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Abstract—New advances in cognitive radio technology, and the switch channels and power levels with low overheads [1].
recent pfOp?]STIIB for c;perfﬂng up the”Iice?_sed sp;ctrum"liﬁx_nds Since a key requirement for these networks is to make sure
raise new challenges for frequency allocation problems. Irthis : ; : ot
paper, we study theClustering in Frequency-Agile Radios problem that primary userz are_not disrupted, tge}/] |nvoI|\|/e flr.St NS d
(cFrP, which involves partitioning the network into the smalleg spectrum usage by primary users, an _t en, a ocatln_g unuse
number of connected clusters, where nodes within a cluster bands to secondary users. Our focus in this paper is on the
can communicate with a common frequency without creating latter step - we assume that the spectrum sensing steps are
interference to any primary user. This problem was formulated  already done, and the primary users and the channels used by
by Steenstrup (DySPAN "05) to model one-to-many broadcasts nam are already known; as pointed out in [1], the problem of

and Steenstrup’s paper explored the empirical performance . . .
of greedy heuristics. In this paper, we focus on the formal effectively allocating the channels to secondary usersanesn

computational complexity of this problem, and prove that itis challenging even with this assumption.

NP-complete. Moreover, we show that it is unlikely that thee Frequency allocation problems have been studied exten-
exists a polynomial-time algorithm for this problem that always sjvely as coloring problems in wireless networks [21]. We
producgsasolutlon (forn-vertex graphs) with at mostln n times extend a formulation by Steenstrup [23] for opportunistic
the optimal number of components. We show that several natu . .

greedy heuristics, including the one studied by Steenstrypcan channel assignment in such networks. FormgllyMedenote_ .
have highly sub-optimal performance in the worst case. For the set of secondary nodes. We assume a fixed transmission
trees, we show that the optimum solution can be computed in range for each node, and this results in a grépk (V, E),
polynomial time. - with e = (u,v) € E if v and v are within transmission

s ':’/rgrerelzeéns&arx:srgvhj:: tthheePnuTobebreOfs(;?ig:FOg?snésir:teq\bj\llreed range of each other. We assume that each node can switch
obser\Ye thgatl in practi(?e, allowing even a sr%/all zJimount of among a setr OT Channel‘?" a,nd, IeF;f and Fvﬁ denote th_e
overlap among clusters significantly reduces the number of S€ts of frequencies on which it is safe for nodéo transmit
clusters needed. Motivated by this, we study a relaxation othe and receive, respectively, without interference to thengary

CFRP problem, that allows components to overlap, and study users; as mentioned earlier, we assume that these sets are
bicriteria approximations for this version of the problem, by already known as a result of the spectrum sensing step, using

simultaneously bounding the number of components and the . . :
average overlap between them. We present efficient algoriths methods described in [1], [11], [25]. Because of non-umrfor

that produce solutions with the cost related to both of these Primary user constraints, there may be no common frequency
metrics being within a factor of O(logn) of the optimum. We on which all secondary users could communicate and reach
enc_i with simulations results for our algorithms on a wide rarge  each other, and some nodes might have to switch channels,
of instances. in order to enable all nodes to be connected, which can have
additional overheads. We formalize this by tG&ustering in
Frequency-Agile Radioproblem €FrRP (referred to as the
Several studies have shown that the licensed spectrum baBdsadcast Frequency Assignmeém{23], and defined formally
are extremely underutilized, e.g., the utilization in sdoamds in Section Il), where the goal is to partition the nodes into
can vary between 15% to 85% [8]. As a result, there are sevetfad smallest number of connected clustéys. . ., Sk so that
proposals for Cognitive Networks (also referred to as Dyitamnodes within each cluster can communicate using a common
Spectrum Access Networks [1]) to open up some bands ftequency, and a nodein clusterS; can communicate with a
unlicensed users (henceforth referred tosasondary usejs neighborv € S; by switching to another permitted frequency.
as long as they do not disrupt the operation of the licens&&ducing the number of clusters reduces the amount of
users (henceforth, referred to asimary user$; interest in channel switching that needs to be done, in order to let ainy pa
these proposals has grown because of significant advancesfinodes to communicate. Steenstrup develops centralizéd a
cognitive radio technology which is likely to lead to dewscedistributed algorithms for this problem, which are based on
with improved capabilities to sense the spectrum usage, agr@edy heuristics, and studies their performance emflifjca

I. INTRODUCTION



without any provable performance guarantees. The focus fof cognitive networks. Since greedy heuristics are comignon
this paper is to study the complexity of this problem formall used for such problems, our results suggest that a closkr loo
and our main results are the following. at their worst case performance might give better insightis i

1)

2)

3)

We show that the greedy heuristic of [23] does n(;pew performance.

always give the optimum solution, as do other classes I1. PRELIMINARIES AND NOTATION

of greedy heuristics. We prove that therpP problem is . )
NP-complete, and so it is unlikely that simple polyno- We follow the notation of [23] to the extent possible. Let

mial time heuristics would give the optimum solutionV denote the set of secondary users, henceforth referred to

In fact, we show that this problem cannot be approxfS npdes. Let the transmission power levels of all the nc_>des
mated efficiently within a factofl — o(1))Inn unless be fixed, and_ letk _denc_>te_ the resulting set of edges, with
NP C DTIME(nCUos1osm) n other words, there is (v,w) € E if w is within the range ofv; we assume
unlikely to exist a polynomial time algorithm that wouldtha_t the_ transmission ranges are such that the_edges are all
give a solution with(1 — o(1)) In ROPT(Z) clusters, for bidirectional. LetG = (V, E) denote the resulting graph;
any arbitrary instance of the cFRrP problem, where we assume that this does not depend on the frequency of

