
CS:5620 Homework 2 Solution, Fall 2016

Table 1: Execution of cole-Vishkin 6 color algorithm

r = 104

u=110 v=51

w=170 x=35 y=15

1
r = 1101000

u=1101110 v=110011

w=10101010

x=100011

y=1111

2

r = 0

u=11 v=01

w=100

x=1000

y=101

3
r = 0

u=01 v=01

w=00

x=00

y=101

4

(1)

(2.a)

Pr[Cu] =
1

|P (u)|
∑

c∈P (u)

Pr(W c,N(u))

Pr[Cu] =
1

6
·
[(

1

2
· 1

2
· 1

2
· 1

2
· 1 · 1

)
+

(
1 · 1 · 1

2
· 1 · 1

2
· 1
)

+

(
1 · 1 · 1 · 1

2
· 1 · 1

)
+(

1

2
· 1 · 1 · 1 · 1 · 1

)
+ (1 · 1 · 1 · 1 · 1 · 1) + (1 · 1 · 1 · 1 · 1 · 1)

]
Pr[Cu] =

1

6
·
(

1

16
+

1

4
+

1

2
+

1

2
+ 1 + 1

)
Pr[Cu] =

53

96

(2.b) c′ = 1, c′′ = {3, 4, 5, 6}

1



(2.c) Replacing 1 with 6 in the palette of v1

Pr[Cu] =
1

|P (u)|
∑

c∈P (u)

Pr(W c,N(u))

Pr[Cu] =
1

6
·
[(

1 · 1

2
· 1

2
· 1

2
· 1 · 1

)
+

(
1 · 1 · 1

2
· 1 · 1

2
· 1
)

+

(
1 · 1 · 1 · 1

2
· 1 · 1

)
+(

1

2
· 1 · 1 · 1 · 1 · 1

)
+ (1 · 1 · 1 · 1 · 1 · 1) +

(
1

2
· 1 · 1 · 1 · 1 · 1

)]
Pr[Cu] =

1

6
·
(

1

8
+

1

4
+

1

2
+

1

2
+

1

2
+ 1

)
Pr[Cu] =

23

48
=

46

96
<

53

96

The probability goes down as expected.

(3) In the first phase, we run the Cole-Vishkin algorithm to obtain a 22∆-coloring in O(log∗ n)
rounds. This algorithm runs in the Congest model. Now we start the second phase of the
algorithm. For each color c ∈ {1, 2, . . . , 22∆} considered in this order, we process all vertices
of color c in parallel. If a vertex v of color c has a neighbor of color c′ ∈ {1, 2, . . . , c− 1} in
the MIS, then v chooses not to join the MIS; otherwise v joins the MIS. Thus all vertices of
color c are processed in O(1) rounds and therefore, Phase 2 runs in O(22∆) rounds. Since
it is given that ∆ ≤ 10, 22∆ is bounded above by a constant (though a somewhat large
constant). Therefore, Phase 2 runs in O(1) rounds, also in the Congest model and the
entire algorithm runs in O(log∗ n) rounds in the Congest.
Remark: I did not prove the correctness of the algorithm here, but hopefully it is easy to
see.

(4) Node v intitalizes its color c(v) to ⊥ and a boolean flag done(v) to False. To initialize
its palette P (v), node v executes the following 2-round algorithm. The purpose of this
algorithm is simply to count the number of nodes in the 2-neighborhood of eacn node v.

1. v sends IDv to all neighbors
2. v receives IDs from neighbors; let NID(v) denote the set of IDs received
3. v sends NID(v) to all neighbors. (In this step messages can be quite large.)
5. v receives sets of IDs from neighbors.
6. for each neighbor u do
7. NID(v)← NID(v) ∪NID(u)
8. P (v)← {1, 2, . . . , |NID(v)|}

After P (v) has been initialized, node v repeatedly executes the following 4-round algorithm.

// Pick a tentative color, if not already permanently colored
1. if not done(v) then
2. c(v)← a color picked uniformly at random from palette P (v)
3. v sends c(v) to all neighbors

// Even permanently colored nodes should continue to pass on received colors to neighbors
4. v receives colors from neighbors; let NC(v) denote the set of colors received
5. v sends NC(v) to all neighbors. (In this step messages can be quite large.)

