), as P(a) → t < RΛ, and likewise for
γ = {x 7→ b}. With γ = {x 7→ c} the ground closure (C · Γ, γ) is relevant, and it follows
(Λ,RΛ) |= (C · Γ, γ), as RΛ trivially satisfies Cγ = c ≈ c (cf. Definition 5.2).

5.1. Inference Rules on Constrained Clauses

In the following, we introduce a number of superposition-style inference rules on
rewrite literals and constrained clauses that will be used for defining the derivation
rules of MEE. The inference rules assume a selection function that maps a constrained
clause C · Γ with non-empty C to a non-empty subset of the literals in C, the selected
literals (in C · Γ).15

Ref
s 0 t ∨C · Γ

(C · Γ)σ

where (i) σ is a most general unifier (mgu) of s and t, (ii) s 0 t is selected in s 0 t∨C ·Γ,
and (iii) Γσ is ordered.

The next three rules combine a rewrite literal and a constrained clause. Within
the MEE calculus, which operates on sequents consisting of a context and constrained

15Selection functions on negative literals are a well-known device in the superposition calculus. In MEE,
we can be more liberal and select any literal(s) in C, which results in more stringent selection functions.
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clause set, the rewrite literal will come from the current context and the clause from
the current constrained clause set.

Sup-Neg
l→ r s[l′]p 0 t ∨C · Γ

(s[r]p 0 t ∨C · Γ, l→ r B l→ r)σ

where (i) l → r is a rewrite literal, (ii) σ is a mgu of l and l′, (iii) l′ is not a variable,
(iv) rσ � lσ, (v) tσ � sσ, (vi) s 0 t is selected in s 0 t ∨C · Γ, and (vii) Γσ is ordered.

Recall that substitutions are not applied to a constraint’s context literals. The con-
clusion of the above inference rule could equally be written as (s[r]p 0 t∨C)σ ·Γσ, l→
r B (l→ r)σ.

Sup-Pos
l→ r s[l′]p ≈ t ∨C · Γ

(s[r]p ≈ t ∨C · Γ, l→ r B l→ r)σ

where (i) l → r is a rewrite literal, (ii) σ is a mgu of l and l′, (iii) l′ is not a variable,
(iv) rσ � lσ, (v) s ≈ t is selected in s ≈ t ∨C · Γ, and (vi) Γσ is ordered.16

Example 5.9 (Main Example) Sup-Pos can be applied to g(x)→ x (from Λ1 in Fig-
ure 1) and clause (3) in the following way:

Sup-Pos
g(x)→ x f (g(x)) ≈ x ∨ h(x) ≈ x · ∅

f (x) ≈ x ∨ h(x) ≈ x · g(x)→ x
(14)

We refer back to Example 5.4 which explained the purpose of such superposition steps.
Notice the conclusion of this inference is the clause (13) given there.

The rules Sup-Pos and Sup-Neg are the only ones that create new positive rewrite
literals (l → r)σ in the constraint part. It is possible in both cases that the left premise
is of the form x → t (x → t might stem from a clause literal x ≈ t), but because
l′ is not a variable, lσ is not a variable either. Thus, adding to Γσ the rewrite literal
(l → r)σ preserves the property of being a constraint (recall that constraints cannot
contain rewrite literals of the form x → t). As an easy inductive consequence all
expressions C · Γ derivable by the calculus are indeed constrained clauses.

Neg-Res
¬A s ≈ t ∨C · Γ

(C · Γ,¬AB s 9 t)σ

where (i) ¬A is the pseudo literal ¬v or a negative rewrite literal l 9 r, (ii) σ is a mgu
of A and s → t, (iii) tσ � sσ, (iv) s ≈ t is selected in s ≈ t ∨ C · Γ, and (v) Γσ is
ordered.

16Technically, and differently from Sup-Neg, since it can apply to both sides of an equation Sup-Pos is
an ordered paramodulation rule, not a superposition one.

17



Example 5.10 (Main Example) Continuing Example 5.9, by two-fold application of
Neg-Res with left premise ¬v one obtains from clause (13) the clause

� · g(x)→ x, f (x) 6→ x, h(x) 6→ x . (15)

Recall from Example 5.4 the closure ((13), {x 7→ a}) whose clause part instantiated
by {x 7→ a} is already normalized wrt. RΛ1 , yet falsified by RΛ1 . Clause (15) then
serves to enable repairing this situation by a Split inference, as will be demonstrated in
Example 6.2 below.

In the Sup-Neg, Sup-Pos and Neg-Res rules we implicitly assume that the con-
clusion is parameter-free. That can always be achieved by renaming parameters in the
conclusion to fresh variables or by taking parameter-free variants of the left premise.
We also assume that the two premises are variable-disjoint, which can be achieved by
taking a fresh variant of the, say, right premise.

An inference system ι is a set of inference rules. By an ι-inference we mean an
instance of an inference rule from ι such that the conditions stated with that rule are
satisfied. An inference is ground if all its premises and the conclusion are ground.

The base inference system ιBase consists of Ref, Sup-Neg, Sup-Pos and Neg-Res.
If a ground ιBase-inference results from a given ιBase-inference by applying a substi-
tution γ to all premises and the conclusion, we call the resulting ground inference a
ground instance via γ (of the ιBase-inference). This is not always the case, as, e.g.,
ordering constraints can become unsatisfiable after application of γ.

An important consequence of the ordering restrictions for the inference rules is that
the conclusion of a ground ιBase inference is always strictly smaller than the rightmost
premise.

6. The MEE Calculus

In this section we describe the MEE calculus, starting with its basic derivation rules.
Then we define a model construction mechanism that will allow us to associate with
each context a convergent rewrite system. On top of that, we then define concepts
of redundancy and relevance, which together are the main tools to explain the calcu-
lus’ completeness. Finally, we introduce certain optional derivation rules, which are
important for practical efficiency.

6.1. Basic Derivation Rules
We now introduce the basic set of derivation rules that define the MEE calculus.

The rules operate on sequents, pairs of the form Λ ` Φ where Λ is a context and Φ

is a set of constrained clauses. In the rules, we use the notation Λ,K ` Φ,C as an
abbreviation of Λ ∪ {K} ` Φ ∪ {C}.

The first rule of the calculus extends the inference rules ιBase from Section 5.1 to
sequents.

Deduce
Λ ` Φ

Λ ` Φ,C · Γ

if one of the following cases applies:
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• C · Γ is the conclusion of a Ref inference with a premise from Φ.

• C ·Γ is the conclusion of a Sup-Neg, Sup-Pos or Neg-Res inference with a right
premise from Φ and a left premise K ∈ Λ that produces Kσ in Λ, where σ is the
mgu used in that inference.

The (pseudo) literal K is the selected rewrite literal (of a Deduce inference).

In all cases above, the rightmost premise of the ιBase inference rules applied by Deduce
is called the selected clause.

Example 6.1 (Main Example) Consider again the context Λ1 in Figure 1 and the se-
quent Λ1 ` (1), (2), (3). Starting with clause (3), by three Deduce inferences with un-
derlying Sup-Pos and Neg-Res inferences one obtains a sequent containing clause (15).

The intuition behind the next rule, Split, is to make a constrained empty clause� ·Γ
true, which is false when Λ satisfies Γ (in the sense of Definition 5.2). In this sense,
the current context is “repaired” towards a model for a constrained empty clause. But
as Λ is only an approximation of the intended interpretation, the repair mechanism
will sometimes overshoot, yet it will cover all relevant cases (Lemma 4.8). The Split
rule comes in two variants, depending on whether the chosen literal from Γ satisfies a
certain variable-disjointness condition or not.

U-Split
Λ ` Φ, � · K,Γ

Λ, K ` Φ, � · K,Γ Λ ` Φ, � · Γ

if (i) K is variable-disjoint with Γ (i.e., Var(K) ∩ Var(Γ) = ∅), and (ii) K is not
contradictory with Λ.

The literal K is the split literal (of the U-Split inference).

Because constraints are parameter-free, the split literal is parameter-free, too. In-
tuitively, U-Split can be understood to make the selected clause redundant in the left
conclusion,17 and in the right conclusion its constraint is shortened by (the complement
of) the split literal. The case of Γ = ∅ is permissible; then, the clause set in the right
conclusion will contain the constrained empty clause � · ∅.

For example, U-Split applied to � · ¬v B P(x, a) 6→ t,¬v B Q(y) 6→ t and Λ = ∅

gives the context {P(x, a) → t} in the left conclusion, this way preventing ¬v from
producing P(x, a) 6→ t in {P(x, a) → t}. In the right conclusion the derived clause is
� · ¬vB Q(y) 6→ t and the context is still ∅.

P-Split
Λ ` Φ

Λ, L ` Φ Λ, L ` Φ

if there is a constrained clause � · K,Γ ∈ Φ such that (i) K is not variable-disjoint with
Γ, (ii) L is a variable-free variant of K, and (iii) neither L nor L is contradictory with Λ.

17So that it can be deleted in derivations by using the Simp rule, introduced below.
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Λ5

Q(v, a)→ t Q(v, a) 6→ t

f (g(v)) 6→ vf (g(v))→ v

g(x)→ x

Λ3

f (v)→ v f (v) 6→ v

Λ2

Λ4

Figure 2: Context structure from Figure 1 after split.

The literal L is the split literal (of the P-Split inference).

For instance, in contrast to the just given example, P-Split applied to � · ¬v B
P(x, a) 6→ t,¬v B Q(x) 6→ t and Λ = ∅ gives the contexts {P(v, a) → t} in the left
conclusion and {P(v, a) 6→ t} in the right conclusion. Observe that P-Split no longer
applies with the same literal, neither to the left-hand nor to the right-hand conclusion.

We will refer to either of the two rules above as a a Split rule and call the clause
� · K,Γ the selected clause (of the Split-inference).

Example 6.2 (Main Example) Recall clause (15),

� · g(x)→ x, f (x) 6→ x, h(x) 6→ x , (15)

which was obtained from clause (3),

f (g(x)) ≈ x ∨ h(x) ≈ x · ∅ (3)

by application of three Deduce inferences in the context of Λ1, cf. Example 6.1. Let
Λ1 ` (1), (2), (3), . . . , (15) be the resulting sequent. Now P-Split is applicable with
selected clause (15), where the split literal is either f (v)→ v or g(v)→ v. Let us chose
f (v)→ v. The resulting context structure is visualized in Figure 2.

Extending Λ1 with f (v) → v to obtain Λ4 has the effect that the rule f (a) → a
is added to the induced rewrite system, hence all ground terms collapse to a. More
explicitly,

RΛ4 = {Q(a, a)→ t, g(a)→ a, f (a)→ a} .