OPT(Z) denotes the cost of the optimum solution foff@nsmission. LetV(v) = {w : (v,w) € E} denote the set
this instance. of neighbors ofv. Let F denote the set of all frequencies

We study a relaxed version of therRP problem, de- that the nodes can use. _For nodee V,_ let P, denote_ _
noted byR-CFRP, in which the clusters are allowed tothe set of _frequenmes being used by primary users within
overlap. A node appearing in multiple clusters incurs §i€ transmission range of node Then, F* = F — P,
cost of switching between the common frequencies fgtg[notethhe set of ;requenmes on which nedean receive.
these clusters, and we control this switching cost by mide = £ Nwen() £, denotes the set of nodes on which node

imizing the total overlap between clusters, in addition t§ C&N transmit, and not cause interference to any receiver

the number of clusters. We develop a randomized aIgB‘-N(”)' ) ) ) )
rithm that gives a solution with cosd(logn) relative ~ The Clustering in Frequency-agile Radios Problem

to both these objectives, based on linear programmir@FRFa- Given an instanc€ of the CFRP problem, specified
Since linear programs are expensive to solve, we stuly the graphG’ = (V. E), and the sets"" for all v € V,
combinatorial algorithms for this problem. We show thaf'® objective is to partition” into K" sets {Vi, ..., Vi },
a natural greedy heuristic for this problem is not verjnd choose frequency; for i« = 1,..., K, so that (i) K is
efficient, but a variant of it based on the technique dfinimized, (ii) G[V:] is connected for each and (iii) for each

Lagrangian multipliers gives logarithmic bounds on thé= 1:---, K, and for eachy € V;, f; € Ff. See Figure 1 for
performance. an illustration of this problem.

Finally, we study the empirical performance of the

greedy algorithms for theFrRP and R-CFRP problems,

and show that allowing overlaps leads to significantly

smaller number of clusters. In particular, we study the

relative performance of two algorithms: one that re-

peatedly removes a largest connected component which ‘

is CcFrp feasible GREEDY), and our greedy variant

for R-CFRP that allows some overlap between clusters

(GREEDY2). We ran simulations on randomly gener-

ated feasible instances of the problem on randomly

generatedunit disk graphs(UDGs). Our simulation

results show that, while allowing a small amount of

overlap,GREEDY? yields far fewer clusters compared to

GREEDY. Specifically, our results range from the simple

greedy algorithm yielding about 30 times more clusters

than GREEDY2 for “large” graphs (with about 60,000 Fig. 1. This shows a graph in which each vertex is assignedt afse
nodes uniformly and randomly distributed over a squafequenciesF¥. For eja}ch verte_>|yh € {a,b, {}, F"T rt:t {2} almg fo;0 each
region) to the simple gre“edy aI”gonthm yielding about 1.Seﬁ]eé‘gafﬂ£{ig’rf‘l}f}; 1{’; l;f{}l}s;nd ‘Zsj?gr;’":ﬁ partition solution toFRP
times more clusters for “small” graphs (with about 6000

nodes) that are heavily clustered. The average overIapA couple of remarks about this problem are in order. The
per vertex ranged from about 5 (for the “small” graphs% '

. N ommon frequency; is the frequency at which communica-
to about 10 (for the *large” graphs). tion with each connected compone®{V;] takes place. If a

The focus of our results is a theoretical look at the cormodew € V; needs to communicate with a neighboring node
plexity of various broadcast frequency assignment problem € V;, i # j, then eitheru needs to switch frequencies from



fi to f; or v should switch from listening orf; to listening Our work is an extension of Steenstrup [23], who presents
on f;. a greedy heuristic to compute a minimum such partition.

In the RelaxedcFRP problem R-crFrP), we allow the sets However, this heuristic could be highly suboptimal in thersto
V; to overlap, and the objective is to minimi2€, |V;|, while case, as discussed in Figure 1, where we describe a family
ensuring that the number of sets chosen is at most an inpfitfeasible configurations on graphs for which no frequency
parameterk. Note that(>". [V;|)/|V| is the average numberis assigned by the heuristic. Steenstrup gives a distubute
of setsV; that a vertex appears in. In tleFRP problem, this implementation of the heuristic [22].
ratio is 1, whereas iR-CFRP this can be larger than 1.

We will be interested in approximation algorithms with /
provable approximation guarantees for these problems;twhi
is defined in the following manner. For theFrP problem,
we say that an algorithm is an-approximation, if for any
input instanceZ, the algorithm provably chooses at most
aOPT(Z) sets, where OR() denotes the number of sets in
the optimal solution. For th&-CFRP problem, we consider
bicriteria approximations - an algorithm is said to produce
an («, B)-approximation, if it chooses at modt = aK
sets{V1,...,Vi} so that} ", |V;| < BOPT, where OPT now
denotes the cost of an optimum solution that chooses at mos
K sets.
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There has been a lot of research on various aspects of
Dynamic Spectrum Access in recent years; see [2] for a goBig. 2. Figure shows a tree with a feasible assignngfit Vv € V, shown
survey. There have been numerous proposals on orthogdfiifle éach node ovef = {1, 2}. F;?FT: Nue o) Fu' Is highlighted by a
frequency allocation to avoid interference, and optimiys-s 2% [C%% MC 1) T e B et for
tem utility [4], [5], [17], [18], [20], [26]. Most of these &sime the tree. Also, note thagreedychoice for expanding clusters fails in keeping
static spectrum demand, and do not consider stability gssute size of the partition small. W.L.O.G., starting at a nedataining only
This work is extended 10 fairly general dynamic demands e 0o e to sterd e clster contanng amas mich 25
in [6]. Steenstrup [23], [22] studies more general problemgdes. This forces lots of small clusters (shown as dasheblds) for a total
of broadcast frequency assignment, which is the problem wez + 1 clusters.opT on the other hand constructs a partition of size

shown by the two large bubbles with horizontal and verticaitgrns.

study here.