// Determine if my color collides with the color of any node in my 2-nbd
6. if not done(v) then
7. v receives sets of colors from neighbors

2



8. for each neighbor u that v receives a set of colors from do
9. NC(v)← NC(v) ∪NC(u)

// If there is no collision then I become permanently colored
10. if c(v) 6∈ NC(v) then
11. done(v)← True
12. v sends c(v) to all neighbors

//Permanently assigned colors need to be deleted from palletes in 2-nbd of still-active nodes
13. v receives colors from neighbors; let NP (v) denote the set of colors received
14. v sends NP (v) to all neighbors. (In this step messages can be quite large.)
15. if not done(v) then
16. v receives sets of colors from neighbors
17. for each neighbor u that v receives a set of colors from do
18. P (v)← P (v) \ PN (u)

(5.a) Suppose that the while-loop in the above algorithm runs for t iterations, for some non-
negative integer t. For 1 ≤ i ≤ t, let Si denote the set S in the ith iteration of the while-
loop. Thus S1 denotes the set of nodes in G with degree at most 2. More generally, Si is the
set of nodes that have degree at most 2 in the subgraph of G induced by Si∪Si+1∪· · ·∪St.

We now prove by contradiction that |S1| ≥ n/3. Otherwise, if |S1| < n/3, then G contains
more than 2n/3 nodes with degree 3 or more. Therefore, the total degree of nodes in V \S1

is more than 3 · 2n/3 = 2n. Hence, the number of edges incident on nodes in V \ S1 is
more than n, which contradicts the fact that G is a tree and has at most n− 1 edges.

The proof in the previous paragraph can be used to show the more general claim that |Si|
is at least one-third the size of Si∪Si+1∪ · · ·∪St. This means that in each iteration of the
while-loop, the size of V is decreasing by a third, implying that it takes O(log n) iterations
of the while-loop before V becomes empty.

(5.b) The deterministic algorithm for 3-coloring an unoriented tree in O(log n) rounds, is as
follows.

1. Implement the non-distributed algorithm described in the problem in the Congest
model, but with one change. The given algorithm says that if e has both end points
in S, orient it arbitrarily. The change we make is to leave such edges unoriented for
now.
Running time: Each iteration of the while-loop takes O(1) rounds in the Congest
model and therefore, using the proof in 5(a) we see that this algorithm runs in O(log n)
rounds.

2. Use the Cole-Vishkin algorithm to produce, in parallel for all i, 1 ≤ i ≤ t, a 3-coloring
of G[Si].
Running time: O(log∗ n) rounds.
Note: This is not a 3-coloring of the entire graph because two adjacent nodes, one
in Si and the other in Sj , j 6= i, can have the same color.

3. Consider the sets St, St−1, . . . , S2, S1 (in this order, one after the other). For each set
Si and for each j = 1, 2, 3, let Si,j denote the subset of Si of nodes colored j. For each
set Si orient every edge e with both endpoints in Si from the endpoint with larger
color to the endpoint with smaller color. In other words, edges with both endpoints in
Si will be oriented from Si,3 to Si,2 and Si,1 and from Si,2 to Si,1. For each j = 1, 2, 3
(considered in this order), process all nodes in Si,j in parallel, as follows. Each node v
in Si,j , examines the at most two out-neighbors it has and assigns itself a color from
{1, 2, 3} distinct from the colors assigned to the out-neighbors.
Running time: O(t) = O(log n) rounds.

3



This algorithm runs in O(log n) rounds. We will now show that it is correct, i.e., it produces
a proper 3-coloring of G. The proof is by induction and the inductive hypothesis is the
following:

After set Si has been processed in Step 2 above, we have constructed a proper
3-coloring of the subgraph of G induced by sets Si ∪ Si+1 ∪ · · · ∪ St.

Showing this for i = 1 gives us a proper 3-coloring of G.

