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Abstract—New advances in cognitive radio technology, and the
recent proposals for opening up the licensed spectrum bands
raise new challenges for frequency allocation problems. Inthis
paper, we study theClustering in Frequency-Agile Radios problem
(CFRP), which involves partitioning the network into the smallest
number of connected clusters, where nodes within a cluster
can communicate with a common frequency without creating
interference to any primary user. This problem was formulated
by Steenstrup (DySPAN ’05) to model one-to-many broadcasts
and Steenstrup’s paper explored the empirical performance
of greedy heuristics. In this paper, we focus on the formal
computational complexity of this problem, and prove that it is
NP-complete. Moreover, we show that it is unlikely that there
exists a polynomial-time algorithm for this problem that always
produces a solution (forn-vertex graphs) with at most ln n times
the optimal number of components. We show that several natural
greedy heuristics, including the one studied by Steenstrup, can
have highly sub-optimal performance in the worst case. For
trees, we show that the optimum solution can be computed in
polynomial time.

There are instances where the number of components required
is very large, if we require them to be strictly disjoint. We
observe that in practice, allowing even a small amount of
overlap among clusters significantly reduces the number of
clusters needed. Motivated by this, we study a relaxation ofthe
CFRP problem, that allows components to overlap, and study
bicriteria approximations for this version of the problem, by
simultaneously bounding the number of components and the
average overlap between them. We present efficient algorithms
that produce solutions with the cost related to both of these
metrics being within a factor of O(log n) of the optimum. We
end with simulations results for our algorithms on a wide range
of instances.

I. I NTRODUCTION

Several studies have shown that the licensed spectrum bands
are extremely underutilized, e.g., the utilization in somebands
can vary between 15% to 85% [8]. As a result, there are several
proposals for Cognitive Networks (also referred to as Dynamic
Spectrum Access Networks [1]) to open up some bands to
unlicensed users (henceforth referred to assecondary users),
as long as they do not disrupt the operation of the licensed
users (henceforth, referred to asprimary users); interest in
these proposals has grown because of significant advances in
cognitive radio technology which is likely to lead to devices
with improved capabilities to sense the spectrum usage, and

switch channels and power levels with low overheads [1].
Since a key requirement for these networks is to make sure
that primary users are not disrupted, they involve first sensing
spectrum usage by primary users, and then allocating unused
bands to secondary users. Our focus in this paper is on the
latter step - we assume that the spectrum sensing steps are
already done, and the primary users and the channels used by
them are already known; as pointed out in [1], the problem of
effectively allocating the channels to secondary users remains
challenging even with this assumption.

Frequency allocation problems have been studied exten-
sively as coloring problems in wireless networks [21]. We
extend a formulation by Steenstrup [23] for opportunistic
channel assignment in such networks. Formally, letV denote
the set of secondary nodes. We assume a fixed transmission
range for each node, and this results in a graphG = (V, E),
with e = (u, v) ∈ E if u and v are within transmission
range of each other. We assume that each node can switch
among a setF of channels, and letFT

u and FR
u denote the

sets of frequencies on which it is safe for nodeu to transmit
and receive, respectively, without interference to the primary
users; as mentioned earlier, we assume that these sets are
already known as a result of the spectrum sensing step, using
methods described in [1], [11], [25]. Because of non-uniform
primary user constraints, there may be no common frequency
on which all secondary users could communicate and reach
each other, and some nodes might have to switch channels,
in order to enable all nodes to be connected, which can have
additional overheads. We formalize this by theClustering in
Frequency-Agile Radiosproblem (CFRP) (referred to as the
Broadcast Frequency Assignmentin [23], and defined formally
in Section II), where the goal is to partition the nodes into
the smallest number of connected clustersS1, . . . , SK so that
nodes within each cluster can communicate using a common
frequency, and a nodeu in clusterSi can communicate with a
neighborv ∈ Sj by switching to another permitted frequency.
Reducing the number of clusters reduces the amount of
channel switching that needs to be done, in order to let any pair
of nodes to communicate. Steenstrup develops centralized and
distributed algorithms for this problem, which are based on
greedy heuristics, and studies their performance empirically,



without any provable performance guarantees. The focus of
this paper is to study the complexity of this problem formally,
and our main results are the following.

1) We show that the greedy heuristic of [23] does not
always give the optimum solution, as do other classes
of greedy heuristics. We prove that theCFRPproblem is
NP-complete, and so it is unlikely that simple polyno-
mial time heuristics would give the optimum solution.
In fact, we show that this problem cannot be approxi-
mated efficiently within a factor(1 − o(1)) ln n unless
NP ⊂ DTIME(nO(log log n)). In other words, there is
unlikely to exist a polynomial time algorithm that would
give a solution with(1− o(1)) lnnOPT(I) clusters, for
any arbitrary instanceI of the CFRP problem, where
OPT(I) denotes the cost of the optimum solution for
this instance.

2) We study a relaxed version of theCFRP problem, de-
noted byR-CFRP, in which the clusters are allowed to
overlap. A node appearing in multiple clusters incurs a
cost of switching between the common frequencies for
these clusters, and we control this switching cost by min-
imizing the total overlap between clusters, in addition to
the number of clusters. We develop a randomized algo-
rithm that gives a solution with costO(log n) relative
to both these objectives, based on linear programming.
Since linear programs are expensive to solve, we study
combinatorial algorithms for this problem. We show that
a natural greedy heuristic for this problem is not very
efficient, but a variant of it based on the technique of
Lagrangian multipliers gives logarithmic bounds on the
performance.