There has also been a lot of work on market driven
approaches to spectrum sharing, in which secondary usees ha 1. MINIMIZING THE NUMBER OF CLUSTERS
demand profiles for spectrum as a function of the clearin )
price, and a central agent has to allocate the spectrum $0 t’fgaCFRP'S NP-Complete
it does not cause interference to the primary and secondaryn this section, we show that the decision versiorceRkp
users. Gandhi et al. [10] study this problem under a reven(®-crrpP, in short) is NP-complete. The input tb-CFRP
maximization objective, and develop provable approxiorati contains, additionally, a positive integ&f and we are asked
algorithms. Their results have been extended by Cao et iélthere is a set of clusters of size at mdst satisfying the
[6] to the general case where demands for spectrum vagnstraints of thecFRP problem. The NP-completeness proof
stochastically. In general, the bidders cannot be expeteduses a reduction from the classiadminating setproblem
be completely truthful, especially if they are allowed tade to D-CFRP problem. As a by-product of this proof we get a
their spectrum allocations in a tertiary market, raising tieed hardness of approximation proof foFRP, showing essentially
for truth revealing market mechanisms. There is a lot of wothat cFRPis as hard to approximate as dominating set.
on developing efficient auction mechanisms in such a setting Given a graphG = (V, E), D C V is adominating seif for
e.g., [12], [14]. everyv € V,3u € D,d(u,v) < 1. The minimum dominating

Most of the work discussed above deals with the oneet (MDS) problem takes as input a gragh and seeks to
hop setting. Several papers have explored the end-to-dimdl a smallest dominating set ¢f. The decision version of
throughput capacity in cognitive networks, e.g., [15],][18]. MDS (DS, in short), additionally takes a positive integer
These papers give constant factor approximations to the toas input and asks i/ has a dominating set of size at most
throughput possible between a set of connections, whensnodé. It is well known that DS is NP-complete on many graph
can opportunistically switch channels. Lin et al. [16] shimat classes; furthermore, MDS is notoriously hard to approxena
there is a significant gain in the throughput capacity by the uon general graphs [9].
of opportunistic frequency assignment. Theorem 1:D-CFRPis NP-complete.



Proof: It is easy to see that the-crFRPis in NP. To is anx € F! for all v € U;. By construction of the instance
see that the problem is NP-hard, we give a polynomial tim#, z is the label of a vertex iff andV; C B(z,2). There
reduction frombps to D-CFRP. Define a ball of radiug around are two cases, depending on whethera(i}= v’ € V' or (ii)

v, B(v,0) = {uld(v,u) < ¢}, to be the set of all verticesz =v € V(G).
u within distance at most from v. Now, we construct an (i) z = +' € V’. In this casel/; C B(v,1), contradicting

instance ofcrFrP from an instance obs via the following our assumption that/; ¢ Ng[v] for anyv € V(G).
procedure. Letz = (V, E) be the graph in the instanceb. (i) + = v € V(G). In this case alsol/; C B(v,1).
In Lines (1)-(5), we construct a grapli = (V/, E’), which Otherwise, if for someu € U;, dg(u,v) > 2, thenu
consists of all ofG plus, for each vertex in G, a copyv’, has a neighbor inZ, namely«’, such thatv does not
that is connected to by an edge. In Lines (6)-(11), we assign belong toFﬁ. This contradicts the fact thatc F! for
the set of frequencieB! to each vertex: in H using the rule all u e U;.
that F'* is assigned the set of all labels of verticesiu, 2). -
DS2CFRP( G) B. Inapproximability ofcFrRP
1 (V' ') — (0,0) Here, we show that unlesse C DTIME (nC(°81e ) the
5 for each v c {/(G) do CFRP problem cannot be approximated within a rafib —
3' Vi VU ') ¢)lnn, for any e > 0. We borrow the reduction from the
4: B — E'U{{v,v'}} proof of Theorem 1 to show thais is L-reducibleto CFRP.
5. H— (V(G)UV, E(é) UE Papadim_itriou a_md Yz_:\nnal_<akis [19] int_roduced the concépt o
6. for each v € V(H) do L-reduction. It is defined in the following:
7 R Definition 1 (L-reduction): Let A and B be two optimiza-
8. for each v € V(H) do tion problem.s. Letcy qnd CcB bg there corresponding cost
functions. A is L-reducible toB if there are two constants
9. for each u € By (v,2) do h that.
10. FR — FRU {0} «, 3 >0, suc _t at: o _
11.  return H 1) thﬁ_reh eX|stsf a polyn_omlal t|m? jo_mputabl_e function
which transforms an instance o into an instance

Next, we show that for the grapH there is a solution to 2 of B such that:
the crRFP problem with K clusters if and only ifG has a ,
dominating set of sizex. OPTp(z') < - OPT4(x),

"« Suppose that thé has a dominating set of SiZE.  2) there exists a polynomial time computable function
Call this D* = {dy,dy,...,dx}. Construct a partition) = which transforms any solutiog of 2’ into a solutiony
{Vl, Va,...,Vi} of H as follows. Start withl; = ) for each of + such that:

1.
« Add each vertex; to V;. leale,y) — OPTa(2)| < B-[en(a’,y') — OPT5(a)]
« For each vertex € V(G)\ D*, pick an arbitraryd; that  For our purpose, the cost functions fos and cFrp are
is adjacent taw and addv to V;. - ~ the size of the dominating set and the size of the partition,
« For each vertex’ € V', addv’ to V; if its copy v is in  respectively. We will describe a polynomial time compuéabl
Vi. function that maps an instance o§ to that of cCFRPsuch that