As emphasized at the end of Example 5.4, the main idea of the calculus is to identify
ground closures that are normalized in their (instantiated) clause part, and to satisfy
them. In the example, (Λ1,RΛ1 ) falsifies the ground closure ((3), {x 7→ a}) but considers
its (falsified) normalized version ((15), {x 7→ a}) =: (�·Γ, γ) instead. As a consequence

20



of this normalization every positive rewrite literal in Γγ, i.e., g(a)→ a, must be a rule in
RΛ1 , and every negative literal in Γγ, i.e., f (a) 6→ a and h(a) 6→ a, must be irreducible
wrt. RΛ1 , the latter because otherwise they would stem from a ground closure with
non-normalized (instantiated) clause part.

In other words, (� · Γ, γ) is a relevant closure wrt. RΛ1 . The Split application above
that led to Λ4 achieves that f (a) → a is produced in Λ4, hence by Note 5.6 we get
f (a) → a ∈ RΛ4 , and so ((15), {x 7→ a}) is satisfied by (Λ4,RΛ4 ), and also ((15), {x 7→
a}) is not relevant wrt. Λ4.

Notice that a Split inference can never add an oriented literal to a context that
already contains a variant of it or its complement, as this would contradict condition
(ii) of U-Split and corresponding condition (iii) of P-Split.18

Close
Λ ` Φ,� · Γ

Λ ` Φ,� · ∅

if for every K ∈ Γ there is a L ∈ Λ≥ such that K & L if K is variable-disjoint with Γ \K
and K ∼ L otherwise.

The constrained clause � · Γ is the selected clause (of the Close inference).

In terms of standard notions, the condition in the Close rule is equivalent to have
that for every literal K ∈ Γ, if (a) K does not share variables with other literals in Γ then
K can be instantiated to a parametric context literal in Λ or K is unifiable with a (fresh
variant of a) universal literal in Λ, or else (b) K is a variant of a parametric context
literal in Λ or K is an instance of a universal literal in Λ.

The MEE calculus consists of the mandatory inference rules Deduce, U-Split, P-
Split and Close. By an MEE inference we mean an instance of any of these inference
rules. Below we will add optional inference rules to the MEE calculus.

6.2. Redundancy

From a completeness perspective it is sufficient to work with a sufficiently devel-
oped limit context ΛB of a derivation, formally introduced below, and check that all
relevant closures wrt. ΛB are satisfied by the pair (ΛB,RΛB ). It would be useful to de-
fine clauses as redundant if they are satisfied by (ΛB,RΛB ). However, this is difficult to
check as ΛB, and hence its induced rewrite system, is generally not known at any (fi-
nite) point in the derivation. The calculus’ notions of redundancy introduced below can
therefore work only approximatively wrt. satisfaction in (ΛB,RΛB ). In addition, they
need to be robust under changes of contexts. For instance, to justify deleting a clause
that is redundant at one point in the derivation it must be made sure that this clause
remains redundant, independently from how the contexts and clause sets evolve.

To introduce our notion of redundancy we need one more prerequisite: we say that
a ground constraint Γ is reducible by a ground rule l → r iff one of the following two
cases applies:

18The Deduce rule could be strengthened to exclude adding variants to the clauses sets in the conclusion.
We ignore this (trivial) aspect.

21



(i) there is a s→ t ∈ Γ with s→ t � l→ r such that s or t is reducible by l→ r, or
(ii) there is a s 9 t ∈ Γ such that s or t is reducible by l→ r.

It is not difficult to see that a ground closure (C · Γ, γ) cannot be a relevant closure
wrt. Λ if the constraint Γγ is reducible by a rule in RΛ. This fact is exploited to justify
a specific case of redundancy, the second part in item (iii) in the following definition.

Definition 6.3 (Redundancy) Let Λ ` Φ be a sequent, and D and (C · Γ, γ) ground
closures. We say that (C · Γ, γ) is redundant wrt. Λ ` Φ and D, if Λ 6|= (Γ, γ) or
there exist n ≥ 0 ground closures (Ci · Γi, γi) of constrained clauses Ci · Γi ∈ Φ, with
i = 1, . . . , n, such that

(i) if L′ B L ∈ Γi then there exists a K′ B K ∈ Γ such that L′ ∼ K′, L ∼ K and
Lγi = Kγ,

(ii) D � (Ci · Γi, γi), for every i, and
(iii) C1γ1, . . . ,Cnγn |= Cγ or C1γ1, . . . ,Cnγn |= l ≈ r for some ground terms l and r

with l � r and such that Γγ is reducible by l→ r.

We say that (C · Γ, γ) is redundant wrt. Λ ` Φ, iff (C · Γ, γ) is redundant wrt. Λ ` Φ

and (C · Γ, γ), and we say that C · Γ is redundant wrt. Λ ` Φ iff every ground closure
(C · Γ, γ) of C · Γ is redundant wrt. Λ ` Φ.

Intuitively, condition (i) ensures that if the given closure (C · Γ, γ) is relevant wrt.
a rewrite system RΛ and Λ satisfies (Γ, γ) (cf. Definition 5.1) then the same holds for
each ground closure (Γi ·Ci, γi) used to establish the redundancy. Condition (ii) makes
sure that only ground closures smaller than the given closure D are used. Condition
(iii) then adds sufficient conditions so that satisfaction in terms of Definition 5.2 is
preserved or that (C · Γ, γ) is irrelevant because Γγ is not satisfied by RΛ.

Referring to the notion of derivation trees formally defined in Section 7 below, it
can be shown that a constrained clause that is redundant at some node of the derivation
tree will remain redundant in all successor nodes. Consequently, a redundant clause
can be deleted from a clause set without endangering refutational completeness.

A practically useful case of redundancy is when Λ 6|= ∃Γ holds, say, because Γ

contains an element K′ B K such that K′ does not produce K in Λ, as then C · Γ is
redundant wrt. Λ ` Φ, for every C and Φ. Another useful case is when a constraint
literal in a constrained clause can be demodulated by an orientable positive unit clause,
which justifies the deletion of the clause. For instance C ·Γ, P( f (a))→ t, can be deleted
in presence of f (x) ≈ x · ∅. In our running example:

Example 6.4 (Main Example) Let � · Γ = (15) as discussed in Example 6.2 above.
With γ′ = {x 7→ g(a)} we get Γγ′ = {g(g(a)) → g(a), f (g(a)) 6→ g(a), h(g(a)) 6→
g(a)} and Condition (iii) applies to make (� · Γ, γ′) redundant (take the ground closure
(g(x) ≈ x · ∅, {x 7→ a}) to check that Γγ′ is reducible by g(a) → a). This is justified as
(� · Γ, γ′) is not relevant wrt. Λ1, and hence need not be considered.

Any constrained clause C ·L,Γ is redundant wrt. every Λ ` Φ such that C ·Γ ∈ Φ. If
L ∈ Λ≥ then the clausal form of C ·Γ is a consequence of the clausal form of C ·L,Γ, and
the Simp rule below then can be used to simplify C·L,Γ to C·Γ. Dually, if L ∈ Λ≥ then L
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cannot be produced in Λ, it follows Λ 6|= ∃ L,Γ and so C ·L,Γ is redundant wrt. Λ ` Φ,
for every C and Φ. These considerations show that MEE generalizes corresponding
simplification rules by unit clauses in the propositional DPLL-procedure.

Also, a constrained clause C · Γ′ is redundant wrt. any sequent containing a con-
strained clause C · Γ such that Γ ⊂ Γ′.

Definition 6.5 (Redundant MEE Inference) Let Λ ` Φ and Λ′ ` Φ′ be sequents.
An MEE inference with premise Λ ` Φ and selected clause C ·Γ ∈ Φ is redundant wrt.
Λ′ ` Φ′ iff for every grounding substitution γ, (C · Γ, γ) is redundant wrt. Λ′ ` Φ′, or
the following holds, depending on the inference rule applied:

Deduce: applying γ to all premises and the conclusion C′ · Γ′ of the underlying ιBase
inference does not result in a ground instance via γ of this ιBase inference, or
(C′ · Γ′, γ) is redundant wrt. Λ′ ` Φ′ and (C · Γ)γ.

Split: C · Γ = � · Γ and there is a K′ B K ∈ Γ such that K′ does not produce K in Λ′,
or, in case of P-Split, the split literal of the inference is contradictory with Λ′.

Close: C · Γ = � · ∅ ∈ Φ′.

It is not too difficult to see that actually carrying out an inference makes it redundant
wrt. the resulting sequent(s). For Split, in particular, the condition “there is a literal
K ∈ Γ such that Λ′ does not produce K” achieves that for the left sequent in the
conclusion, by means of adding the split literal to Λ; for the right sequent, in the P-Split
case, that is achieved by the condition “the split literal of the inference is contradictory
with Λ′”, and in the U-Split case the selected clause becomes redundant because of the
new (shortened) clause. With a view to implementation, this indicates that effective
proof procedures for MEE indeed exist.

Finally, a sequent Λ ` Φ is saturated iff every MEE inference with premise Λ ` Φ

is redundant wrt. Λ ` Φ.

6.3. Static Completeness

The calculus derives, possibly in the limit, a saturated sequent Λ ` Φ, and the
rewrite system R?

Λ
induced from that limit context Λ satisfies all ordinary clauses in

Φ, i.e., R?
Λ
|= {C | C · ∅}, unless Φ contains the empty constrained clause with empty

constraint, � · ∅. Note that the saturated sequent is not necessarily such that (Λ,RΛ) |=
Φ. Intuitively, the evaluation of constraints according to Definition 5.1 is too strong
to obtain (Λ,RΛ) |= Φ in general: given a saturated sequent Λ ` Φ and a ground
closure (C · Γ, γ) for some C · Γ ∈ Φ we might have Λ |= (Γ, γ) but RΛ 6|= Cγ, and the
calculus cannot detect this situation (see the statement of Theorem 6.6 for an example).
However, (Λ,RΛ) |= (C · Γ, γ) does hold for all relevant ground closures (C · Γ, γ) of all
constrained clauses in C · Γ ∈ Φ.

Theorem 6.6 (Static Completeness) If Λ ` Φ is a saturated sequent with a non-
contradictory context Λ and � · ∅ < Φ then (Λ,RΛ) satisfies all relevant instances
of all clauses in Φ wrt. Λ , i.e., (Λ,RΛ) |= ΦΛ. Moreover, if Ψ is a clause set and Φ

includes Ψ, i.e., {D · ∅ | D ∈ Ψ} ⊆ Φ, then R?
Λ
|= Ψ.
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The stronger statement (Λ,RΛ) |= Φ does in general not follow, as (Λ,RΛ) possibly
falsifies a non-relevant closure of a constrained clause in Φ. An example is the sequent
(with a � b)

Λ ` Φ = P(u)→ t, a→ b, P(b) 6→ t ` P(x) · P(x)→ tB P(x)→ t .

We get RΛ = {a → b}. By taking γ = {x 7→ a} observe that Λ |= (P(x) → t B
P(x) → t, γ) but R?