3) Finally, we study the empirical performance of the
greedy algorithms for theCFRP and R-CFRP problems,
and show that allowing overlaps leads to significantly
smaller number of clusters. In particular, we study the
relative performance of two algorithms: one that re-
peatedly removes a largest connected component which
is CFRP feasible (GREEDY), and our greedy variant
for R-CFRP that allows some overlap between clusters
(GREEDY2). We ran simulations on randomly gener-
ated feasible instances of the problem on randomly
generatedunit disk graphs(UDGs). Our simulation
results show that, while allowing a small amount of
overlap,GREEDY2 yields far fewer clusters compared to
GREEDY. Specifically, our results range from the simple
greedy algorithm yielding about 30 times more clusters
than GREEDY2 for “large” graphs (with about 60,000
nodes uniformly and randomly distributed over a square
region) to the simple greedy algorithm yielding about 1.5
times more clusters for “small” graphs (with about 6000
nodes) that are heavily clustered. The average overlap
per vertex ranged from about 5 (for the “small” graphs)
to about 10 (for the “large” graphs).

The focus of our results is a theoretical look at the com-
plexity of various broadcast frequency assignment problems

for cognitive networks. Since greedy heuristics are commonly
used for such problems, our results suggest that a closer look
at their worst case performance might give better insights into
their performance.

II. PRELIMINARIES AND NOTATION

We follow the notation of [23] to the extent possible. Let
V denote the set of secondary users, henceforth referred to
as nodes. Let the transmission power levels of all the nodes
be fixed, and letE denote the resulting set of edges, with
(v, w) ∈ E if w is within the range ofv; we assume
that the transmission ranges are such that the edges are all
bidirectional. Let G = (V, E) denote the resulting graph;
we assume that this does not depend on the frequency of
transmission. LetN(v) = {w : (v, w) ∈ E} denote the set
of neighbors ofv. Let F denote the set of all frequencies
that the nodes can use. For nodev ∈ V , let Pv denote
the set of frequencies being used by primary users within
the transmission range of nodev. Then, FR

v = F − Pv

denotes the set of frequencies on which nodev can receive.
FT

v = FR
v ∩w∈N(v)F

R
w denotes the set of nodes on which node

v can transmit, and not cause interference to any receiverw
in N(v).

The Clustering in Frequency-agile Radios Problem
(CFRP). Given an instanceI of the CFRP problem, specified
by the graphG = (V, E), and the setsFR

v for all v ∈ V ,
the objective is to partitionV into K sets {V1, . . . , VK},
and choose frequencyfi for i = 1, . . . , K, so that (i)K is
minimized, (ii)G[Vi] is connected for eachi, and (iii) for each
i = 1, . . . , K, and for eachv ∈ Vi, fi ∈ FT

v . See Figure 1 for
an illustration of this problem.
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Fig. 1. This shows a graph in which each vertex is assigned a set of
frequenciesF R. For each vertexu ∈ {a, b, f}, F T

u = {2} and for each
vertexu ∈ {c, d, e}, F T

u = {1}. Thus an optimal partition solution toCFRP
is the partitionV1 = {a, b, f} andV2 = {c, d, e}.

A couple of remarks about this problem are in order. The
common frequencyfi is the frequency at which communica-
tion with each connected componentG[Vi] takes place. If a
nodeu ∈ Vi needs to communicate with a neighboring node
v ∈ Vj , i 6= j, then eitheru needs to switch frequencies from



fi to fj or v should switch from listening onfj to listening
on fi.

In the RelaxedCFRP problem (R-CFRP), we allow the sets
Vi to overlap, and the objective is to minimize

∑

i |Vi|, while
ensuring that the number of sets chosen is at most an input
parameterK. Note that(

∑

i |Vi|)/|V | is the average number
of setsVi that a vertex appears in. In theCFRP problem, this
ratio is 1, whereas inR-CFRP this can be larger than 1.

We will be interested in approximation algorithms with
provable approximation guarantees for these problems, which
is defined in the following manner. For theCFRP problem,
we say that an algorithm is anα-approximation, if for any
input instanceI, the algorithm provably chooses at most
αOPT(I) sets, where OPT(I) denotes the number of sets in
the optimal solution. For theR-CFRP problem, we consider
bicriteria approximations - an algorithm is said to produce
an (α, β)-approximation, if it chooses at mostL = αK
sets{V1, . . . , VL} so that

∑

i |Vi| ≤ βOPT, where OPT now
denotes the cost of an optimum solution that chooses at most
K sets.

A. Related Work

There has been a lot of research on various aspects of
Dynamic Spectrum Access in recent years; see [2] for a good
survey. There have been numerous proposals on orthogonal
frequency allocation to avoid interference, and optimize sys-
tem utility [4], [5], [17], [18], [20], [26]. Most of these assume
static spectrum demand, and do not consider stability issues.
This work is extended to fairly general dynamic demands
in [6]. Steenstrup [23], [22] studies more general problems
of broadcast frequency assignment, which is the problem we
study here.