It is easy to see thay is a partition of V(H) and eachV; the optima are identical. Next, we will describe a polyndmia
is connected. Next, we show th@Y, . FT £ (),Vi. Observe time computable function that maps a feasible solution to an
that eachV; consists of some vertices iB(d;, 1) along with instance ofcFRP to a feasible solution obs such that the
some vertices i/’ that are adjacent to vertices iB(d;,1). costs of the solutions are identical as well. This will Satthe

By the way the setd'* are constructed, it is easy to see thagecond condition of the definition of drreduction. Using this

d; belongs toFE for eachu € V; and furthermored; also scheme, we will show that if there is a deterministic aldworit
belongs toF® for eachu that is adjacent to some vertex infor cFRP that runs in polynomial time to produce a solution
V;. This implies thatl; € F! for all u € V;, thereby implying within (1 — £)Inn of the optimal partition, for any: > 0

that(),cy. FT 0, Vi. then using thel-reduction, one can construct a deterministic
“=". Suppose thaty = {V;,Vs,...,Vk} is a partition algorithm forbs which runs in polynomial time and produces

of V(H) that is a feasible solution to theFrRP problem. a solution within(1—o(1)) Inn of the optimal dominating set.

Let U; denoteV; \ V' for eachi. Then {U;,Us,...,Ux} This, inturn will imply that all problems imp can be solved in

is a partition ofV(G). Suppose for each;, there is av; in  deterministic timen®(°glog”)  contradicting the widely held
V(@) (not necessarily irl/;) such thatU; C B(v;,1). Then, belief that no sub-exponential time exact algorithms efcast

{v1,ve,..., vk} IS @ dominating set of5. any problem inNPC.
So, suppose for the sake of contradiction, there 13, a7 Lemma 1:Ds is L-reducible tocFRP.
B(v,1) for anyv € V(G). SinceV; is a cluster that is part of Proof: To prove theL-reduction, we simply note that we

a solution tocFrRPandU; C V;, it must be the case that therecan use the transformation procedid®2 CFRP( ) given in



the proof of Theorem 1 exactly as it is to map an instande Greedy Approach

x of DS to an instancer’ of CFRF, the “=" direction of the But, how do we find7,? Since thecrrp problem is
proof of Theorem 1 shows thatPTos(z) = OPTeere(2'). TIS  NP-hard, it is unlikely that there exists a polynomial time
satisfies the first condition of ah-reduction. Also note that 4gorithm that finds7;. We consider the following greedy
the “<” direction of the proof of Theorem 1 maps a feaSibl%lgorithm based on the above discussion.

solutiony’ of an instancer’ of CFRPto a feasible solutiony

of an instancer of Ds. It is also easy to see that the second

condition of anL-reduction is also satisfied, GREEDYC( G)
1. S0
CDS(I; U) - OPTDS(:C) = CCFRP($/7y/) - OPTDS(:C) 2. foreachv €V do
= cerre(2',y') — OPTerre(2'), 2.1 S, — largest cluster containing that
keeps the rest of the graph connected
and the constants = § = 1. B 3 LetS, be alargest clustetd — G \ G[S,,]

Theorem 2:If NP ¢ DTIME(n(°816™)) then no polyno- 4 5. s (Su}
m|§1l time algorithm exists that can guarantee an approxanats v — 0 then outputS
ratio of (1 —¢)Inn), for anye > 0. 6. else gotoStep 2.”

Proof: Suppose, for the sake of contraction, that there

exists a polynomial time approximation algorithm forrp ~ Note that applying®REEDYC to the example in Figure 2
which achieves an approximation ratio df—o(1)) In n. Note weldg an qpumal solution. Unfortunate_ly, as shown in tleatn
that we showed in the proof of Lemma 1, a transformation §€Ction, it is easy to see th@REEDYC yields at least a factor
any instancer of DS to an instancer’ of CFRP such that, §2(n°) more clusters than an optimal solution.
OPTD_S(a:) = (_)PTCFRP(:C’) and thgt the cost of any feasibIeB_ Q(n°) performance foIGREEDYC
solutiony’ of instancexr’ of CFRPis exactly equal to the cost
of a feasible solutiony to = of bs which maps tar’. So, we
have the following:

In this section we provide a simple example for which
GREEDYC produces at leas$?(n®) clusters whereas an optimal
solution would yieldk + 2 clusters, for any) < ¢ < 1 and
cos(w,y)  cerre(2’, ) anyk > 2.
OPTos(x)  OPTorre(2')

<(1-o0(1)lnn

o,k

The last inequality then shows, by an extension to the result PN N
by Feige [9], thatvp € DTIME (n@(og1og ™)) A contradiction. fo, 1} fok}
[} 1 N 1

IV. OTHER GREEDY HEURISTICS FOR THE CFRP PROBLEM

In this section, we explore another greedy objective that :
seeks to maximize the size of a clust€rC V' with the PCETERTTI PR
objective of minimizing the size of the fragmentation in l : g
G \ G[S]. This then leads to a recursive algorithm that
greedily picks large subgraphS[S;] which when removed
from G\ Ul;ll G[S;] minimizes the number of components.

This algoritjhm is lead to by a simple observation that in any

optimal partition7 = {T3,T%,...,Tk,.} of G, there exists {1 BN o
a sequencgTy,Ts,...,Tk,,) such that for anyl < i < J RS
Kopr, G\ Uj—, G[T;] is connected. i1} B.1,... .k} th.kt

Theorem 3:Any optimal solution7 = {T1,Ts, ..., Tk...}

of the CFRP problem has at least clusters whose removal Fig- 3. Example showind(n®) performance ratio folGREEDYC. The
boxes represent vertices having common labels (valueg'féy. The values

leaves the rest of the graph connected. are indicated by sets pointing to the boxes. The labels fertdp-most and
Proof: Let 7 = {T;|1 < i < Kopr} denote an optimal bottom-most vertices appear above and below the respegites. In this

partition of G. Construct a simple cluster grapﬁ[T] __example,oPT has a partition of sizé + 2 whereasGREEDYC constructs a
iy ’ , , " partition of sizekl + 2 for appropriate choice of the numbers of vertices in

(V' E') thus: letV’ = {T;} and E' = {{T;,T;}|u € T;,v €  gach “box".