Λ
6|= P(x)γ, hence (Λ,RΛ) 6|= P(x) · P(x) → t B P(x) → t. Deriving

� · ¬v B P(x) 6→ t, P(x) → t B P(x) → t does not help to close Λ. But notice that
P(x)γ = P(a) is reducible wrt. RΛ, and so (P(x) · P(x) → t B P(x) → t, γ) is not a
relevant closure wrt. Λ, and Theorem 6.6 is not violated.

Theorem 6.6 applies to a statically given sequent Λ ` Φ. The connection to the
dynamic derivation process of the MEE calculus will be given later, and Theorem 6.6
will be essential then in proving the completeness of the MEE calculus.

6.4. Optional Derivation Rules
The calculus can be enhanced with a few optional and rather general derivation

rules. Suitable specializations of these rules are useful in producing efficient imple-
mentations of MEE. Some of these rules refer to the clausal form of a constrained
clause C · Γ = C · l1 → r1, . . . , lk → rk, lk+1 9 rk+1, . . . , ln 9 rn, defined as the
ordinary clause C ∨ l1 0 r1 ∨ · · · ∨ lk 0 rk ∨ lk+1 ≈ rk+1 ∨ · · · ∨ ln ≈ rn and denoted
by (C · Γ)c—note that the constraint’s context literals are ignored in the clausal form.
We define the clausal form of a set Φ = {Ci · Γi}i of constrained claused as the set
Φc = {(Ci · Γi)c}i.

For the rest of the paper we fix a constant a from the signature Σ and the substitution
α := {v 7→ a | v ∈ V} that maps each parameter to a.19 For each literal L, we denote
by La the literal Lα. Note that La is ground if, and only if, L is variable-free. For each
context Λ we will consider the set Λa = {(l ≈ r)a | l→ r ∈ Λ} ∪ {(l 0 r)a | l 9 r ∈ Λ}

and treat it as a set of unit clauses.
The first optional derivation rule, Compact simplifies a context by removing a su-

perfluous literal.

Compact
Λ, L ` Φ

Λ ` Φ

if L ∈ Λ≥ (i.e., if there is a literal K ∈ Λ such that K ≥ L).
The Compact rule is the only rule that can remove literals from a context. It is

easy to see that any literal produced by L in Λ is also produced by K in Λ, provided
Λ is non-contradictory. Notice that K must be a universal literal, otherwise Λ ∪ {L}
would contain two p-variants of the same (parametric) literal, which is impossible by
construction of Λ ∪ {L}. This means that it is possible, although not mandatory, to
remove with each Compact inference all occurrences of L in the constraints in the
clauses in Φ. See the discussion under Simplification by Context Literals further below
for the justification.

19Strictly speaking, α is not a substitution in the standard sense because its domain is not finite. But this
will cause no problems here.
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Like DPLL, the ME calculus includes an optional derivation rule, called Assert, to
insert a literal into a context without causing branching. In ME this rule bears close
resemblance to the unit-resulting resolution rule. Here we propose the rather general
rule Assert rule, defined below.

Assert
Λ ` Φ

Λ, L ` Φ

if (i) Λa ∪ Φc |= La, (ii) L is non-contradictory with Λ, and (iii) L < Λ≥.
As an example, Assert is applicable to the sequent ¬v, P(u, b) → t, b → c `

¬P(x, y) ∨ f (x) ≈ y · ∅ to yield the new context literal f (u) → c, as {P(a, b), b ≈
c, ¬P(x, y) ∨ f (x) ≈ y} |= f (a) ≈ c.

The third condition of Assert avoids the introduction of superfluous literals in the
context. The first condition is needed for soundness. It is not decidable in its full
generality and so can only be approximated with an incomplete test. This, however, is
not a problem given that Assert is optional.

To make derivation in MEE practical the redundancy criteria defined in Subsec-
tion 6.2 should be made available not only to avoid redundant inferences, but also
to simplify constrained clauses or delete redundant clauses. Instead of attempting to
define individual derivation rules covering specific situations we provide a generic sim-
plification rule Simp and discuss some of its instantiations.

Simp
Λ ` Φ,C · Γ

Λ ` Φ,C′ · Γ′

if (i) C · Γ is redundant wrt. Λ ` Φ,C′ · Γ′, and (ii) Λa ∪ Φc ∪ (C · Γ)c |= (C′ · Γ′)c.
Condition (ii) is needed for soundness.

Trivial Equations. Any constrained clause C · Γ of the form s ≈ s ∨ D · Γ can be
simplified to t ≈ t · ∅. Such a simplification step has the same effect as if C · Γ were
deleted. Dually, any constrained clause C ·Γ of the form s 0 s∨D ·Γ can be simplified
to D · Γ.

Proper Subsumption. The Simp rule also enables deletion of a constrained clause that
is properly subsumed by another one. More formally, we say that C′ · Γ′ properly
subsumes C ·Γ iff there is a substitution σ such that C′σ ⊂ C and Γ′σ ⊆ Γ, or C′σ ⊆ C
and Γ′σ ⊂ Γ.

Simplification by Context Literals. Another practically relevant application of Simp
corresponds to applications of the unit resolution rule, both into the clause part and
into the constraint part of a constrained clause. Regarding the former, suppose a context
Λ, K ` Φ, C∨L ·Γ where K is a universal rewrite literal, taken as an equational literal,
and suppose there is a mgu of K and L such that (C · Γ)σ = C · Γ. Because K is
parameter-free it follows that (Λ ∪ {K})a ∪ {(C ∨ L · Γ)c} |= ((C · Γ)σ)c. Together with
(C · Γ)σ = C · Γ, this implies that the clause C ∨ L · Γ can thus be simplified to C · Γ.
Dually, if there is a mgu of K and L such that (C ∨ L · Γ)σ = C ∨ L · Γ then (C ∨ L · Γ)
can be deleted.
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Even parametric context literals can be used for certain simplifications: in a sequent
Λ ` φ a clause of the form C ·Γ,KBL ∈ Φ can be deleted from Φ in particular if there
is a (possibly parametric) literal K′ ∈ Λ≥ such that K � K′ & L. Observe that this
situation always comes up in the left context after a P-Split application. Consequently,
in the left context the clause can again be deleted. However, in the right context the
clause cannot be simplified as for U-Split above, such a simplification step would not
be justified. For example, � · P(x) → t,Q(x) → t cannot be simplified by means of a
context literal P(u) → t to � · Q(x) → t (by U-Split then Q(x) 6→ t could be added to
the context, which is clearly not sound).

The applications of Simp above have an explicit counterpart in ME and (on the
propositional logic level) in DPLL, the Resolve and the Subsume rules. In other
words, Simp covers—and generalizes—these rules.

Demodulation with Unit Constrained Clauses and Context Literals. A constrained
clause comprised of an orientable positive unit clause and an empty constraint, i.e.,
a constrained clause of the form l ≈ r · ∅ with l � r, can be used to simplify by
demodulation the clause part of a constrained clause. For instance, if f (x) ≈ x · ∅
and f (y) ≈ g(y) ∨ f (a) 0 a · f (y) → a are among the current constrained clauses,
then the latter can be simplified by two-fold demodulation with the former to obtain
y ≈ g(y) ∨ a 0 a · f (y)→ a.20

On the other hand, even when orientable and parameter-free, (positive) rewrite lit-
erals from a context cannot be used for demodulation. If that is desired and if the
current context contains such a parameter-free literal l → r one can always add the
corresponding unit clause l ≈ r · ∅ to the current constrained clause set and use that
one for demodulation, as indicated above. From a soundness perspective a unit clause
l ≈ r · ∅ and a parameter-free rewrite literal l → r are indistinguishable; both stand for
the same ordinary unit clause l ≈ r (see Section 7 below).

From now on, we will consider the inference rules Simp, Assert and Compact part
of the MEE calculus.

6.5. Derivations

Derivations in MEE are sequences of trees constructed with the inference rules
above. Formally, we consider ordered trees T = (N,E) where N and E are the sets of
nodes and edges of T, respectively, and the nodes N are labeled with sequents. We will
often identify a tree’s node with its label. Also, we will use κ to denote any ordinal up
to and including the first infinite one.

Derivation trees T (of a set {C1, . . . ,Cn} of clauses) are defined inductively as fol-
lows: an initial tree, a single-node tree with a root of the form ¬v ` C1 · ∅, . . . ,Cn · ∅,
is a derivation tree; if T is a derivation tree, N is a leaf node of T and T′ is a tree
obtained from T by adding one or two child nodes to N so that N is the premise of
an inference and the child node(s) is (are) its conclusion(s), then T′ is a derivation

20Demodulation with unit clauses with non-empty constraints is also possible, as long as the instantiated
constraints of the demodulating clause are among the constraints of the demodulated clause, in the sense of
Definition 6.3-(i).
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tree. In this case we say that T′ is derived from T. A refutation tree is a derivation
tree all of whose leaves have a clause set containing the clause � · ∅. A derivation (of
{C1, . . . ,Cn}) is a possibly infinite sequence of derivation trees that starts with an initial
tree and continues with trees each of which is derived from its immediate predecessor.
Each derivation D = (Ni,Ei)i<κ for some κ determines a limit tree (

⋃
i<κ Ni,

⋃
i<κ Ei).

Note that a limit tree is indeed a tree but is not a derivation tree unless it is finite—in
which case it coincides with the last tree in the derivation.

Now let T be the limit tree of some derivation, let B = (Ni)i<κ be a branch in T
with κ nodes, and let Λi ` Φi be the sequent labeling node Ni, for all i < κ. Define
ΛB =

⋃
i<κ
⋂

i≤ j<κ Λ j and ΦB =
⋃

i<κ
⋂

i≤ j<κ Φ j, the sets of persistent context literals
and persistent clauses, respectively. These two sets can be combined to obtain the limit
sequent ΛB ` ΦB (of T). The limit rewrite system is the rewrite system RΛB , written as
RB for convenience.

7. Correctness of the MEE Calculus

In this section we show that, for each given clause set, the MEE calculus eventually
builds a refutation tree if and only if the clause set is unsatisfiable.

7.1. Soundness

To show that the MEE calculus is sound we use an adaptation of the notion of a-
satisfiability from [9] to the equational case. A sequent Λ ` Φ is a-(un)satisfiable iff
the clause set Λa ∪ Φc is E-(un)satisfiable.

The idea behind the soundness proof is to replace, conceptually, in a refutation tree
every parameter in every context literal by the same constant a, and then treat context
literals as unit clauses and constrained clauses as ordinary clauses by considering their
clause form. This results in a refutation tree where all inferences are sound in the con-
ventional sense. Technically, the soundness proof relies on the fact that the derivation
rules of the calculus preserve a-satisfiability, as made precise in the following lemma.

Lemma 7.1 For every application of an MEE derivation rule, if the sequent in the
premise is a-satisfiable, so is one of the sequents in the conclusion.

Proposition 7.2 (Soundness) For all sets Ψ of clauses, if Ψ has a refutation tree then
Ψ is E-unsatisfiable.