There has also been a lot of work on market driven
approaches to spectrum sharing, in which secondary users have
demand profiles for spectrum as a function of the clearing
price, and a central agent has to allocate the spectrum so that
it does not cause interference to the primary and secondary
users. Gandhi et al. [10] study this problem under a revenue
maximization objective, and develop provable approximation
algorithms. Their results have been extended by Cao et al.
[6] to the general case where demands for spectrum vary
stochastically. In general, the bidders cannot be expectedto
be completely truthful, especially if they are allowed to trade
their spectrum allocations in a tertiary market, raising the need
for truth revealing market mechanisms. There is a lot of work
on developing efficient auction mechanisms in such a setting,
e.g., [12], [14].

Most of the work discussed above deals with the one-
hop setting. Several papers have explored the end-to-end
throughput capacity in cognitive networks, e.g., [15], [16], [3].
These papers give constant factor approximations to the total
throughput possible between a set of connections, when nodes
can opportunistically switch channels. Lin et al. [16] showthat
there is a significant gain in the throughput capacity by the use
of opportunistic frequency assignment.

Our work is an extension of Steenstrup [23], who presents
a greedy heuristic to compute a minimum such partition.
However, this heuristic could be highly suboptimal in the worst
case, as discussed in Figure 1, where we describe a family
of feasible configurations on graphs for which no frequency
is assigned by the heuristic. Steenstrup gives a distributed
implementation of the heuristic [22].
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Fig. 2. Figure shows a tree with a feasible assignmentF R
v , ∀v ∈ V , shown

inside each node overF = {1, 2}. F T
v =

T

u∈N[v] F
R
u is highlighted by a

box. Note that∀{u, v} ∈ E, F T
u ∩ F T

v 6= ∅. Therefore, no frequencies are
assigned by the heuristic in [23] even thoughF R is a feasible assignment for
the tree. Also, note thatgreedychoice for expanding clusters fails in keeping
the size of the partition small. W.L.O.G., starting at a nodecontaining only
1, the algorithm tries to extend the cluster containing the node as much as
it can, greedily; the greedy choice makes the cluster highlighted as shaded
nodes. This forces lots of small clusters (shown as dashed bubbles) for a total
of n

5
+ 1 clusters.OPT on the other hand constructs a partition of size2

shown by the two large bubbles with horizontal and vertical patterns.

III. M INIMIZING THE NUMBER OF CLUSTERS

A. CFRP is NP-Complete

In this section, we show that the decision version ofCFRP

(D-CFRP, in short) is NP-complete. The input toD-CFRP

contains, additionally, a positive integerK and we are asked
if there is a set of clusters of size at mostK satisfying the
constraints of theCFRP problem. The NP-completeness proof
uses a reduction from the classicaldominating setproblem
to D-CFRP problem. As a by-product of this proof we get a
hardness of approximation proof forCFRP, showing essentially
that CFRP is as hard to approximate as dominating set.

Given a graphG = (V, E), D ⊆ V is adominating setif for
everyv ∈ V, ∃u ∈ D, d(u, v) ≤ 1. The minimum dominating
set (MDS) problem takes as input a graphG and seeks to
find a smallest dominating set ofG. The decision version of
MDS (DS, in short), additionally takes a positive integerK
as input and asks ifG has a dominating set of size at most
K. It is well known that DS is NP-complete on many graph
classes; furthermore, MDS is notoriously hard to approximate
on general graphs [9].

Theorem 1:D-CFRP is NP-complete.



Proof: It is easy to see that theD-CFRP is in NP. To
see that the problem is NP-hard, we give a polynomial time
reduction fromDS to D-CFRP. Define a ball of radiusℓ around
v, B(v, ℓ) = {u|d(v, u) ≤ ℓ}, to be the set of all vertices
u within distance at mostℓ from v. Now, we construct an
instance ofCFRP from an instance ofDS via the following
procedure. LetG = (V, E) be the graph in the instance ofDS.
In Lines (1)-(5), we construct a graphH = (V ′, E′), which
consists of all ofG plus, for each vertexv in G, a copyv′,
that is connected tov by an edge. In Lines (6)-(11), we assign
the set of frequenciesFR

v to each vertexu in H using the rule
thatFR

u is assigned the set of all labels of vertices inB(u, 2).

DS2CFRP(G)
1. (V ′, E′)← (∅, ∅)
2. for each v ∈ V (G) do
3. V ′ ← V ′ ∪ {v′}
4. E′ ← E′ ∪ {{v, v′}}
5. H ← (V (G) ∪ V ′, E(G) ∪ E′)
6. for each v ∈ V (H) do
7. FR

v ← ∅
8. for each v ∈ V (H) do
9. for each u ∈ BH(v, 2) do
10. FR

u ← FR
u ∪ {v}

11. return H

Next, we show that for the graphH there is a solution to
the CRFP problem with K clusters if and only ifG has a
dominating set of sizeK.

“⇐”: Suppose that theG has a dominating set of sizeK.
Call this D∗ = {d1, d2, . . . , dK}. Construct a partitionV =
{V1, V2, . . . , VK} of H as follows. Start withVi = ∅ for each
i.