T;,{u,v} € E}. It is easy to see tha¥[7] is connected. It

then follows from a well know observation that anyvertex The Construction: We present a construction of a family

connected graph has at most- 2 cut vertices. This implies of planar graphs for0 < ¢ < 1. The graph consists of

that there are at lea8tvertices inG[7] whose deletion leaves & identical structures called “brooms”. Each broom Has

the rest of the graph connected. This then implies a natuthtistles”. Each bristle is a path containing vertices. The

ordering of 7 = (11, T, ..., Tk,,.)- B broom consists of a “broom-stick” which is a path containing



more thanip vertices. For each vertex on the broom-stick, rounding to obtain an integral solution. The second albanit
FI = {a,i}. Distinguish the two ends of the stick a$ uses a greedy technique augmented by Lagrangian relaxation
and v”. Next, for each internal vertex. in each bristle, This latter algorithm is quite easy to implement and this is
FE = {i}; the two “tips” of each bristle/ andw” have values what we use to produce the simulation results described in
{a,i} and {3,i}, respectively. Next, add an edde’,«’'}, Section VII. Roughly speaking, both algorithms produce as
for v’ on each bristle. Next, add two vertice4,and B, and output a collectiorC of clusters that covers the graph and has
let FI¥ = {a,1,2,...,k} and F§ = {3,1,2,...,k}. Add two additional properties: (i) the number of clustersdnis
{A,v"} to the edge set for each of thebrooms. Add{w”, B} at mostO(logn) times the number of clusters in an optimal
for each of thel bristlesu” and for each of thé& brooms to solution tocFrRP and (ii) each vertex, on average, appears in
finish the construction of a planar graph. It is easy to sek tha(log n) clusters inC.
the % assignment is feasible.

To see the performance abPT, note that each of the A. LP-Rounding for a Relaxed Version ofRP
k constituent brooms forms a block in the partition having por any collectiorC of node subsets, we define theerlap
F; = {i}. The remaining two verticesd, B, having F'*  of 4 nodev as the number of subsets dhthat v belongs to.
values{a} and {3}, respectively, for a partition of size+2.  The overlapof the collection itself is the sum of the overlaps
GREEDYC, on the other hand, never chooses a broom sinceg a|| the nodes. We relagFRrPto allow clusters to overlap,
greedily chooses! and all of the broom-sticks instead, sincgyhile attempting to minimize the overlap of the collection
more than half the vertices fall in this connected compones clusters. The overlap of a collection of clusters can be
assigningF" = {a}. Following this first greedy choice, all expressed as the sum of cardinalities of the clusters arsl thu
remaining choices are bad as then each ofithbristles end the objective of our optimization problem, which we cal
up getting chosen just to maintain feasibility, for a totél ocrrp (short for relaxedcFrP, is to pick a set of clusters
[k + 2 blocks in the partition. This observation immediatelyyhose sum of cardinalities is minimum. The constraints of

leads to the following: o R-CFRP are that (i) each node appears in at least one cluster
Theorem 4:GREEDYC is a 2(n°) approximation to the and (ii) the total number of clusters is bounded abovelhy
CFRP problem for any0 < e < 1 and anyk > 2. for some integer inpufs. We expresR-CFRPas the integer

program (IP) given below. Lef be the set of all possible
) i ) clusters. For each clustet € S, let x4 be a binary indicator
Let 7' = (V, E) be the given tree. Pick an arbitraryc V' variable denoting the inclusion of in the solution. Denote

and rootT atr. For anyv € V and frequencyf € F., let by S(v) the set of clusters that contain
OPT(wv, f) denote the smallest number of clusters in a feasible

solution to CFRP on the subtree ofl" rooted atv with the

V. OPTIMAL SOLUTIONS FORTREES

restriction that the clustef containingv can use frequency IP: min Z |Al- 24

f,ie,forallue C, f € FL. Let S(v, f) denote a solution ) Aes

associated with ORF, f). Let OPTv) = min; OPT(v, f).  Subject to:

Then, OPTr) denotes the number of clusters in an optimal Z TA > 1, VvoeV
solution of cFrRP on T. There is a simple dynamic pro- A€S(v)

gramming algorithm for computing OR®, f) and S(v, f). Z TA < K

Process the children af in some arbitrary order and for each Aes

child « and frequencyf’ € FT, compute OPTu, f/) and TA € {0,1}, VA

the associated solutiofi(u, f'). Let f* € FI be such that
OPT(u) = OPT(u, f*). If OPT(u, f) < OPT(u, f*), then
Su — S(u, f) and “mark” u; otherwiseS,, «— S(u, f*) (and
do not “mark” ). To obtain a solution for the tree rooted a
v, takeU,,.S,, (the union taken over all childrem of v), merge
all the clusters containing marked children, and then adal
this merged cluster.