The inductive hypothesis is trivially true for i = t+1. Now suppose that we have processed
set Si and have a proper 3-coloring of the graph induced by Si ∪ Si+1 ∪ · · · ∪ St. Now the
algorithm processes the set Si−1 in three sub-steps: first Si−1,1 is processed, then Si−1,2 is
processed, and then Si−1,3 is processed. After set Si−1,1 is processed, we are guaranteed
that the subgraph induced by Si−1,1∪Si∪Si+1∪· · ·∪St is properly 3-colored. This is because
no two nodes in Si−1,1 are adjacent and therefore they can choose colors independently.
Furthermore, each node v ∈ Si−1,1 has no out-neighbors in S1 ∪ S2 ∪ . . . ∪ Si−1 and at
most two neighbors in Si ∪ Si+1 ∪ · · · ∪ St and therefore v can choose a “permanent” color
from {1, 2, 3} distinct from its neighbors in Si∪Si+1∪· · ·∪St. Similarly, after set Si−1,2 is
processed, we are guaranteed that the subgraph induced by Si−1,2∪Si−1,1∪Si∪Si+1∪· · ·∪St

has a proper 3-coloring. Note that when a node v ∈ Si−1,2 is processed, any neighbor(s) it
has in Si−1,1 have already received a “permanent” color and v will take this into account
when assigning itself a “permanent” color from {1, 2, 3}. The same argument holds for
Si−1,3 and as a result the inductive hypothesis will hold after set Si−1 has been processed.

(6) We start the algorithm with nodes exchanging their r-values. This takes O(1) rounds in
the Congest model. If two neighboring nodes have the same r-values, then the algorithm
aborts without producing a coloring. Otherwise, we start the greedy (∆ + 1)-coloring
algorithm.

We first show that the probability that two neighboring nodes will have the same r-values
is small. Let u and v be two nodes in the network. Then,

Pr
(
r(u) = r(v)

)
=

1

2c′·dc log2 ne .

By choosing c′ to be a large enough constant (e.g., c′ = 3), we get that Pr(r(u) = r(v)) <
1/n3. In an n-node cycle, there are n pairs of neighboring nodes and using the union bound
on these n pairs, we get

Pr
(

There exist neighbors u and v: r(u) = r(v)
)
<

1

n2
.

(Make sure you understand this calculation.) We say that there is a collision if two
neighbors have the same r-values. Thus, Pr(no collison) > 1− 1/n2.

We now condition the rest of the analysis on the event that there is no collison. For two
neighbors v1 and v2,

Pr (r(v1) > r(v2)| no collision) =
1

2
.

This follows from the fact that by symmetry r(v1) > r(v2) and r(v1) < r(v2) are equally
likely. Now consider a path (v1, v2, v3) in the cycle. Then,

Pr (r(v1) > r(v2) > r(v3)| no collision) = Pr (r(v1) > r(v2)| no collision)×
Pr (r(v2) > r(v3)|r(v1) > r(v2) and no collision)

=
1

2
· 1

3
.

Continuing in this manner, we see that for a path (v1, v2, . . . , vt) in the cycle

Pr
(
r(v1) > r(v2) > · · · > r(vt)| no collision

)
=

1

t!
<

1

2t−1
.

4



Now let t = 3dlog2 ne+ 2 and for this value of t we see that

Pr
(
r(v1) > r(v2) > · · · > r(vt)| no collision

)
<

1

2n3
.

We call a path P = (v1, v2, . . . , vt) in the cycle decreasing if r(v1) > r(v2) > · · · > r(vt).
There are 2n length-t paths in the cycle and taking a union bound over these we see that

Pr
(

There exists a length-t = 3dlog2 ne+ 2 decreasing path| no collision
)
<

1

n2
.

Thus conditioned on the “no collisions” event, with probability more than 1 − 1/n2, the
greedy (∆ + 1)-coloring (which is a 3-coloring since ∆ = 2) algorithm will run in at most
3dlog2 ne+ 2 = Θ(log n) rounds. In other words,

Pr
(

Greedy algorithm produces a 3-coloring in Θ(log n) rounds| no collision
)
> 1− 1

n2
.

Finally, using the fact that Pr(A and B) = Pr(A|B) · Pr(B), we see that the probability
that there is no collision and the greedy algorithm produces a 3-coloring in at most t =
3dlog2 ne+ 2 rounds is more than (1− 1/n2) · (1− 1/n2) > 1− 1/n.

5