• Add each vertexdi to Vi.
• For each vertexv ∈ V (G) \D∗, pick an arbitrarydi that

is adjacent tov and addv to Vi.
• For each vertexv′ ∈ V ′, addv′ to Vi if its copy v is in

Vi.
It is easy to see thatV is a partition ofV (H) and eachVi

is connected. Next, we show that
⋂

v∈Vi
FT

v 6= ∅, ∀i. Observe
that eachVi consists of some vertices inB(di, 1) along with
some vertices inV ′ that are adjacent to vertices inB(di, 1).
By the way the setsFR

v are constructed, it is easy to see that
di belongs toFR

u for eachu ∈ Vi and furthermoredi also
belongs toFR

u for eachu that is adjacent to some vertex in
Vi. This implies thatdi ∈ FT

u for all u ∈ Vi, thereby implying
that

⋂

v∈Vi
FT

v 6= ∅, ∀i.
“⇒”: Suppose thatV = {V1, V2, . . . , VK} is a partition

of V (H) that is a feasible solution to theCFRP problem.
Let Ui denoteVi \ V ′ for each i. Then {U1, U2, . . . , UK}
is a partition ofV (G). Suppose for eachUi, there is avi in
V (G) (not necessarily inUi) such thatUi ⊆ B(vi, 1). Then,
{v1, v2, . . . , vK} is a dominating set ofG.

So, suppose for the sake of contradiction, there is aUi 6⊂
B(v, 1) for anyv ∈ V (G). SinceVi is a cluster that is part of
a solution toCFRP andUi ⊆ Vi, it must be the case that there

is anx ∈ FT
v for all v ∈ Ui. By construction of the instance

H , x is the label of a vertex inH and Vi ⊆ B(x, 2). There
are two cases, depending on whether (i)x = v′ ∈ V ′ or (ii)
x = v ∈ V (G).
(i) x = v′ ∈ V ′. In this case,Ui ⊆ B(v, 1), contradicting

our assumption thatUi 6⊂ NG[v] for any v ∈ V (G).
(ii) x = v ∈ V (G). In this case also,Ui ⊆ B(v, 1).

Otherwise, if for someu ∈ Ui, dG(u, v) ≥ 2, then u
has a neighbor inH , namelyu′, such thatv does not
belong toFR

u′ . This contradicts the fact thatv ∈ FT
u for

all u ∈ Ui.

B. Inapproximability ofCFRP

Here, we show that unlessNP ⊂ DTIME(nO(log log n)), the
CFRP problem cannot be approximated within a ratio(1 −
ε) lnn, for any ε > 0. We borrow the reduction from the
proof of Theorem 1 to show thatDS is L-reducibleto CFRP.
Papadimitriou and Yannakakis [19] introduced the concept of
L-reduction. It is defined in the following:

Definition 1 (L-reduction): Let A andB be two optimiza-
tion problems. LetcA and cB be there corresponding cost
functions.A is L-reducible toB if there are two constants
α, β > 0, such that:

1) there exists a polynomial time computable function
which transforms an instancex of A into an instance
x′ of B such that:

OPTB(x′) ≤ α· OPTA(x),

2) there exists a polynomial time computable function
which transforms any solutiony′ of x′ into a solutiony
of x such that:

|cA(x, y)− OPTA(x)| ≤ β· |cB(x′, y′)− OPTB(x′)|

For our purpose, the cost functions forDS and CFRP are
the size of the dominating set and the size of the partition,
respectively. We will describe a polynomial time computable
function that maps an instance ofDS to that ofCFRPsuch that
the optima are identical. Next, we will describe a polynomial
time computable function that maps a feasible solution to an
instance ofCFRP to a feasible solution ofDS such that the
costs of the solutions are identical as well. This will satisfy the
second condition of the definition of anL-reduction. Using this
scheme, we will show that if there is a deterministic algorithm
for CFRP that runs in polynomial time to produce a solution
within (1 − ε) lnn of the optimal partition, for anyε > 0
then using theL-reduction, one can construct a deterministic
algorithm forDS which runs in polynomial time and produces
a solution within(1−o(1)) lnn of the optimal dominating set.
This, in turn will imply that all problems inNP can be solved in
deterministic timenO(log log n), contradicting the widely held
belief that no sub-exponential time exact algorithms existfor
any problem inNPC.

Lemma 1: DS is L-reducible toCFRP.
Proof: To prove theL-reduction, we simply note that we

can use the transformation procedureDS2CFRP(G) given in



the proof of Theorem 1 exactly as it is to map an instance
x of DS to an instancex′ of CFRP; the “⇒” direction of the
proof of Theorem 1 shows thatOPTDS(x) = OPTCFRP(x

′). This
satisfies the first condition of anL-reduction. Also note that
the “⇐” direction of the proof of Theorem 1 maps a feasible
solutiony′ of an instancex′ of CFRP to a feasible solutiony
of an instancex of DS. It is also easy to see that the second
condition of anL-reduction is also satisfied,

cDS(x, y)− OPTDS(x) = cCFRP(x
′, y′)− OPTDS(x)

= cCFRP(x
′, y′)− OPTCFRP(x

′),

and the constantsα = β = 1.
Theorem 2:If NP * DTIME(nO(log log n)) then no polyno-

mial time algorithm exists that can guarantee an approximation
ratio of (1 − ε) lnn), for any ε > 0.

Proof: Suppose, for the sake of contraction, that there
exists a polynomial time approximation algorithm forCFRP

which achieves an approximation ratio of(1−o(1)) ln n. Note
that we showed in the proof of Lemma 1, a transformation of
any instancex of DS to an instancex′ of CFRP such that,
OPTDS(x) = OPTCFRP(x

′) and that the cost of any feasible
solutiony′ of instancex′ of CFRP is exactly equal to the cost
of a feasible solutiony to x of DS which maps tox′. So, we
have the following:

cDS(x, y)

OPTDS(x)
=

cCFRP(x
′, y′)

OPTCFRP(x′)
≤ (1− o(1)) ln n

The last inequality then shows, by an extension to the result
by Feige [9], thatNP⊂ DTIME(nO(log log n)). A contradiction.