We obtain the natural LP-relaxation of the above IP by
replacing each constrainty € {0,1} by 4 > 0. This linear
rogram (LP) is similar to the linear programs for thretric
-median problenj13] and theclustering for min-sum cluster
diameters problen{i7].
1) The Algorithm:Our LP-roundingalgorithm proceeds in

two stages:
VI. A RELAXATION OF CFRP 1) Solve the LP-relaxation in the previous section to obtain
In this section, we present a relaxation of ttrerPproblem. 7y for eachA € S.
Specifically, we relax the constraint that the clusters are2) Independently, add each to the solution with proba-
required to form a partition of the vertex set. Instead weall bility =y = min{2Inn-27%,1}.

clusters to “overlap,” i.e., have common vertices, butrafieto Note that even though thep has exponentially many
simultaneously minimize the amount of overlap as well as thariables, it hasD(n) constraints, and each variable appears
number of clusters. We describe two approximation algargh in O(n) constraints. Since it is a mixed packing and covering
for this relaxedcFrP problem. The first algorithm is based onprogram with no negative constraints, the result of Young [2
solving a linear program (LP) and then employing randomizeagives an approximate solution to it in polynomial time.



2) Analysis: In this section, we present a simple analysis Lemma 3:Let T' denote the overlap of the solution to
of LP-rounding algorithm. A solution te-CFRPis said to be cFRP produced by the LP-rounding algorithm. Then,
t-feasibleif each vertex belongs to at least one cluster and the 1
total number of clusters is at mosf x t. Thus at-feasible Pr[T>4lnn- opT < 7
solution satisfies the first set of constraints in IP exaetlyile

violating the second constraint by a factortof Proof.
Lemma 2:The solution tor-CFRP produced by the LP- E[T] = Z |Alyh
rounding algorithm igt In n-feasible with high probability, i.e., AES
at leastl — 2/n. < Z |[A]2Inn- %
Proof: We first bound byl /n the probability that there AesS
exists a node that does not belong to any cluster. Fix a node < 2Inn- OPT

If for any A € S(v), the probabilityy’y = 1, thenv is covered  The |ast inequality simply follows from the fact that
by at least one cluster with probability 1. So we assume th?’fAeS |A|- %, the optimal value of the objective function of

forall A € S(v), y4 < 1. This implies thatyy = 2Inn-2%  the [P-relaxation, cannot be larger than the optimal valiue o
forall A € S(v). In this case, we calculate an upper bound o objective function of the IP

the probability that is not covered by any cluster, as follows. Using Markov’s inequality, we get:

Pr [cg;/rle]s;gﬁ)tb% = H (1- yjzl) Pr [T>4lnn- OPT] < %
AeS(v) -
< H exp (~¥4) To keep both the amount of overlap as well as the number of
A€S(v) . clusters small, we use the LP-rounding algorithm as follows
= exp (=2 47) i Let Kopr be the number of clusters in an optimal solution
j efp(_mnnzf* Th) to CFRP. Note that if K > Kopr in R-CFRP, then oPT is
= n? n, since each node in a feasible solutionderP appears in

a single cluster. Hence, for such a value I6f the overlap
of the solution produced by the LP-rounding algorithm is at
most 4 Inn-n with probability at least 1/2. Repeating Stage
somenw is not L 2 of the LP-rounding algorithn®(log ) times for the same
Pr [covered by anwx] S = value of K and outputting a solution with smallest overlap
selected from among all of th@(logn) trials guarantees a
solution with overlap at mostInn-n, with high probability,
ie., 1 — 1/n. A “good” value for K can then be found
as follows. For each candidate value @&f, considered in

The last inequality is from the fact thaf , 2% > 1. Using
the union bound, we get that,

Next, we bound byl /n the probability that the number of
clusters in the solution exceeds - 4 Inn.

E [number of clustels = Z Pr[A is choseh the orderl1,2,3,...,n, run the LP-rounding algorithm with
1es O(logn) repetitions. Stop as soon as we reach a valu& of
_ Z v for which find a solution with overlap at mogtin n- n. With
ics high probability, this algorithm will stop withKX < Kepr,
< 2Inn Z 7% yielding the following theorem.
e Theorem 5:There is a randomized algorithm that in time
< 2K-Inn polynomial in the size of the input produces, with high

probability, a collection of clusters that cover the grapida
Since eachA is chosen independently, using Chernofgatisfy the properties (i) each node appears in at st n
bounds, we get: clusters on average and (ii) the number of clusters is at most
Kopr logn.
Pr [# of cluster: < 1

>4K-Inn = n B. Greedy Algorithm

The two probability bounds together imply that with prob- We can obtain a greedy algorithm ferCFRPby noting that
ability at leastl — 2/n, every node is covered by at at leasR-CFRPcan be expressed assat coverproblem in which the
one cluster and the number of clusters is at migst4Ilnn. COst of each set is its cardinality. In such a setting, thenaht

m greedy algorithm will repeatedly pick a set that covers thosin

We now bound the probability that the overlap of th@S yet uncovered nodes per unit cost. This “greedy choice”
clusters chosen by the LP-rounding algorithm is high.cer appears in Step 3.1 below. A variety of different techniques
denote the optimal overlap of a solution kecFRrF, in other for analyzing such greedy algorithms appear in Vazirarosib
words, OPT is the optimal value of the objective function ofl24].
the IP.



GREEDY1( G) UDGs of three different types (shown in Figures 4,5, and 6)

1. foreachveV doc, <0 and ranGREEDY and GREEDY2 on them. Simulation results
2. i 1;8—0;C—0 show thatGREEDY, on average, performs well as compared
3. while V is not covereddo to its worst case performance shown in Figure 2. However,
31 S; — argﬂ% GREEDY2 performs even better thaBREEDY. For Type I

3.2 S—SULS):C U;:1 Sji i+l graphs, the increase in performance ranges from abouterfact

of 30 (for a 60000 vertex UDG) to about 5 (for a 6000 vertex

The performance oGREEDY1 is quite poor. This can be UDG). For Type Ill, we see a performance increase by about
seen by noting that the ratits;|/|S; \ C| has a minimum a factor of 5. For Type I, we observe only a modest increase
value of 1 and this value is achieved by any Setthat only in performance of about a factor 1.5. In the following, we
covers new elements. Thus, as stated, the algorithm refigaterovide more detail on how the instances were generated and
picks an arbitrary cluster that only covers as yet uncovergghat results were obtained. Following this, we discussehes
nodes. This greedy algorithm has already been consideredrbyults and give our speculation gleaned from our simuiatio
Steenstrup [23] and has poor performance with regards to the
number of clusters it uses (see Figure 2).