7.2. Completeness

As usual, the completeness of MEE relies on a suitable notion of fairness, which
is defined in terms of exhausted branches. Recall that we distinguish between the
mandatory derivation rules, which are Deduce, U-Split, P-Split and Close, and the
optional ones, Assert, Simp and Compact.

Definition 7.3 (Exhausted Branch) Let T be a limit tree and B = (Ni)i<κ a branch in
T with κ nodes. For all i < κ, let Λi ` Φi be the sequent labeling node Ni. The branch
B is exhausted iff
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(i) for all i < κ, every MEE inference with a mandatory derivation rule with premise
Λi ` Φi and persistent selected rewrite literal, if any, and persistent selected
clause is redundant wrt. Λ j ` Φ j, for some j < κ with j ≥ i, and

(ii) � · ∅ < ΦB.

A limit tree of a derivation is fair iff it is a refutation tree or it has an exhausted branch.
A derivation is fair iff its limit tree is fair.

Proposition 7.4 (Exhausted Branches are Saturated) If B is an exhausted branch in
a limit tree of a fair derivation then ΛB ` ΦB is saturated.

Proposition 7.4 is instrumental in the proof of our main result, which is the following.

Theorem 7.5 (Completeness) Let Ψ be a clause set and let T be the limit tree of a fair
derivation of Ψ. If T is not a refutation tree then Ψ is satisfiable; more specifically, for
every exhausted branch B of T with limit sequent ΛB ` ΦB we have that ΛB,RΛB |=

(ΦB)ΛB and R?
ΛB
|= Ψ.

Note 7.6 (Proof Procedures) Carrying out a Deduce inference makes that inference
redundant wrt. the resulting sequent. Similarly, carrying out a U-Split or P-Split infer-
ence makes that inference redundant wrt. both resulting sequents. This indicates that
a fair proof procedure for MEE indeed exists. (The Close rule is unproblematic.) See
Section 8 for a more detailed description of the proof procedure implemented in our
system.

For sets consisting of clauses only with literals of the form (¬)P(t1, . . . , tn) ≈ t or
(¬)(t1 ≈ t2) where each ti is either a variable or a constant, every fair derivation is finite.
This is due to the following reasons: contexts cannot grow indefinitely because no (non-
contradictory) context can contain two p-variants of the same literal, and terms cannot
grow in depth. Therefore, there are only finitely many U-Split and P-Split applications
along each branch. As for constrained clauses, either their clause part is shortened
by a Ref or Neg-Res inference, or their constants are replaced by smaller constants or
variables by a Sup-Res or Neg-Res inference (recall that superposition into variables
is not possible). It is easy to see that these operations cannot be repeated infinitely
often along a branch. The same holds for the remaining rules. Altogether, this leads to
the following decidability result:

Corollary 7.7 (Bernays-Schönfinkel Class with Equality) The MEE calculus can be
used as a decision procedure for the Bernays-Schönfinkel class, i.e., for sentences with
the quantifier prefix ∃∗∀∗.

8. Implementation

The MEE calculus has been implemented within the E-Darwin theorem prover,
which is a fork from the Darwin system [6] that implements the original ME calculus.
E-Darwin is intended as a testbed for equality-based reasoning in conjunction with
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model evolution. For this purpose E-Darwin features a number of equality-related
inferences in addition to the basic ME, including those of the predecessor calculus [8].
Also, E-Darwin retains the original Darwin implementation, without equality. This
enables the user to select which calculus to employ.

E-Darwin supports input in TPTP and Protein syntax. The system operates on
clauses in clause normal form. Input formulas are clausified using the prover E [33].
Results can be returned in various forms, including the SZS-compliant result status
used in the CASC [27, 36] competition for automated theorem provers. For satisfiable
input E-Darwin can return a model if it terminates. More precisely, recall that the E-
Interpretation I induced by a context is given as the rewrite system RΛ obtained from
the model construction (cf. Section 4.1). In order to effectively evaluate any ground
literal L in I, by taking its normal form wrt. RΛ, one needs to be able to identify all
rewrite rules from RΛ that can reduce L. This can be done effectively if the ordering is
such that for any ground term there are only finitely many terms that are smaller than
those occurring in L. Knuth-Bendix orderings satisfy this property.

Proofs are provided in the form of listings of the derivation steps taken, with the
level of detail being selectable. E-Darwin is implemented in the functional/imperative
language OCaml21. The prover is available under the GNU General Public License at
the E-Darwin website22.

Figure 3: Main data structures and proving loop of E-Darwin. → indicates a transfer from one processing
phase or data structure into another, and⇒ indicates participation in inferences.

8.1. Proof Procedure
E-Darwin uses a uniform strategy for all classes of problems. Three principal data

structures are maintained throughout the operation: the context and the set of clauses
which together form the current sequent, and the set of candidates, the latter consist-
ing of derived clauses and candidate split literals. The latter serves as an intermediate
storage for inference results, each result being either a clause or a context literal. Can-
didates are not used in the reasoning before they have been selected for addition to

21caml.inria.fr
22www.uni-koblenz.de/~bpelzer/edarwin
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the sequent and removed from the candidate set. Fig. 3 illustrates the relation between
these structures. At first the context contains only the pseudo literal ¬v, while the clause
set consists of the input. The candidate set is immediately populated by the inference
results of the initial context and the input, i.e. clauses derived by Neg-Res using the ¬v
literal, and also new context literals derived by applying Assert to unit clauses. From
then on the prover loop proceeds as follows.

In step ¬ the heuristic selection picks one element from the candidate set. Pref-
erence is given to candidates which can close the current derivation branch. Such
candidates are detected by various lookahead functions which continuously compare
candidates against each other as well as against the context and the clause set. Also, the
selection avoids picking candidates which are subsumed by existing clauses and con-
text literals, and currently non-productive clauses are avoided as well. Other selection
criteria include preferring universal over parametric context literals, and clauses with
an empty clause part over those clauses that have both constraint and non-constraint
literals. Furthermore, an iterative deepening strategy, bounded by term and clause
weight, favors the lighter candidates. More importantly, it also ensures that candidates
derived by the Split inferences are selected only when all other candidate subsets have
been exhausted within the weight bound. This mechanism generates a fair derivation
strategy.

A Split candidate is essentially a context literal K, but upon its selection a choice
point will be set. This allows backtracking: when all branches below K have been
closed, the derivation continues with the right split alternative of K.

Once selected, a candidate can be used for inferencing. The first inferences applied
to a clause candidate serve to reduce the clause to a minimal form. This happens in the
clause reduction step labeled . Here the context and the clause set can demodulate the
candidate and remove literals in accordance with the sub-rules covered by Simp. The
Ref-rule makes additional reductions. This simplification phase is iterated exhaustively
until a minimal clause has been derived which renders the original candidate clause and
all intermediate clauses redundant. This means that for example a candidate clause C
may be simplified to C′ in the first iteration, which is then reduced to C′′ in the next
and final Simp-application. Only C′′ will have to be added to the set of clauses after
step .

While the goal of step  is to produce a minimal clause for the clause set, the
simplification process may also result in a tautological or redundant clause. In that
case the prover returns to step ¬ for a new candidate. Another possibility is that the
candidate clause gets reduced to the empty clause. This closes the branch immediately
and initiates the backtracking procedure.

After the reduction the candidate is used as a premise in those inferences which
derive new candidates, a step labeled ® in the figure. Note that new context literals
proceed to ® right away after their selection in ¬, skipping the simplification in . For
a new clause with a non-empty clause part the derivation rules applied in step ® are
Sup-Neg, Sup-Pos and Neg-Res. The premise partners are taken from the context or
the clause set as required. If a new clause has nothing but constraint literals, then it is
subject to the Split rules as well as to Close. The optional Assert rule is applied to all
selected clause candidates.

In principle these operations are accomplished by searches in discrimination tree
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indexes [23] over the sequent. Both imperfect and perfect indexing trees are used. The
latter are an addition over the original Darwin, primarily serving to support the new
superposition-based term rewriting. In practice these index searches are expensive, so
E-Darwin keeps track of which pairings of context literals and clause positions unify
and hence can be used as inference premises. Since terms are shared between literals
and literals between clauses, this caching minimizes expensive index lookup opera-
tions, allowing a context literal to find all occurrences of a matching subterm in the set
of clauses with a single index search and vice versa.

If the selected candidate is a new context literal, E-Darwin first attempts to Close
with any existing clause and other context literals as required, triggering the backtrack-
ing mechanism if successful. Otherwise all Sup-Neg, Sup-Pos, Neg-Res and Assert
inferences are computed in conjunction with the current sequent.

Any selected candidate may be able to simplify previously derived clauses, so Simp
is computed. If a clause C is determined to be simplifiable by a candidate into C′, C′ is
treated as an inference result and added to the candidate set. A redundancy mechanism
then essentially deactivates C for the current sequent. Nevertheless this clause is still
kept by E-Darwin, as its simplification may become invalid during backtracking. In this
case the deactivation is quickly reversible, returning the original clause to the reasoning
process.

All inference results passing some sanity checks are stored in the appropriate candi-
date set in step ¯. In the final step ° the selected candidate is inserted into the sequent,
either into the context, applying Compact in the process, or into the clause set. Then
the cycle starts anew.

From the implementation perspective, the possibility to derive new clauses is a
significant difference between the ME and the MEE calculus. The implementation
of ME in Darwin maintains a dynamic context and candidate set, while the set of
clauses remains static, as no clause is ever added beyond the input. In E-Darwin,
however, all sets must be dynamic in order to allow the derivation of new clauses. In
comparison to the basic Darwin prover most existing modules had to be modified for
E-Darwin. Combined with the additions this has resulted in an increase of the code
size by approximately 50%.