IV. OTHER GREEDY HEURISTICS FOR THE CFRP PROBLEM

In this section, we explore another greedy objective that
seeks to maximize the size of a clusterS ⊆ V with the
objective of minimizing the size of the fragmentation in
G \ G[S]. This then leads to a recursive algorithm that
greedily picks large subgraphsG[Si] which when removed
from G \

⋃i−1
j=1 G[Sj ] minimizes the number of components.

This algorithm is lead to by a simple observation that in any
optimal partitionT = {T1, T2, . . . , TKOPT

} of G, there exists
a sequence(T1, T2, . . . , TKOPT

) such that for any1 ≤ i <
KOPT, G \

⋃i
j=1 G[Tj ] is connected.

Theorem 3:Any optimal solutionT = {T1, T2, . . . , TKOPT
}

of the CFRP problem has at least2 clusters whose removal
leaves the rest of the graph connected.

Proof: Let T = {Ti|1 ≤ i ≤ KOPT} denote an optimal
partition of G. Construct a simple cluster graphG[T ] =
(V ′, E′) thus: letV ′ = {Ti} andE′ = {{Ti, Tj}|u ∈ Ti, v ∈
Tj, {u, v} ∈ E}. It is easy to see thatG[T ] is connected. It
then follows from a well know observation that anyn vertex
connected graph has at mostn− 2 cut vertices. This implies
that there are at least2 vertices inG[T ] whose deletion leaves
the rest of the graph connected. This then implies a natural
ordering ofT = (T1, T2, . . . , TKOPT

).

A. Greedy Approach

But, how do we findT1? Since theCFRP problem is
NP-hard, it is unlikely that there exists a polynomial time
algorithm that findsT1. We consider the following greedy
algorithm based on the above discussion.

GREEDYC(G)
1. S ← ∅
2. for each v ∈ V do
2.1 Sv ← largest cluster containingv that

keeps the rest of the graph connected
3. Let Su be a largest cluster.G← G \G[Su]
4. S ← S ∪ {Su}
5. if G = ∅ then outputS
6. else goto“Step 2.”

Note that applyingGREEDYC to the example in Figure 2
yields an optimal solution. Unfortunately, as shown in the next
section, it is easy to see thatGREEDYC yields at least a factor
Ω(nε) more clusters than an optimal solution.

B. Ω(nε) performance forGREEDYC

In this section we provide a simple example for which
GREEDYC produces at leastΩ(nε) clusters whereas an optimal
solution would yieldk + 2 clusters, for any0 < ε < 1 and
any k ≥ 2. � � � � � � � � �

� � � � � � � � �� � � � �� � �
� � � � �

� � � � � � � �
� � � � �

� �
Fig. 3. Example showingΩ(nε) performance ratio forGREEDYC. The
boxes represent vertices having common labels (values forF R). The values
are indicated by sets pointing to the boxes. The labels for the top-most and
bottom-most vertices appear above and below the respectivevertices. In this
example,OPT has a partition of sizek + 2 whereasGREEDYC constructs a
partition of sizekl + 2 for appropriate choice of the numbers of vertices in
each “box”.

The Construction: We present a construction of a family
of planar graphs for0 < ε < 1. The graph consists of
k identical structures called “brooms”. Each broom hasl
“bristles”. Each bristle is a path containingp vertices. The
broom consists of a “broom-stick” which is a path containing



more thanlp vertices. For each vertexv on the broom-stick,
FR

v = {α, i}. Distinguish the two ends of the stick asv′

and v′′. Next, for each internal vertexu in each bristle,
FR

u = {i}; the two “tips” of each bristleu′ andu′′ have values
{α, i} and {β, i}, respectively. Next, add an edge{v′, u′},
for u′ on each bristle. Next, add two vertices,A andB, and
let FR

A = {α, 1, 2, . . . , k} and FR
B = {β, 1, 2, . . . , k}. Add

{A, v′′} to the edge set for each of thek brooms. Add{u′′, B}
for each of thel bristlesu′′ and for each of thek brooms to
finish the construction of a planar graph. It is easy to see that
the FR assignment is feasible.

To see the performance ofOPT, note that each of the
k constituent brooms forms a block in the partition having
FT

v = {i}. The remaining two vertices,A, B, having FT

values{α} and{β}, respectively, for a partition of sizek+2.
GREEDYC, on the other hand, never chooses a broom since it
greedily choosesA and all of the broom-sticks instead, since
more than half the vertices fall in this connected component,
assigningFT = {α}. Following this first greedy choice, all
remaining choices are bad as then each of thelk bristles end
up getting chosen just to maintain feasibility, for a total of
lk + 2 blocks in the partition. This observation immediately
leads to the following:

Theorem 4:GREEDYC is a Ω(nε) approximation to the
CFRP problem for any0 < ε < 1 and anyk ≥ 2.