We modify GREEDYl by looking for a subsetS; that
minimizes ‘S c Here A > 0 is a Lagrangian multiplie
that is aSS|gned the valug— where Kqopr is the numbe
of clusters in an optimal solution toFRP. Since we do nc
know Kopr to start with, we simply consider all possit
valuesl, 2,3, ..., n for Kqpr and use the correspondingto
determine the desirability of each set. We return the ctte
of sets with smallest overlap, taken over all possible ots
of A\. We will refer to this modified algorithm aSREEDY2.

1) Analysis:Let T = {T1,Ts,...,Tk.,,} denote an opti
mal solution to thecFrRP problem. Note that this is a partitic
and therefore has overlap For any given family) of K sets
define®(y) = >, [Yi|+ AK, where is the Lagrangian mu
tiplier. If A = 2~ then®(7) = 3, |T;|+AKopr = 2n. Using
analysis similar to the analysis of the greedy set cover, ({2
16]), it is not hard to show thak(S) < ®(7)- ©(logn). Since
O(S) = >, 15| + AK (by definition) and sinced(7) = 2n,
we obtain the following inequalities:

(i) >, 18 < 2n-6(logn).

(i) AK < 2n-O(logn).

Inequality (i) states that the overlap of the collectiSnre-
turned byGREEDY?2 is 2n- ©(logn). Substitutingh = n/Kopr
in Inequality (ii) yields K’ < ©(logn)- Kopr. The conclusior
of this analysis is stated in the following theorem.

Theorem 6:Algorithm GREEDY?2 yields a collectionS of
at mostO(logn)- Kopr Sets that cover the graph and he
average overla®(logn).

VII. SIMULATION RESULTS

We implemented a greedy algorithm that seeks to rema
largest feasible connected component (discussed in thine
of Figure 2), calledGREEDY, and GREEDY2 as discusse:
earlier. For the simulations, we ran the two algorithms ... Fig. 5. Type - Il
randomly generated instances of the clustering problem on
randomly generatedinit disk graphs(UDGs). An n-vertex Simulation Setup and Results: We generated random
graphG = (V,E) is said to be a UDG if there exists aUDGs from a choice of types that we describe later. We used
map ® : V — R? such that{u,v} € E if and only if uniform random distribution of a specified number of points
|®(u) — ®(v)||2 < 1. UDGs provide a convenient model forwithin a specified rectangle as a basis for each type. One or
homogeneous wireless networks. more of such randomly generated set of points within their

Summary: We summarize the simulation setup and resultoorresponding rectangles were then assembled to form the
here. We generated feasible instancesceRpP on random set of points for a UDG. Edges were then added between




rically increasing sequence df = 1,2,4,...n to compute
A. The number of clusters then is within a factor dbf the
guarantees of Theorem 6.

a) Discussion:: As argued earlier, removal of a cluster
1 that causes a large fragmentation leads to a poor clustering
However, by allowing clusters to overlap prevents fragmen-
1 tation. Furthermore, covering a large number of uncovered
vertices using small sets attempts to minimize the overlap
between clusters. Simulation results show that the average
number of overlap of cluster appears to be quite small. We
feel that in the case of UDGs, this average overlap is bounded
above by a constant. This would then suggest that for wseles
g : networks networks that are homogeneous, it is not necessary
15 2 2 %0 that these clusters partition the network. Observe that the
primary maotivation, as described by Steenstrup [23], [2#] f
minimizing the number of clusters is to try to minimize the
overhead of vertices switching frequencies while mairitejn
network connectivity; if a vertex belongs to multiple clenst
pairs of points that are within unit distance from each athahen the switching overhead at any node will be proportional
In all our simulations, we considered only connected UDGg, the number of clusters that contain it. However, if this
For each such randomly generated graph, we specifiedy@riap is at most a constant then this overhead will be
frequency spectrum which was modeled as a contiguous #lependent of the network size. This would imply that by
of integers. Initially, the entire spectrum would be madgs|axing the constraint of obtaining a network partitione w

available to each vertex. For each graph, we also specifig¢loduce bounded switching overhead while simultangousl

were chosen in two different ways: uniformly at random from
amongst the UDG vertices, and uniformly at random from ACKNOWLEDGMENTS

the bounding-box of the UDG. Each primary user chose aThe work of V.S. Anil Kumar and Madhav Marathe has
frequency from the spectrum uniformly at random. We alsgeen partially supported by NSF Nets Grant CNS-062694,
specified theradius of influencehat applied to all the primary HSD Grant SES-0729441, CDC Center of Excellence in
users. For any primary user, its choice of frequency wasblic Health Informatics Grant 2506055-01, NIH-NIGMS
removed from the set of available frequencies of all the UDfIIDAS project 5 U01 GMO070694-05, and DTRA CNIMS
vertices that appeared in its radius of influence. We comsitle Grant HDTRA1-07-C-0113. We thank the following people
only feasible configurations in which the set of availablgyr their generosity. In a very short amount of time, they mad
transmission frequenciest each UDG vertex would be non-their computers available for simulation purposes for long
empty. We then rarGREEDY and GREEDY2 on the random hours. We thank: Steve Beck, Rajankumar Bhatt, Kim Farrell,
UDGs for the various types. We considered three types Rfahdiar Hariri, Ross Johnson, Lindsey Knake, Qinghua Liu,
random UDGs: (i) grid-like distribution (Type - I), (i) uféorm  Tim Marler, Anith Mathai, Chris Murphy, Amos Patrick,
random distribution (Type - I1), and (iii) combination (Tgp  Molly Patrick, Brent Rochambeau, Brian Smith, Uday Verma,
I11). Type - | consisted of a collection of thin, long rectdeg Jingzhou Yang. We thankanTos™for tolerating every time

that each contain points distributed uniformly at randorthimi e stepped on his toes. Finally, we thank the anonymous
them to induce a connected subgraph. These rectangles weferees for helping improve the paper.

then arranged in equally spaced and intersecting rows and
columns to form a connected UDG (Figure 4). Type - Il REFERENCES
consisted of a single rectangle with a specified number df] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty. Next genera

oints distributed uniformly at random to form a connected tion/dynamic spectrum access/cognitive radio wirelessvorks: A
p y survey. Computer Networks50:2127-2159, 2006.

