CS:5620 Homework 2 Solution, Fall 2016

Table 1: Execution of cole-Vishkin 6 color algorithm

(1)
(2.a)

$$
\begin{aligned}
\operatorname{Pr}\left[C_{u}\right]= & \frac{1}{|P(u)|} \sum_{c \in P(u)} \operatorname{Pr}\left(\bar{W}_{c, N(u)}\right) \\
\operatorname{Pr}\left[C_{u}\right]= & \frac{1}{6} \cdot\left[\left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 \cdot 1\right)+\left(1 \cdot 1 \cdot \frac{1}{2} \cdot 1 \cdot \frac{1}{2} \cdot 1\right)+\left(1 \cdot 1 \cdot 1 \cdot \frac{1}{2} \cdot 1 \cdot 1\right)+\right. \\
& \left.\left(\frac{1}{2} \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1\right)+(1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1)+(1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1)\right] \\
\operatorname{Pr}\left[C_{u}\right]= & \frac{1}{6} \cdot\left(\frac{1}{16}+\frac{1}{4}+\frac{1}{2}+\frac{1}{2}+1+1\right) \\
\operatorname{Pr}\left[C_{u}\right]= & \frac{53}{96}
\end{aligned}
$$

(2.b) $c^{\prime}=1, c^{\prime \prime}=\{3,4,5,6\}$
(2.c) Replacing 1 with 6 in the palette of v_{1}

$$
\begin{aligned}
\operatorname{Pr}\left[C_{u}\right]= & \frac{1}{|P(u)|} \sum_{c \in P(u)} \operatorname{Pr}\left(\bar{W}_{c, N(u)}\right) \\
\operatorname{Pr}\left[C_{u}\right]= & \frac{1}{6} \cdot\left[\left(1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 \cdot 1\right)+\left(1 \cdot 1 \cdot \frac{1}{2} \cdot 1 \cdot \frac{1}{2} \cdot 1\right)+\left(1 \cdot 1 \cdot 1 \cdot \frac{1}{2} \cdot 1 \cdot 1\right)+\right. \\
& \left.\left(\frac{1}{2} \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1\right)+(1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1)+\left(\frac{1}{2} \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1\right)\right] \\
\operatorname{Pr}\left[C_{u}\right]= & \frac{1}{6} \cdot\left(\frac{1}{8}+\frac{1}{4}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+1\right) \\
\operatorname{Pr}\left[C_{u}\right]= & \frac{23}{48}=\frac{46}{96}<\frac{53}{96}
\end{aligned}
$$

The probability goes down as expected.
(3) In the first phase, we run the Cole-Vishkin algorithm to obtain a $2^{2 \Delta}$-coloring in $O\left(\log ^{*} n\right)$ rounds. This algorithm runs in the Congest model. Now we start the second phase of the algorithm. For each color $c \in\left\{1,2, \ldots, 2^{2 \Delta}\right\}$ considered in this order, we process all vertices of color c in parallel. If a vertex v of color c has a neighbor of color $c^{\prime} \in\{1,2, \ldots, c-1\}$ in the MIS, then v chooses not to join the MIS; otherwise v joins the MIS. Thus all vertices of color c are processed in $O(1)$ rounds and therefore, Phase 2 runs in $O\left(2^{2 \Delta}\right)$ rounds. Since it is given that $\Delta \leq 10,2^{2 \Delta}$ is bounded above by a constant (though a somewhat large constant). Therefore, Phase 2 runs in $O(1)$ rounds, also in the Congest model and the entire algorithm runs in $O\left(\log ^{*} n\right)$ rounds in the Congest.
Remark: I did not prove the correctness of the algorithm here, but hopefully it is easy to see.
(4) Node v intitalizes its color $c(v)$ to \perp and a boolean flag done (v) to False. To initialize its palette $P(v)$, node v executes the following 2-round algorithm. The purpose of this algorithm is simply to count the number of nodes in the 2-neighborhood of eacn node v.