8.2. Experimental Evaluation
We have tested E-Darwin over those problems of the TPTP library Version 4.0.1

[35] that are given in clause normal form (CNF) or as first order formulas (FOF). Over-
all the test set consisted of 13783 problems, constituting 83% of the whole TPTP with
16512 problems. (The remaining 17% of TPTP consist of higher-order logic prob-
lems, which are inappropriate for most current first-order automated theorem provers,
including E-Darwin.) E-Darwin implements different selectable calculi, so for the test
the prover was configured to use the MEE calculus as described in this paper. The test
systems featured an Intel Q9950 quad processors at 2.83GHz. E-Darwin does not sup-
port parallelization at this point, so each problem was handled by one process utilizing
one CPU core. The memory was limited to 1GB for each problem, and the maximum
time allowed per problem was 300 seconds. Under these conditions E-Darwin solved
5977 problems, corresponding to 43.4% of the tested problems, or 36.2% of the full
TPTP. The test set contains 3010 problems which carry a rating of 1.00, which means
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ATP ystem UNS SAT THM CSA total
Bliksem 1.12 2821 0 1685 0 4506 (33%)
Darwin 1.4.5 2327 507 2180 301 5315 (39%)
E 1.1 4211 536 3610 333 8690 (63%)
Equinox 4.1 2079 0 2487 0 4566 (33%)
E-Darwin 1.3 2765 521 2344 347 5977 (43%)
E-KRHyper 1.1.3 2022 235 1828 303 4388 (32%)
Geo 2007f 2270 623 1703 460 5056 (37%)
iProver 0.7 2687 604 3031 369 6691 (49%)
Metis 2.2 2257 0 1926 28 4211 (31%)
Otter 3.3 1691 0 1518 0 3209 (23%)
Prover9 0908 2834 0 2189 0 5023 (36%)
SNARK 20080805 2843 0 2446 0 5289 (38%)
SPASS 3.01 3406 535 2893 321 7155 (52%)
Vampire 11.0 4265 0 3229 0 7494 (54%)

Table 1: Comparison of our E-Darwin test results with the results for other provers on the same test set of
13783 problems as stated on the TPTP-website. The table lists the number of TPTP problems solved which
are unsatisfiable (UNS), satisfiable (SAT), theorems (THM, unsatisfiable FOF problems with a conjecture)
and countersatisfiable (CSA, satisfiable FOF problems with a conjecture), and finally the total number of
problems solved as well as the percentage in relation to the complete test set.

that no automated theorem prover solves these problems at the time of the release of
the TPTP version 4.0.1. E-Darwin proves six of these problems.23

The TPTP subset we used for our tests is commonly used for evaluating auto-
mated theorem provers for first-oder logic. The TPTP organizers periodically test
theorem provers on appropriate TPTP problem sets and list the results on the TPTP
website.24 In Table 1 we quote the official TPTP results for a number of provers which
have been tested on the same subset of the TPTP we used. The TPTP testing condi-
tions are comparable to ours. The provers in the list are Bliksem [15], Darwin [6], E
[33], Equinox [13], E-KRHyper [28], Geo [16], iProver [20], Metis [19], Otter [24],
Prover925, SNARK [34], SPASS [37] and Vampire [31]. The table also includes our
own E-Darwin results for comparison.

Overall our system occupies a middle ground, solving more problems than several
established provers, but it does not rank among the top-rated systems. However, for
a first implementation of the new calculus we believe this is a promising start. Gen-
erally E-Darwin offers an improvement over the original Darwin, but it must be noted
that Darwin outperforms its successor in specialized problem classes. The original
system excels at problems with a finite Herbrand universe - in 2006 and 2007 it won
the EPR disivion (effectively propositional problems) of CASC. On the other hand it

23These six problems are: ALG035+1, GRP197-1, NUM378+1.020.015, PRO016+1, SWV527-1.040,
and SWV527-1.050.

24http://www.cs.miami.edu/~tptp/TPTP/Results.html
25http://www.cs.unm.edu/˜mccune/prover9/
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was surpassed by the Otter system in several other categories (Otter serves as a bench-
mark in CASC as it has remained stable and unchanged for many years). The new
calculus as implemented in E-Darwin is more generalized in its capabilities. Having
participated in CASC in 2010, E-Darwin did not reach Darwin’s positions for effec-
tively propositional problems, but unlike Darwin it exceeded the Otter benchmark in
the divisions CNF (clause normal form problems), FNE (first-order formula problems
without equality), HNE (Horn without equality), NEQ (non-Horn with equality) and
PEQ (purely equational). Only in the HEQ category (Horn with equality) did E-Darwin
position below the benchmark, but this was the case for Darwin as well.

The uniform strategy of E-Darwin is a limitation at this point. At its core it remains
the strategy used in the original Darwin for the non-equational ME-calculus, and which
had to decide between new context literals and splits. For E-Darwin this was extended
by the selection of derived clauses, but the current scheme may be too rigid to account
for all different problem classes. Our testing has shown that minor changes to the
selection heuristics of E-Darwin can have a significant effect on the time it takes to
solve a problem. The heuristics settings used to achieve the test results above were
chosen to maximize the number of proofs. While other settings would result in slightly
less problems solved in total, these would nevertheless include some problems that
are not solved under the optimal settings. One noteworthy such parameter concerns
the selection frequency of clauses with at least one constraint literal and at least one
non-constraint literal. Such clauses cannot be used for closing, they can add great
complexity to the derivation as superposition premises, and their actual relevance for
a proof is difficult to estimate beforehand. A minor adjustment to their selection rate
can mean a difference between solving a problem in less than five seconds and the
same problem requiring over five minutes. More elaborate lookahead functions could
provide some guidance here. Also, when the effects can be so large, an approach based
on time slices may be appropriate, with the prover testing several strategies during the
time allowed for a proof.

9. Conclusions

We have presented the MEE calculus, an extension of the Model Evolution calcu-
lus [7, 9] by superposition-based inference rules for equality. The MEE calculus as
presented here is an extensively revised and improved version of an earlier extension
of Model Evolution by equality inference rules [8]. The differences are numerous and
include a, we think, simpler presentation and much more powerful redundancy criteria.

Our main theoretical result is the correctness of MEE, in particular its completeness
in combination with redundancy criteria. Our main practical result is the implementa-
tion in the E-Darwin system, described here for the first time. E-Darwin is a non-trivial
extension of our earlier Darwin implementation. It performs reasonably well on the
TPTP problem library and is able to solve six previously unsolved problems from that
library.

As for future work, on the theoretical side, we plan to investigate how MEE can be
exploited to obtain decision procedures for certain fragments of first-order logic that
are beyond the scope of current superposition or instance-based methods. A key idea
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is to consider alternative formalisms to denote interpretations that are able to represent
a larger class of infinite models, and adapt the derivation rules accordingly.

More on the applied side, it would be useful to investigate translations from prac-
tically interesting problems to fragments that can be decided by MEE. In particular,
MEE is a decision procedure for function-free clause logic (like other instance-based
methods) with equality, a class with a NEXPTIME-complete satisfiability problem.
Problems from that class include satisfiability of SHOIQ knowledge bases, first-order
model expansion (a certain kind of constraint satisfaction problems), satisfiability of
formulas of the Ackermann class with equality, Satisfiability of DQBF (Dependency
Quantified Boolean Formulas, a generalization of QBF), first-order logic with two vari-
ables and counting quantifiers, and more. The challenge here is to find practically
useful reductions into function-free clause logic.

The E-Darwin implementation, although already quite sophisticated, could still be
improved. One of the most promising options is perhaps to look into more refined
heuristics and strategies for search space exploration. In particular, the currently used
iterative deepening on term weights is often too inflexible for refutation finding. Some-
times it is easy to find a refutation by starting with a certain weight bound n, but iterative
deepening will get stuck on exploring all smaller bounds within a set time limit.
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Appendix A. Proofs

This appendix contains auxiliary lemmas, their proofs, and proofs of the results
stated in the main part of this paper.

Lemma 4.8 Let l and r be ground terms with l � r.
(i) If l→ r ∈ RΛ then Λ produces l→ r.

(ii) If l and r are irreducible wrt. RΛ then Λ strongly produces l 9 r.

Proof. The statement (i) follows immediately from the definition of RΛ. Concerning
(ii), suppose that l and r are irreducible wrt. RΛ. If Λ produces l → r we distinguish
two cases. If RΛ generates l → r then l is reducible by l → r ∈ RΛ. If RΛ does not
generate l → r then, by definition of RΛ, l or r must be reducible wrt. (RΛ)l→r, hence
reducible wrt. RΛ. Both cases thus contradict the assumption that l and r are irreducible
wrt. RΛ. It follows that Λ does not produce l→ r.

Thanks to the presence of the pseudo-literal ¬x in every context, it is not difficult to
see that every context produces K or K, for every literal K. Thus, with Λ not producing
l→ r we can conclude that Λ strongly produces l 9 r.

Definition Appendix A.2 (Relevant Closures wrt. Λ ` Φ) Let Λ ` Φ be a sequent
andD a ground closure. Define

ΦΛ = {(C · Γ, γ) | C · Γ ∈ Φ and (C · Γ, γ) is a relevant closure wrt. Λ}, and

ΦΛ
D = {C ∈ ΦΛ | D � C} .
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In words, ΦΛ
D

is the set of relevant closures wrt. Λ of all constrained clauses from Φ

that are all smaller wrt. � thanD.

Lemma Appendix A.3 If (i) (C · Γ, γ) is redundant wrt. Λ ` Φ and D, (ii) (C · Γ, γ)
is a relevant closure of C · Γ wrt. Λ, and (iii) (Λ,RΛ) |= ΦΛ

D
then (Λ,RΛ) |= (C · Γ, γ).

Proof. Assume (i), (ii) and (iii). We have to show (Λ,RΛ) |= (C · Γ, γ).
If Λ 6|= (Γ, γ) then the conclusion follows trivially. Hence assume Λ |= (Γ, γ) from

now on. From (ii) conclude RΛ |= Γγ by definition of relevance. With Λ |= (Γ, γ),
Definition 6.3 gives us ground closures (Ci · Γi, γi) of constrained clauses Ci · Γi ∈ Φ

that satisfy conditions (i) – (iii) in Definition 6.3
With Λ |= (Γ, γ) from property (i) in Definition 6.3 it follows RΛ |= Γiγi. Thus,

each (Ci · Γi, γi) is a relevant closure wrt. Λ. Likewise, with RΛ |= Γγ from property (i)
in Definition 6.3 it follows Λ |= (Γi, γi).

By condition (ii) in Definition 6.3, (Ci · Γi, γi) is smaller than D. More formally,
thus, (Ci · Γi, γi) ∈ ΦΛ

D
, and with (iii) conclude (Λ,RΛ) |= (Ci · Γi, γi). With Λ |= (Γi, γi)

from above it follows R?
Λ
|= Ciγi.

By property (iii) of redundancy, C1γ1, . . . ,Cnγn |= Cγ or C1γ1, . . . ,Cnγn |= l ≈ r
for some ground terms l and r with l � r and such that Γγ is reducible by l→ r.

In the first case conclude R?
Λ
|= Cγ, and from that, trivially, (Λ,RΛ) |= (C · Γ, γ),

and nothing remains to be shown.
In the second case conclude R?

Λ
|= l ≈ r with l and r as stated above. Because RΛ

is a convergent rewrite system, the normal forms of l and of r wrt. RΛ are the same.
Because l is greater wrt. � than r, l must be reducible by some rule in l′ → r′ ∈ RΛ.
But then, as Γγ is reducible by l → r, it is straightforward to see that Γγ is reducible
by l′ → r′ as well. In other words, RΛ 6|= Γγ, contradicting the assumption (ii). Hence
the second case is impossible.

Proposition Appendix A.4 Let Λ ` Φ be a sequent and (C · Γ, γ) a ground closure.
If (i) C · Γ is redundant wrt. Λ ` Φ, (ii) (C · Γ, γ) is a relevant ground closure wrt. Λ,
and (iii) (Λ,RΛ) |= ΦΛ

(C·Γ,γ) then (Λ,RΛ) |= (C · Γ, γ).