251

201

0 5 10

Fig. 6. Type - lll

UDG (Figure 5)' Type - llI is a combination of Type - | [2] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty. Next genera
and Il (Figure 6). Table | contains average results from the tion/dynamic spectrum access/cognitive radio wirelessvorks: A
simulations. survey. Computer Networks JournaP006.

. . . . [3] Mansoor Alicherry, Randeep Bhatia, and Li (Erran) Li.intochannel
For our second set of simulations, we picked points uni- "~ assignment and routing for throughput optimization in irdio

formly at random from within the bounding box of the graph  wireless mesh networks. IMobiCom '05: Proceedings of the 11th

; : " annual international conference on Mobile computing antiwoeking
instead of choosing the positions from amongst those of the pages 58-72. New York, NY, USA, 2005, ACM Press.

UDG vertices. We compar€REEDY and GREEDY?2 for Type  [4] M. Buddhikot and K. Ryan. Spectrum management in coarid

- I and Ill. Table 1l shows the results of this set of simulato %gamic spectrum access based cellular networkslIEEE DySPAN
. . . . 5.
For simulations ofGREEDY2, we did not guess all pOSSIble [5] L. Cao and H. Zheng. Spectrum allocation in ad hoc netwatil local

values of K to seekKypr. Instead, we considered a geomet-  bargaining. INSECON 2005.



[ Type| n [trals [ [F] [ [P] ] radius | GREEDY | GREEDY2 [ max. overlap| average overlap]

[ 6,400 7 100 | 100 | 10.0 98.8 65.7 4.8 1.8
Il 60,000 5 100 | 100 | 10.0 611.6 19.2 17.4 10.3
Il 10,000 5 100 | 100 | 10.0 205 31.2 15.4 6.2
Il 6,000 6 88 30 5.0 51.2 9.5 8.3 5.3
Il 12,400 5 90 50 10.0 126.8 26.4 17 6.3
Il 6,400 4 100 | 30 5.0 46 9.5 8.8 5.4
Il 6,000 4 100 | 30 5.0 46 10 9 5.7
TABLE |

SIMULATION RESULTS FOR THE CASE WHEN PRIMARY USER POSITIONSBRE CHOSEN FROM AMONGST THRJDG VERTICES. FIRST COLUMN SHOWS
THE TYPE, SECOND COLUMN CONTAINS THE NUMBER OF VERTICESTHIRD COLUMN GIVES THE NUMBER OF INDEPENDENT RANDOM TRIALSFOURTH
COLUMN SHOWS THE NUMBER OF FREQUENCIESIFTH COLUMN SHOWS THE NUMBER OF PRIMARY USERSSIXTH COLUMN CONTAINS THE RADIUS OF
INFLUENCE FOR EACH PRIMARY USERSEVENTH COLUMN CONTAINS THE AVERAGE NUMBER OF CLUSTERS FOBREEDY, EIGHTH COLUMN CONTAINS

THE AVERAGE NUMBER OF CLUSTERS FORSREEDY2, THE NINETH AND TENTH COLUMNS CONTAIN THE AVERAGE MAXIMUM CLUSTER OVERLAP AT

ANY VERTEX, AND AVERAGE OF THE AVERAGE CLUSTER OVERLAP AT A VERTEXRESPECTIVELY

[ Type| n [ trals [ [F] [ [P] [ radius | GREEDY | GREEDY2 | max. overlap| average overlap]|
|

6,400 7 100 | 100 | 10.0 80.5 49.1 4.8 1.9

Il 6,400 4 100 | 30 5.0 50.2 12.2 9.5 5.8

Il 6,000 4 100 | 30 5.0 45 9.5 8.5 5.3
TABLE Il

SIMULATION RESULTS FOR THE CASE WHEN PRIMARY USER POSITIONSBRE PICKED UNIFORMLY AT RANDOM FROM WITHIN THE BOUNDING BOX @
THE GRAPH. FIRST COLUMN SHOWS THE TYPESECOND COLUMN CONTAINS THE NUMBER OF VERTICESTHIRD COLUMN GIVES THE NUMBER OF
INDEPENDENT RANDOM TRIALS FOURTH COLUMN SHOWS THE NUMBER OF FREQUENCIE&IFTH COLUMN SHOWS THE NUMBER OF PRIMARY USERS
SIXTH COLUMN CONTAINS THE RADIUS OF INFLUENCE FOR EACH PRIMRY USER, SEVENTH COLUMN CONTAINS THE AVERAGE NUMBER OF CLUSTERS
FORGREEDY, EIGHTH COLUMN CONTAINS THE AVERAGE NUMBER OF CLUSTERS FORREEDY2, THE NINETH AND TENTH COLUMNS CONTAIN THE

AVERAGE MAXIMUM CLUSTER OVERLAP AT ANY VERTEX, AND AVERAGE OF THE AVERAGE CLUSTER OVERLAP AT A VERTEXRESPECTIVELY
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