V. OPTIMAL SOLUTIONS FORTREES

Let T = (V, E) be the given tree. Pick an arbitraryr ∈ V
and rootT at r. For anyv ∈ V and frequencyf ∈ FT

v , let
OPT(v, f) denote the smallest number of clusters in a feasible
solution to CFRP on the subtree ofT rooted atv with the
restriction that the clusterC containingv can use frequency
f , i.e., for all u ∈ C, f ∈ FT

u . Let S(v, f) denote a solution
associated with OPT(v, f). Let OPT(v) = minf OPT(v, f).
Then, OPT(r) denotes the number of clusters in an optimal
solution of CFRP on T . There is a simple dynamic pro-
gramming algorithm for computing OPT(v, f) and S(v, f).
Process the children ofv in some arbitrary order and for each
child u and frequencyf ′ ∈ FT

u , compute OPT(u, f ′) and
the associated solutionS(u, f ′). Let f∗ ∈ FT

u be such that
OPT(u) = OPT(u, f∗). If OPT(u, f) ≤ OPT(u, f∗), then
Su ← S(u, f) and “mark” u; otherwiseSu ← S(u, f∗) (and
do not “mark” u). To obtain a solution for the tree rooted at
v, take∪uSu (the union taken over all childrenu of v), merge
all the clusters containing marked children, and then addv to
this merged cluster.

VI. A RELAXATION OF CFRP

In this section, we present a relaxation of theCFRPproblem.
Specifically, we relax the constraint that the clusters are
required to form a partition of the vertex set. Instead we allow
clusters to “overlap,” i.e., have common vertices, but attempt to
simultaneously minimize the amount of overlap as well as the
number of clusters. We describe two approximation algorithms
for this relaxedCFRPproblem. The first algorithm is based on
solving a linear program (LP) and then employing randomized

rounding to obtain an integral solution. The second algorithm
uses a greedy technique augmented by Lagrangian relaxation.
This latter algorithm is quite easy to implement and this is
what we use to produce the simulation results described in
Section VII. Roughly speaking, both algorithms produce as
output a collectionC of clusters that covers the graph and has
two additional properties: (i) the number of clusters inC is
at mostO(log n) times the number of clusters in an optimal
solution toCFRP and (ii) each vertex, on average, appears in
O(log n) clusters inC.

A. LP-Rounding for a Relaxed Version ofCFRP

For any collectionC of node subsets, we define theoverlap
of a nodev as the number of subsets inC that v belongs to.
The overlapof the collection itself is the sum of the overlaps
of all the nodes. We relaxCFRP to allow clusters to overlap,
while attempting to minimize the overlap of the collection
of clusters. The overlap of a collection of clusters can be
expressed as the sum of cardinalities of the clusters and thus
the objective of our optimization problem, which we callR-
CFRP (short for relaxedCFRP), is to pick a set of clusters
whose sum of cardinalities is minimum. The constraints of
R-CFRP are that (i) each node appears in at least one cluster
and (ii) the total number of clusters is bounded above byK,
for some integer inputK. We expressR-CFRP as the integer
program (IP) given below. LetS be the set of all possible
clusters. For each clusterA ∈ S, let xA be a binary indicator
variable denoting the inclusion ofA in the solution. Denote
by S(v) the set of clusters that containv.

IP: min
∑

A∈S

|A|·xA

subject to:
∑

A∈S(v)

xA ≥ 1, ∀v ∈ V

∑

A∈S

xA ≤ K

xA ∈ {0, 1}, ∀A

We obtain the natural LP-relaxation of the above IP by
replacing each constraintxA ∈ {0, 1} by xA ≥ 0. This linear
program (LP) is similar to the linear programs for themetric
k-median problem[13] and theclustering for min-sum cluster
diameters problem[7].

1) The Algorithm:Our LP-roundingalgorithm proceeds in
two stages:

1) Solve the LP-relaxation in the previous section to obtain
x∗

A for eachA ∈ S.
2) Independently, add eachA to the solution with proba-

bility = y∗
A = min{2 lnn·x∗

A, 1}.

Note that even though theLP has exponentially many
variables, it hasO(n) constraints, and each variable appears
in O(n) constraints. Since it is a mixed packing and covering
program with no negative constraints, the result of Young [27]
gives an approximate solution to it in polynomial time.



2) Analysis: In this section, we present a simple analysis
of LP-rounding algorithm. A solution toR-CFRP is said to be
t-feasibleif each vertex belongs to at least one cluster and the
total number of clusters is at mostK × t. Thus at-feasible
solution satisfies the first set of constraints in IP exactly,while
violating the second constraint by a factor oft.

Lemma 2:The solution toR-CFRP produced by the LP-
rounding algorithm is4 lnn-feasible with high probability, i.e.,
at least1− 2/n.

Proof: We first bound by1/n the probability that there
exists a node that does not belong to any cluster. Fix a nodev.
If for any A ∈ S(v), the probabilityy∗

A = 1, thenv is covered
by at least one cluster with probability 1. So we assume that
for all A ∈ S(v), y∗

A < 1. This implies thaty∗
A = 2 lnn·x∗

A

for all A ∈ S(v). In this case, we calculate an upper bound on
the probability thatv is not covered by any cluster, as follows.

Pr
[

v is not
covered by

any A

]

=
∏

A∈S(v)

(1− y∗
A)

≤
∏

A∈S(v)

exp (−y∗
A)

= exp (−
∑

A y∗
A)

= exp (−2 lnn
∑

A x∗
A)

≤ 1
n2

The last inequality is from the fact that
∑

A x∗
A ≥ 1. Using

the union bound, we get that,

Pr
[

somev is not
covered by anyA

]

≤ 1
n

Next, we bound by1/n the probability that the number of
clusters in the solution exceedsK · 4 lnn.