Proof. Immediate from Lemma Appendix A.3 by setting D = (C · Γ, γ) in Defini-
tion 6.3.

Lemma Appendix A.5 If C · Γ is redundant wrt. Λ ` Φ, Λ′ is obtained from Λ by
deleting p-instances of other rewrite literals in Λ and/or by adding non-contradictory
rewrite literals, and Φ′ is obtained from Φ by deleting constrained clauses that are
redundant wrt. Λ ` Φ and/or by adding arbitrary constrained clauses, then C · Γ is
redundant wrt. Λ′ ` Φ′.

Proof. It is obvious from Def. 6.3 that a clause that is redundant wrt. Λ ` Φ remains
redundant if an arbitrary constrained clause is added to Φ; if a p-instance of another
literal in Λ is deleted (by Compact) or a non-contradictory literal is added to Λ one
needs to prove that, in terms of Def. 6.3, (C · Γ, γ) remains redundant wrt. Λ ` Φ and
D. The non-trivial case is when Λ 6|= (Γ, γ) holds, but it is straightforward to check that
Λ 6|= (Γ, γ) is preserved even then.
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To prove that a clause that is redundant wrt. Λ ` Φ remains redundant if redundant
clauses are deleted from Φ, it suffices to show that the clauses Ci · Γi ∈ Φ in Defini-
tion 6.3 can always be chosen in such a way that they are not themselves redundant or
their deletion does not affect redundancy of C·Γ: Suppose that a ground closure (C·Γ, γ)
is redundant wrt. Λ ` Φ andD. Let { (Ci ·Γi, γi) | 1 ≤ i ≤ n } be a minimal set of ground
closures of clauses in Φ (wrt. the multiset extension of the clause ordering) that satisfies
the conditions of Definition 6.3. Suppose that one of the (Ci ·Γi, γi), say (C1 ·Γ1, γ1), is
redundant itself. Then either Λ 6|= (Γ1, γ1) and by condition (i) in Definition 6.3 it fol-
lows Λ 6|= (Γ, γ), and so (C ·Γ, γ) remains to be redundant, or there exist ground closures
(C1i · Γ1i, γ1i) of constrained clauses C1i · Γ1i ∈ Φ that satisfy the conditions of Defini-
tion 6.3 for (C1 ·Γ1, γ1). But then { (Ci ·Γi, γi) | 2 ≤ i ≤ n } ∪ { (C1i ·Γ1i, γ1i) | 1 ≤ i ≤ m }
would also satisfy the conditions of Definition 6.3 for (C · Γ, γ), contradicting the min-
imality of { (Ci · Γi, γi) | 1 ≤ i ≤ n }.

Lemma Appendix A.6 If a Deduce inference is redundant wrt. Λ ` Φ, Λ′ is ob-
tained from Λ by deleting p-instances of other rewrite literals in Λ and/or by adding
non-contradictory rewrite literals, and Φ′ is obtained from Φ by deleting constrained
clauses that are redundant wrt. Λ ` Φ and/or by adding arbitrary constrained clauses,
then this Deduce inference is redundant wrt. Λ′ ` Φ′.

Proof. Analogously to the proof of Lemma Appendix A.5.

Lemma Appendix A.7 (ιBase-inferences Preserve Relevant Closures) Let Λ ` Φ

be a sequent and assume an ιBase inference with right (or only) premise C · Γ, con-
clusion C′ · Γ′, and a ground instance via γ of the ιBase inference such that

(i) (C · Γ, γ) is a relevant closure of C · Γ wrt. Λ, and Λ |= (Γ, γ),
(ii-a) in case of Sup-Neg or Sup-Pos, where l → r is the left premise and σ is

the mgu used, l → r produces (l → r)σ in Λ, l → r produces (l → r)γ in
Λ, and (l→ r)γ generates the rule (l→ r)γ in RΛ, and

(ii-b) in case of Neg-Res, where l→ r is the left premise and σ is the mgu used,
¬A produces (s 9 t)σ in Λ, ¬A produces (s 9 t)γ in Λ, and sγ and tγ are
irreducible wrt. RΛ.

Then, (C′ · Γ′, γ) is a relevant closure of C′ · Γ′ wrt. Λ, and Λ |= (Γ′, γ)

Proof. For convenience we abbreviate R := RΛ below.
With (i), by Definitions 5.7 and 5.5 we have Λ |= (C · Γ, γ), i.e., Γγ is ordered and

for every K B L ∈ Γ, K produces L in Λ and K produces Lγ in Λ, and if l → r ∈ Γγ
then l→ r ∈ R, and if l 9 r ∈ Γγ then l and r are irreducible wrt. R. We have to show

(1) Γ′γ is ordered,
(2) for every K′ B L′ ∈ Γ′, K′ produces L′ in Λ and K′ produces L′γ in Λ,
(3) if l→ r ∈ Γ′γ then l→ r ∈ R, and
(4) if l 9 r ∈ Γ′γ then l and r are irreducible wrt. R.
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The property (1) is easily obtained from inspection of the ιBase inference rules. It re-
mains to show (2), (3) and (4).

Let σ be the mgu used in the ιBase inference, as mentioned in case (ii-a) and (ii-b).
Assume σ is idempotent, which is the case with usual unification algorithms. Because
γ gives a ground instance of the given ιBase inference, γ must be a unifier for the same
terms as σ. Because σ is a most general unifier, there is a substitution δ such that
γ = σδ. With the idempotency of σ we get γ = σδ = σσδ = σγ.

For later use we prove some simple facts:

(i) if K B Lσ ∈ Γσ then K produces Lσ in Λ and K produces Lσγ in Λ.
Proof: Assume K B Lσ ∈ Γσ. We already know that K produces L in Λ and K
produces Lγ in Λ. If K didn’t produce Lσ in Λ then there would be a K′ ∈ Λ≥
with K � K′ & Lσ. With γ = σδ and by transitivity of & we would get
K � K′ & Lγ, and so K would not produce Lγ either. With γ = σγ obtained
above the second claim is trivial.

(ii) if l→ r ∈ Γσγ then l→ r ∈ R.
Proof: we already know that if l → r ∈ Γγ then l → r ∈ R. The claim then
follows immediately with γ = σγ.

(iii) if l 9 r ∈ Γσγ then l and r are irreducible wrt. R.
Proof: we already know that if l 9 r ∈ Γγ then l and r are irreducible wrt. R.
The claim then follows immediately with γ = σγ.

To prove (2), (3) and (4) we carry out a case analysis with respect to the ιBase
inference rule applied.

In case of a Ref inference let the premise be s 0 t ∨ C′′ · Γ and the conclusion
C′ · Γ′ = (C′′ · Γ)σ. Recall that σ is not applied to context literals of constraints, and so
the context literals of Γ and Γ′ are the same. With Γ′ = Γσ, (2) follows directly from
fact (i), (3) follows immediately from fact (ii), and (4) follows immediately from fact
(iii).

In case of a Sup-Neg inference let the left premise be l → r, the right premise
C ·Γ = s[u]p ≈ t∨C′′ ·Γ and the conclusion C′ ·Γ′ = (s[r]p ≈ t∨C′′ ·Γ, l→ rBl→ r)σ.
The proofs of (2), (3) and (4) for the subset Γσ of Γ′ follows immediately from facts (i),
(ii) and (iii), respectively. Now consider the sole additional element (l→ r)σ that is in
Γ′ but not in Γσ. Recall we are given that l→ r produces (l→ r)σ in Λ and that l→ r
produces (l → r)γ = (l → r)σγ in Λ, which proves (2). Regarding (3), recall we are
given that (l→ r)γ generates (l→ r)γ in R, which entails (l→ r)γ = (l→ r)σγ ∈ R.

The proof for the case of a Sup-Pos inference is the same, and the proof for the
case of a Neg-Res is similar and is omitted.

Theorem 6.6 (Static Completeness) If Λ ` Φ is a saturated sequent with a non-
contradictory context Λ and � · ∅ < Φ then (Λ,RΛ) satisfies all relevant instances
of all clauses in Φ wrt. Λ , i.e., (Λ,RΛ) |= ΦΛ. Moreover, if Ψ is a clause set and Φ

includes Ψ, i.e., {D · ∅ | D ∈ Ψ} ⊆ Φ, then R?
Λ
|= Ψ.

Proof. Let Λ ` Φ be a saturated sequent with a non-contradictory context and suppose
� · ∅ < Φ.
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To complete the proof of the first statement we show that every relevant closure
(C · Γ, γ) wrt. Λ, of every constrained clause C · Γ ∈ Φ is canonically satisfied, i.e.,
satisfies the property

(P) (Λ,RΛ) |= (C · Γ, γ).

Once (Λ,RΛ) |= ΦΛ is established we get the second statement R?
Λ
|= Ψ by the

following argumentation. Let Cγ be a ground instance of a clause C ∈ Ψ. It suffices
to show R?

Λ
|= Cγ. With Definition 5.7 it follows that every ground closure of a con-

strained clause with empty constraint is always relevant, for every pair (Λ,R). Hence,
and more formally, (C · ∅, γ) ⊆ {D · ∅ | D ∈ Ψ}Λ. With {D · ∅ | D ∈ Ψ} ⊆ Φ conclude
trivially (C · ∅, γ) ⊆ ΦΛ. With (Λ,RΛ) |= ΦΛ we get (Λ,RΛ) |= (C · ∅, γ), which means
Λ 6|= ∅, γ or R?

Λ
|= Cγ, equivalently R?

Λ
|= Cγ.

We prove (P) by contradiction. Every counterexample, that is, every closure (C ·
Γ, γ) of a constrained clause C · Γ ∈ Φ that is relevant wrt. Λ and that does not satisfy
(P) must satisfy the following properties:

(i) RΛ |= Γγ, by relevancy.
(ii) Λ |= (Γ, γ), and

(iii) R?
Λ
6|= Cγ, from (C · Γ, γ) not satisfying (P) by Definition 5.2.

Among all counterexamples, by well-foundedness of the ordering � on ground clo-
sures, there is a minimal counterexample (minimal wrt. �). From now on let (C · Γ, γ)
be such a minimal counterexample.

By minimality of (C · Γ, γ), every relevant closure of a constrained clause in Φ that
is smaller wrt. � than (C · Γ, γ) satisfies (P). More formally, (Λ,RΛ) |= ΦΛ

(C·Γ,γ). Let us
consider all possible cases.

(1) (C · Γ, γ) is redundant wrt. Λ ` Φ.
If (C · Γ, γ) is redundant wrt. Λ ` Φ, then by Lemma Appendix A.3, setting D =

(C ·Γ, γ) there, (P) follows immediately, contradicting our assumption. Hence, (C ·Γ, γ)
cannot be redundant wrt. Λ ` Φ.

(2)Var(C)γ is reducible wrt. RΛ.
The MEE calculus does not paramodulate into or below variables. To explain the com-
pleteness of this restriction we need to know thatVar(C)γ is irreducible wrt. RΛ.

From (i) we know RΛ |= Γγ. First we show that every term in (Var(C)∩Var(Γ))γ is
irreducible wrt. RΛ. If there were such a term, reducible wrt. RΛ, occurring in a negative
rewrite literal l 9 r ∈ Γγ then we would immediately get a contradiction to RΛ |= Γγ.
If there were such a term occurring in a positive rewrite literal l → r ∈ Γγ then l → r
is reducible by a smaller rule from RΛ, and hence l → r cannot be generated in RΛ,
again contradicting RΛ |= Γγ. That that rule is indeed smaller than l → r follows
from the fact that by construction, as superposition into variables is not possible, Γ

cannot contain rewrite literals of the form x → t, where x is a variable. Thus, if
x ∈ Var(C) ∩ Var(Γ) then xγ is a proper subterm of l (or a subterm of r).

If xγ is reducible for some x ∈ Var(C) \ Var(Γ), then a term in the range of γ
can be replaced by a smaller yet congruent term wrt. R?

Λ
. Observe that this results in a

smaller (wrt. �) relevant counterexample, thus contradicting the choice of (C · Γ, γ).
In summary, thus,Var(C)γ is irreducible wrt. RΛ.
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(3) C = s 0 t ∨ D with selected literal s 0 t.
Suppose that none of the preceding cases holds and C · Γ = s 0 t ∨ D · Γ and s 0 t is
selected in s 0 t ∨ D.

(3.1) sγ = tγ.
If sγ = tγ then there is a ground Deduce inference with premise Cγ = (s 0 t ∨ D · Γ)γ
and conclusion (D ·Γ)γ, which is an instance of a Deduce inference with an underlying
Ref inference applied to C ·Γ inference with selected clause s 0 t∨D ·Γ and conclusion
(D · Γ)σ. It is safe to assume that σ is idempotent, which gives us σγ = γ.

By saturation, that Deduce inference is redundant wrt. Λ ` Φ. Because the closure
(C · Γ, γ) of the premise C · Γ is not redundant wrt. Λ ` Φ, the derived clause, taken as
the closure ((D · Γ, l′ → r′ B l′ → r′)σ, γ) must be redundant wrt. Λ ` Φ and (C · Γ, γ)
by definition of redundant inferences. Furthermore, with Lemma Appendix A.7 it is
a relevant closure wrt. Λ, hence, by Lemma Appendix A.3, (Λ,RΛ) |= (D · Γ, l′ →
r′ B l′ → r′)σ, γ). By definition, this means Λ 6|= ((Γ ∪ {l′ → r′ B l′ → r′})σ, γ) or
R?

Λ
|= Dσγ. However, Lemma Appendix A.7 gives us additionally Λ |= ((Γ ∪ {l′ →

r′ B l′ → r′})σ, γ), and so the former case is impossible. But then, from R?
Λ
|= Dσγ

and with σγ = γ it follows R?
Λ
|= Dγ, and so, trivially, R?

Λ
|= Cγ, a plain contradiction

to (iii) above.

(3.2) sγ , tγ.
If sγ , tγ then without loss of generality assume sγ � tγ. The property (iii) above
is R?

Λ
6|= (s 0 t ∨ D)γ, and so R?

Λ
|= (s ≈ t)γ. Because RΛ is a convergent (ordered)

rewrite system, sγ and tγ must have the same normal forms. In particular, thus, sγ is
reducible wrt. RΛ. Suppose sγ = (sγ)[l]p for some position p and rule l → r ∈ RΛ.
With Lemma 4.8-(i) it follows that Λ produces l → r. For later use let l′ → r′ be a
fresh p-variant of a rewrite literal in Λ that produces l → r in Λ and assume that γ has
already been extended so that (l′ → r′)γ = l→ r.

The conclusions so far give that Deduce is applicable with underlying ground Sup-
Neg inference with left premise (l′ → r′)γ, right premise sγ[l′γ]p 0 tγ ∨ Dγ · Γγ and
conclusion sγ[r′γ]p 0 tγ ∨ Dγ · Γγ, l′ → r′ B (l′ → r′)γ. The next step is to show that
this ground inference is a ground instance via γ of a Sup-Neg inference with premises
l′ → r′ and C ·Γ = s[u]p 0 t∨D·Γ and conclusion (s[r′]p 0 t∨D·Γ, l′ → r′Bl′ → r′)σ,
where σ is an mgu of l′ and u.

The position p in sγ cannot be at or below a variable position in s, because other-
wise we had xγ[l′γ]p for some variable x occuring in s, and so xγ would be reducible
by (l′ → r′)γ = l → r), which is impossible by case (2) above. Hence, the position p
exists in s, and the term u at that position is not a variable. Then it follows easily that
the mgu σ of l′ and u exists. It is safe to assume that σ is idempotent, which gives us
σγ = γ.

By saturation, the Deduce inference is redundant wrt. Λ ` Φ. Because the closure
(C·Γ, γ) of the premise C·Γ is not redundant wrt. Λ ` Φ, the derived clause, taken as the
closure ((s[r′]p 0 t∨D·Γ, l′ → r′Bl′ → r′)σ, γ) must be redundant wrt. Λ ` Φ and (C ·
Γ, γ) by definition of redundant inferences. Furthermore, with Lemma Appendix A.7
it is a relevant closure wrt. Λ, hence, by Lemma Appendix A.3, (Λ,RΛ) |= ((s[r′]p 0
t ∨ D · Γ, l′ → r′ B l′ → r′)σ, γ). By definition, this means Λ 6|= ((Γ ∪ {l′ → r′ B l′ →
r′})σ, γ) or R?

Λ
|= (s[r′]p 0 t ∨ D)σγ. However, Lemma Appendix A.7 gives us
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additionally Λ |= ((Γ ∪ {l′ → r′B l′ → r′})σ, γ), and R?
Λ
|= (s[r′]p 0 t∨D)σγ follows.

With σγ = γ we get a plain contradiction to (iii) above.
With (l′ → r′)γ ∈ RΛ by congruence and σγ = γ it follows R?

Λ
|= (s 0 t ∨ D)γ,

however R?
Λ
6|= (s 0 t ∨ D)γ was assumed for case (3.2) above, a plain contradiction.

(4) C = s ≈ t ∨ D with selected literal s ≈ t.
Suppose C · Γ = s ≈ t ∨ D · Γ and s ≈ t is selected in s ≈ t ∨ D. With (C · Γ, γ) being a
counterexample it follows Λ |= (Γ, γ) but R?

Λ
6|= (s ≈ t ∨ D)γ. From the latter conclude

immediately R?
Λ
6|= (s ≈ t)γ, and so sγ = tγ is impossible. Hence suppose sγ , tγ. We

distinguish two further cases.

(4.1) sγ or tγ is reducible wrt. RΛ.
If sγ or tγ is reducible wrt. RΛ then there is a rule l → r ∈ RΛ such that sγ = sγ[l]p or
tγ = tγ[l]p, for some position p. But then the same argumentation as in case (3.2) ap-
plies. The only changes are that instead of a (ground instance of a) Sup-Neg inference
now a (ground instance of a) Sup-Pos inference is considered, and that s � t does not
apply.

(4.2) sγ and tγ are irreducible wrt. RΛ.
If sγ and tγ are irreducible wrt. RΛ then assume, w.l.o.g., sγ � tγ. With Lemma 4.8-
(ii) then conclude that some literal ¬A ∈ Λ produces (s 9 t)γ in Λ. This indicates
that a Deduce inference with an underlying ground Neg-Res inference exists. More
precisely, the left premise of that ground inference is (s 9 t)γ, the right premise is
(s ≈ t∨D ·Γ)γ and the conclusion is (D ·Γ,¬AB s 9 t)γ. It is routine by now to check
that this ground Neg-Res inference is a ground instance via γ of a Neg-Res inference
with a right premise from Φ that is not redundant wrt. Λ ` Φ, and the left premise ¬A.

The rest of the proof uses the same arguments as in case (3.2) and is omitted (we can
show that the Deduce inference with the latter underlying Neg-Res inference exists,
which will yield a contradiction to the conclusion R?

Λ
6|= (s ≈ t ∨ D)γ drawn for case

(4) above).

(5) C = �.
Suppose C ·Γ = �·Γ. By assumption�·∅ < Φ, and so Γ , ∅. First we are going to show
that Split is applicable to Λ ` Φ with selected clause � · Γ ∈ Φ. With property (ii), Λ

produces every literal in Γ. More specifically, L′ produces L in Λ and L′ produces Lγ
in Λ, for every L′ B L ∈ Γ. (*)

If Close were applicable, then, by saturation, this Close inference would be redun-
dant, which is the case only if � · ∅ ∈ Φ, which we have already excluded. Hence,
Close is not applicable, and there is a literal K ∈ Γ such that (i) K is variable-disjoint
with Γ \ {K} and there is no K′ ∈ Λ≥ with K & K′, or otherwise (ii) there is no K′ ∈ Λ≥
with K′ ∼ K. In case (i) conclude that K is not contradictory with Λ, and in case (ii)
conclude that L is not contradictory with Λ, where L is a variable-free variant of K.
This conclusion will be needed below when we consider a Split inference.

In order to show that Split is applicable we still need to know in case (ii) that L is
not contradictory with Λ. This follow easily from Definition 4.4 and the conclusion
above that Λ produces every literal in Γ. In case (i), thus, U-Split is applicable, and
in case (ii) P-Split is applicable with selected clause � · Γ and split literal K and L,
respectively.
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By redundancy then, (a) there is a L′ B L ∈ Γ such that L′ does not produce L
in Λ, or (b) in the P-Split case the split literal is contradictory with Λ. The case (a)
plainly contradicts (*), and case (b) plainly contradicts an earlier conclusion that L is
not contradictory with Λ.

Lemma 7.1 For every application of an MEE derivation rule, if the sequent in the
premise is a-satisfiable, so is one of the sequents in the conclusion.

Proof. We prove the claim for each derivation rule of MEE.

Deduce) Let Λ ` Φ be the premise sequent and Λ ` Φ,D the conclusion sequent,
and let I be an E-model of Λa ∪ Φc.

If D is the conclusion of a Ref inference, then D = (C · Γ)σ for some constrained
clause s 0 t ∨ C · Γ ∈ Φ and mgu σ of s and t. Observing that Dc = (C · Γ)cσ and
I 6|= (s 0 t)σ, it is easy to see that I satisfies Dc as well.