E [number of clusters] =
∑

A∈S

Pr [A is chosen]

=
∑

A∈S

y∗
A

≤ 2 lnn
∑

A∈S

x∗
A

≤ 2K· lnn

Since eachA is chosen independently, using Chernoff
bounds, we get:

Pr
[

# of clusters
>4K·lnn

]

≤ 1
n

The two probability bounds together imply that with prob-
ability at least1 − 2/n, every node is covered by at at least
one cluster and the number of clusters is at mostK · 4 lnn.

We now bound the probability that the overlap of the
clusters chosen by the LP-rounding algorithm is high. LetOPT

denote the optimal overlap of a solution toR-CFRP; in other
words, OPT is the optimal value of the objective function of
the IP.

Lemma 3:Let T denote the overlap of the solution toR-
CFRP produced by the LP-rounding algorithm. Then,

Pr[T > 4 lnn· OPT] ≤
1

2
.

Proof:

E [T ] =
∑

A∈S

|A|y∗
A

≤
∑

A∈S

|A|2 lnn·x∗
A

≤ 2 lnn· OPT

The last inequality simply follows from the fact that
∑

A∈S |A|·x
∗
A, the optimal value of the objective function of

the LP-relaxation, cannot be larger than the optimal value of
the objective function of the IP

Using Markov’s inequality, we get:

Pr [T>4 ln n· OPT] ≤ 1
2

To keep both the amount of overlap as well as the number of
clusters small, we use the LP-rounding algorithm as follows.
Let KOPT be the number of clusters in an optimal solution
to CFRP. Note that if K ≥ KOPT in R-CFRP, then OPT is
n, since each node in a feasible solution toCFRP appears in
a single cluster. Hence, for such a value ofK, the overlap
of the solution produced by the LP-rounding algorithm is at
most 4 lnn·n with probability at least 1/2. Repeating Stage
2 of the LP-rounding algorithmO(log n) times for the same
value of K and outputting a solution with smallest overlap
selected from among all of theO(log n) trials guarantees a
solution with overlap at most4 lnn·n, with high probability,
i.e., 1 − 1/n. A “good” value for K can then be found
as follows. For each candidate value ofK, considered in
the order1, 2, 3, . . . , n, run the LP-rounding algorithm with
O(log n) repetitions. Stop as soon as we reach a value ofK
for which find a solution with overlap at most4 lnn·n. With
high probability, this algorithm will stop withK ≤ KOPT,
yielding the following theorem.

Theorem 5:There is a randomized algorithm that in time
polynomial in the size of the input produces, with high
probability, a collection of clusters that cover the graph and
satisfy the properties (i) each node appears in at most4 logn
clusters on average and (ii) the number of clusters is at most
KOPT· log n.

B. Greedy Algorithm

We can obtain a greedy algorithm forR-CFRPby noting that
R-CFRP can be expressed as aset coverproblem in which the
cost of each set is its cardinality. In such a setting, the natural
greedy algorithm will repeatedly pick a set that covers the most
as yet uncovered nodes per unit cost. This “greedy choice”
appears in Step 3.1 below. A variety of different techniques
for analyzing such greedy algorithms appear in Vazirani’s book
[24].



GREEDY1(G)
1. for each v ∈ V do cv ← 0
2. i← 1;S ← ∅; C ← ∅
3. while V is not covereddo
3.1 Si ← argmin |Sj |

|Sj\C|

3.2 S ← S ∪ {Si}; C ←
⋃i

j=1 Sj ; i← i + 1

The performance ofGREEDY1 is quite poor. This can be
seen by noting that the ratio|Sj |/|Sj \ C| has a minimum
value of 1 and this value is achieved by any setSj that only
covers new elements. Thus, as stated, the algorithm repeatedly
picks an arbitrary cluster that only covers as yet uncovered
nodes. This greedy algorithm has already been considered by
Steenstrup [23] and has poor performance with regards to the
number of clusters it uses (see Figure 2).

We modify GREEDY1 by looking for a subsetSj that
minimizes Sj+λ

|Sj\C| . Here λ > 0 is a Lagrangian multiplier
that is assigned the valuen

KOPT
, where KOPT is the number

of clusters in an optimal solution toCFRP. Since we do not
know KOPT to start with, we simply consider all possible
values1, 2, 3, . . . , n for KOPT and use the correspondingλ to
determine the desirability of each set. We return the collection
of sets with smallest overlap, taken over all possible choices
of λ. We will refer to this modified algorithm asGREEDY2.

1) Analysis: Let T = {T1, T2, . . . , TKOPT
} denote an opti-

mal solution to theCFRPproblem. Note that this is a partition
and therefore has overlapn. For any given familyY of K sets,
defineΦ(Y) =

∑

i |Yi|+λK, whereλ is the Lagrangian mul-
tiplier. If λ = n

KOPT
thenΦ(T ) =

∑

i |Ti|+λKOPT = 2n. Using
analysis similar to the analysis of the greedy set cover ([24, p.
16]), it is not hard to show thatΦ(S) ≤ Φ(T )·Θ(log n). Since
Φ(S) =

∑

i |Si| + λK (by definition) and sinceΦ(T ) = 2n,
we obtain the following inequalities:
(i)

∑

i |Si| ≤ 2n·Θ(log n).
(ii) λK ≤ 2n·Θ(log n).
Inequality (i) states that the overlap of the collectionS re-
turned byGREEDY2 is 2n·Θ(logn). Substitutingλ = n/KOPT

in Inequality (ii) yieldsK ≤ Θ(log n)·KOPT. The conclusion
of this analysis is stated in the following theorem.

Theorem 6:Algorithm GREEDY2 yields a collectionS of
at mostΘ(log n)·KOPT sets that cover the graph and have
average overlapΘ(log n).

VII. SIMULATION RESULTS

We implemented a greedy algorithm that seeks to remove a
largest feasible connected component (discussed in the caption
of Figure 2), calledGREEDY, and GREEDY2 as discussed
earlier. For the simulations, we ran the two algorithms on
randomly generated instances of the clustering problem on
randomly generatedunit disk graphs(UDGs). An n-vertex
graph G = (V, E) is said to be a UDG if there exists a
map Φ : V 7→ R2 such that{u, v} ∈ E if and only if
‖Φ(u)− Φ(v)‖2 ≤ 1. UDGs provide a convenient model for
homogeneous wireless networks.

Summary: We summarize the simulation setup and results
here. We generated feasible instances ofCFRP on random

UDGs of three different types (shown in Figures 4,5, and 6)
and ranGREEDY andGREEDY2 on them. Simulation results
show thatGREEDY, on average, performs well as compared
to its worst case performance shown in Figure 2. However,
GREEDY2 performs even better thanGREEDY. For Type II
graphs, the increase in performance ranges from about a factor
of 30 (for a 60000 vertex UDG) to about 5 (for a 6000 vertex
UDG). For Type III, we see a performance increase by about
a factor of 5. For Type I, we observe only a modest increase
in performance of about a factor 1.5. In the following, we
provide more detail on how the instances were generated and
what results were obtained. Following this, we discuss these
results and give our speculation gleaned from our simulations.

Fig. 4. Type - I

Fig. 5. Type - II

Simulation Setup and Results: We generated random
UDGs from a choice of types that we describe later. We used
uniform random distribution of a specified number of points
within a specified rectangle as a basis for each type. One or
more of such randomly generated set of points within their
corresponding rectangles were then assembled to form the
set of points for a UDG. Edges were then added between



Fig. 6. Type - III

pairs of points that are within unit distance from each other.
In all our simulations, we considered only connected UDGs.
For each such randomly generated graph, we specified a
frequency spectrum which was modeled as a contiguous set
of integers. Initially, the entire spectrum would be made
available to each vertex. For each graph, we also specified
a number ofprimary users. These primary users’ positions
were chosen in two different ways: uniformly at random from
amongst the UDG vertices, and uniformly at random from
the bounding-box of the UDG. Each primary user chose a
frequency from the spectrum uniformly at random. We also
specified theradius of influencethat applied to all the primary
users. For any primary user, its choice of frequency was
removed from the set of available frequencies of all the UDG
vertices that appeared in its radius of influence. We considered
only feasible configurations in which the set of available
transmission frequenciesat each UDG vertex would be non-
empty. We then ranGREEDY andGREEDY2 on the random
UDGs for the various types. We considered three types of
random UDGs: (i) grid-like distribution (Type - I), (ii) uniform
random distribution (Type - II), and (iii) combination (Type -
III). Type - I consisted of a collection of thin, long rectangles
that each contain points distributed uniformly at random within
them to induce a connected subgraph. These rectangles were
then arranged in equally spaced and intersecting rows and
columns to form a connected UDG (Figure 4). Type - II
consisted of a single rectangle with a specified number of
points distributed uniformly at random to form a connected
UDG (Figure 5). Type - III is a combination of Type - I
and II (Figure 6). Table I contains average results from the
simulations.

For our second set of simulations, we picked points uni-
formly at random from within the bounding box of the graph
instead of choosing the positions from amongst those of the
UDG vertices. We compareGREEDY andGREEDY2 for Type
- I and III. Table II shows the results of this set of simulations.

For simulations ofGREEDY2, we did not guess all possible
values ofK to seekKOPT. Instead, we considered a geomet-

rically increasing sequence ofK = 1, 2, 4, . . . n to compute
λ. The number of clusters then is within a factor of2 of the
guarantees of Theorem 6.

a) Discussion:: As argued earlier, removal of a cluster
that causes a large fragmentation leads to a poor clustering.
However, by allowing clusters to overlap prevents fragmen-
tation. Furthermore, covering a large number of uncovered
vertices using small sets attempts to minimize the overlap
between clusters. Simulation results show that the average
number of overlap of cluster appears to be quite small. We
feel that in the case of UDGs, this average overlap is bounded
above by a constant. This would then suggest that for wireless
networks networks that are homogeneous, it is not necessary
that these clusters partition the network. Observe that the
primary motivation, as described by Steenstrup [23], [22] for
minimizing the number of clusters is to try to minimize the
overhead of vertices switching frequencies while maintaining
network connectivity; if a vertex belongs to multiple clusters
then the switching overhead at any node will be proportional
to the number of clusters that contain it. However, if this
overlap is at most a constant then this overhead will be
independent of the network size. This would imply that by
relaxing the constraint of obtaining a network partition, we
introduce bounded switching overhead while simultaneously
keeping the number of clusters small.
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