If D is the conclusion of a Sup-Pos or a Sup-Neg inference, then it has the form
(L[r]p ∨ C · Γ, l → r)σ for some constrained clause L[l′]p ∨ C · Γ ∈ Φ, rewrite
literal l → r ∈ Λ, and mgu σ of l and l′. By elementary satisfiability arguments, we
have that since I is a model of l ≈ r and of (L[l′]p ∨ C · Γ)c, it is also a model of
(L[l]p ∨C · Γ, l→ r)cσ, and so of D.

If D is the conclusion of a Neg-Res inference, then D = (C · Γ, s 9 t)σ for some
constrained clause s 0 t ∨ C · Γ ∈ Φ and substitution σ. In that case, I satisfies Dc

simply because Dc is equivalent to (s 0 t ∨ C · Γ)cσ, and I satisfies (s 0 t ∨ C · Γ)c by
assumption.

P-Split) Let Λ ` Φ be the premise sequent and let Λ, L ` Φ and Λ, L ` Φ be the two
conclusion sequents. Suppose that Λ ` Φ is a-satisfiable and note that La is ground.
Clearly, one of the two clause sets

Λa ∪ {L
a
} ∪ Φc and Λa ∪ {La} ∪ Φc

must be E-satisfiable. By definition, this means that either Λ, L ` Φ or Λ, L ` Φ is
a-satisfiable.

U-Split) Let Λ ` Φ, � · K1, . . . ,Kn be the premise sequent where n ≥ 1 and K1 is
variable disjoint with K2, . . . ,Kn. Let Λ, K1 ` Φ, � · K1, . . . ,Kn and Λ ` Φ, � ·
K2, . . . ,Kn be the two conclusion sequents. Suppose the premise is a-satisfiable. Then,
the clause set

Λa ∪ Φc ∪ {K1 ∨ K2 ∨ · · · ∨ Kn} (A.1)

is E-satisfiable. Consider any E-interpretation that satisfies (A.1) as well as the unit
clause K1. Observing that Ka

1 = K1, we can conclude that Λ, K1 ` Φ, � ·K1, . . . ,Kn is
a-satisfiable. Now consider any E-interpretation that satisfies (A.1) but falsifies some
ground instance of K1. Since K1 is variable disjoint with K2 ∨ · · · ∨ Kn, such an in-
terpretation must satisfy the latter clause. It follows that Λ ` Φ, � · K2, . . . ,Kn is
a-satisfiable.

Close) Let Λ ` Φ, � · K1, . . . ,Kn be the premise sequent and Λ ` Φ, � · ∅ the
conclusion sequent. Since, trivially, Λa ∪ (Φ, � · ∅)c is E-unsatisfiable, we must show
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that Λa ∪ (Φ, � · K1, . . . ,Kn)c is too. For that, it is enough to show that Λa ∪ {K1 ∨

· · · ∨ Kn} is E-unsatisfiable.26

By the rule’s definition for every i = 1, . . . , n there is a Li ∈ Λ≥ such that Ki & Li

if Ki is variable-disjoint with Γ \ Ki and Ki ∼ Li otherwise. This means that there exist
L1, . . . , Ln ∈ Λ≥ such that the sets

{La
1,K1}, {La

2,K2}, . . . , {La
n,Kn}

admit a simultaneous unifier σ. As a consequence, the set {La
1, . . . , La

n, K1 ∨ · · · ∨ Kn}

is unsatisfiable, and hence E-unsatisfiable. To see that Λa ∪ {K1 ∨ · · · ∨ Kn} is E-
unsatisfiable it is enough to observe that Λa |= La

i for each i = 1, . . . , n.

Compact) Immediate.

Assert) Let Λ ` Φ be the premise sequent and Λ, L ` Φ the conclusion sequent where
Λa ∪ Φc |= La. Clearly, every E-interpretation that satisfies Λa ∪ Φc is also a model
of Λa ∪ {La} ∪ Φc which is the same as (Λ ∪ {L})a ∪ Φc.

Simp) Let Λ ` Φ, C · Γ be the premise sequent and Λ ` Φ, C′ · Γ′ the conclusion
sequent where Λa ∪ (Φ ∪ {C · Γ})c |= (C′ · Γ′)c. The argument is analogous to the
previous case.

Proposition 7.2 For all sets Ψ of clauses, if Ψ has a refutation tree then Ψ is E-
unsatisfiable.

Proof. Let TΨ be a refutation tree of a set Ψ = {C1, . . . ,Cn} of parameter-free clauses.
We prove below by structural induction that the root of any subtree of TΨ is a-unsatisfiable.
This will entail in particular that ¬v ` Φ0, the root of TΨ itself, is a-unsatisfiable,
where Φ0 = {C1 · ∅, . . . ,Cn · ∅}. The claim will then follow from the immediate fact that
the sequent ¬v ` Φ0 is a-unsatisfiable iff {¬v}a ∪ Φc

0, which coincides with Ψ, has no
satisfying E-interpretation.

Let T be a subtree of TΨ and let N be its root. If T is a one-node tree, since TΨ is a
refutation tree, N can only have the form Λ ` Φ,� · ∅, which is clearly a-unsatisfiable.
If T has more than one node, we can assume by induction that all the children nodes of
N are a-unsatisfiable. But then we can conclude that N is a-unsatisfiable as well by the
contrapositive of Lemma 7.1.

Lemma Appendix A.11 Let C · Γ be a constrained clause. If C · Γ is redundant wrt.
Λ j ` Φ j, for some j < κ, then C · Γ is redundant wrt. ΛB ` ΦB.

Proof. The proof works in essentially the same way as in [3]. As a convenience,
we denote the union of all context literals or all clauses of a branch B = (Ni)i<κ by
Λ+

B =
⋃

i<κ Λi and Φ+
B =
⋃

i<κ Φi, respectively.
Suppose that C · Γ is redundant wrt. Λ j ` Φ j. Since Λ+

B ⊇ Λ j and Φ+
B ⊇ Φ j,

Lemma Appendix A.5 implies that C ·Γ is redundant wrt. Λ+
B ` Φ+

B (observe that each

26By a light abuse of notation, we use each Ki’s to denote both a rewrite literal of the form (¬)si → ti and
its corresponding equational literal (¬)si ≈ ti. Similarly for Li later.
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derivation rule can add only literals to a context that are non-contradictory with the con-
text.) Now observe that every constrained clause in Φ+

B \ ΦB has been deleted at some
node of the branch B, which is only possible if it was redundant wrt. some Λk ` Φk

with k < κ. Again using Lemma Appendix A.5, we see that every constrained clause
in Φ+

B \ ΦB is redundant wrt. Λ+
B ` Φ+

B. Hence ΦB is obtained from Φ+
B by deleting

redundant clauses, and ΛB is obtained from Λ+
B by deleting rewrite literals by Compact

that satisfy the conditions of Lemma Appendix A.5. By using Lemma Appendix A.5
a third time, we conclude that C · Γ is redundant wrt. ΛB ` ΦB.

Lemma Appendix A.12 Every Deduce inference that is redundant wrt. Λ j ` Φ j, for
some j < κ, is redundant wrt. ΛB ` ΦB.

Proof. Analogously to the proof of Lemma Appendix A.11 using Lemma Appendix
A.6.

Proposition 7.4 (Exhausted Branches are Saturated) If B is an exhausted branch of
a limit tree of a fair derivation then ΛB ` ΦB is saturated.

Proof. Suppose B is an exhausted branch of a limit tree of some fair derivation. We
have to show that every MEE inference with a mandatory derivation rule with premise
ΛB ` ΦB is redundant wrt. ΛB ` ΦB. We do this by assuming such an inference and
carrying out a case analysis wrt. the derivation rule applied.

By Definition 7.3 there is no Close inference with premise Λi ` Φi, for no i < κ,
with a persistent closing clause and persistent closing literals. But then there is no
Close inference with premise ΛB ` ΦB either. (Because if there were, for a large
enough i there would be Close inference with premise Λi ` Φi, which we excluded.)
Thus there is nothing to show for Close.

If the derivation rule is Split then let � · Γ be the selected clause. There are only
finitely many literals K, modulo renaming and modulo sign, that are more general than
a given literal or set of literals such as Γ. The applicability conditions of the derivation
rules makes sure that from some time k onwards, no more such literal K will be added
to or removed from Λk,Λk+1, . . .. (See Lemma 4.14 in [9] for a proof). We are given
that � · Γ is persistent. Therefore suppose also � · Γ ∈ Φk,Φk+1, . . ., or choose k big
enough. Together this shows that a Split inference with premise Λi ` Φi exists (i could
be k or smaller). By Definition 7.3 then, the Split inference is redundant wrt. Λ j ` Φ j,
for some j < κ with j ≥ i. By redundancy, this means that the selected clause � · Γ
is redundant wrt. Λ j ` Φ j. Now use Lemma Appendix A.11 to conclude that � · Γ
is redundant wrt. ΛB ` ΦB, and so the Split inference with selected clause � · Γ is
redundant wrt. ΛB ` ΦB.

If the derivation rule is Deduce then by Definition 7.3 it is redundant wrt. Λ j ` Φ j,
for some j ≥ i, and by Lemma Appendix A.12 it is redundant wrt. ΛB ` ΦB.

Theorem 7.5 (Completeness) Let Ψ be a clause set and T be the limit tree of a fair
derivation of Ψ. If T is not a refutation tree then Ψ is satisfiable; more specifically, for
every exhausted branch B of T with limit sequent ΛB ` ΦB it holds ΛB,RΛB |= (ΦB)ΛB

and R?
ΛB
|= Ψ.
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Proof. Suppose T is not a refutation tree and let B an exhausted branch of T. By
Proposition 7.4 the limit sequent ΛB ` ΦB is saturated. It is easy to see that ΛB is non-
contradictory (the context in the initial sequent of the derivation is non-contradictory,
and all derivation rules preserve this property.) By Theorem 6.6 then (ΛB,RΛB ) |=
(ΦB)ΛB .

To show R?
ΛB
|= Ψ, let C ∈ Ψ be any clause from Ψ, and it suffices to show R?

ΛB
|= C.

By definition of derivation, C ·∅ ∈ Φ1. If C ·∅ ∈ ΦB then the second part of Theorem 6.6
gives R?

ΛB
|= C immediately. Otherwise assume C · ∅ < ΦB. Hence C · ∅ has been

removed at some time k < κ from the clause set Φk of the sequent Λk ` Φk by an
application of the Simp rule. By definition of Simp, C·∅ is redundant wrt. Λk+1 ` Φk+1.
By Lemma Appendix A.11, C · ∅ is redundant wrt. ΛB ` ΦB. Since C · ∅ has an empty
constraint, all its ground closures are relevant, and by Proposition Appendix A.4, all
relevant closures wrt. ΛB are redundant wrt. ΛB ` ΦB, hence they are entailed wrt. ΛB
by clauses in (ΦB)ΛB . With ΛB,RΛB |= (ΦB)ΛB , the first part of the theorem, which is
already proved, we get ΛB,RΛB |= C · ∅. With the constraint being empty, R?

ΛB
|= C

follows immediately.
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