1. v sends ID_{v} to all neighbors
2. v receives IDs from neighbors; let $N_{I D}(v)$ denote the set of IDs received
3. v sends $N_{I D}(v)$ to all neighbors. (In this step messages can be quite large.)
4. v receives sets of IDs from neighbors.
5. for each neighbor u do
6. $N_{I D}(v) \leftarrow N_{I D}(v) \cup N_{I D}(u)$
7. $P(v) \leftarrow\left\{1,2, \ldots,\left|N_{I D}(v)\right|\right\}$

After $P(v)$ has been initialized, node v repeatedly executes the following 4-round algorithm.
// Pick a tentative color, if not already permanently colored

1. if not done (v) then
2. $\quad c(v) \leftarrow$ a color picked uniformly at random from palette $P(v)$
3. $\quad v$ sends $c(v)$ to all neighbors
// Even permanently colored nodes should continue to pass on received colors to neighbors 4. v receives colors from neighbors; let $N_{C}(v)$ denote the set of colors received
4. v sends $N_{C}(v)$ to all neighbors. (In this step messages can be quite large.)
// Determine if my color collides with the color of any node in my 2-nbd
6 . if not done (v) then
5. $\quad v$ receives sets of colors from neighbors
6. for each neighbor u that v receives a set of colors from do
7. $\quad N_{C}(v) \leftarrow N_{C}(v) \cup N_{C}(u)$
// If there is no collision then I become permanently colored
if $c(v) \notin N_{C}(v)$ then
done $(v) \leftarrow$ True
v sends $c(v)$ to all neighbors
//Permanently assigned colors need to be deleted from palletes in 2-nbd of still-active nodes
8. v receives colors from neighbors; let $N_{P}(v)$ denote the set of colors received
9. v sends $N_{P}(v)$ to all neighbors. (In this step messages can be quite large.)
10. if not done (v) then
11. v receives sets of colors from neighbors
12. for each neighbor u that v receives a set of colors from do
13. $\quad P(v) \leftarrow P(v) \backslash P_{N}(u)$
(5.a) Suppose that the while-loop in the above algorithm runs for t iterations, for some nonnegative integer t. For $1 \leq i \leq t$, let S_{i} denote the set S in the i th iteration of the whileloop. Thus S_{1} denotes the set of nodes in G with degree at most 2 . More generally, S_{i} is the set of nodes that have degree at most 2 in the subgraph of G induced by $S_{i} \cup S_{i+1} \cup \cdots \cup S_{t}$.
We now prove by contradiction that $\left|S_{1}\right| \geq n / 3$. Otherwise, if $\left|S_{1}\right|<n / 3$, then G contains more than $2 n / 3$ nodes with degree 3 or more. Therefore, the total degree of nodes in $V \backslash S_{1}$ is more than $3 \cdot 2 n / 3=2 n$. Hence, the number of edges incident on nodes in $V \backslash S_{1}$ is more than n, which contradicts the fact that G is a tree and has at most $n-1$ edges.
The proof in the previous paragraph can be used to show the more general claim that $\left|S_{i}\right|$ is at least one-third the size of $S_{i} \cup S_{i+1} \cup \cdots \cup S_{t}$. This means that in each iteration of the while-loop, the size of V is decreasing by a third, implying that it takes $O(\log n)$ iterations of the while-loop before V becomes empty.
(5.b) The deterministic algorithm for 3 -coloring an unoriented tree in $O(\log n)$ rounds, is as follows.
14. Implement the non-distributed algorithm described in the problem in the Congest model, but with one change. The given algorithm says that if e has both end points in S, orient it arbitrarily. The change we make is to leave such edges unoriented for now.
Running time: Each iteration of the while-loop takes $O(1)$ rounds in the Congest model and therefore, using the proof in $5(\mathrm{a})$ we see that this algorithm runs in $O(\log n)$ rounds.
15. Use the Cole-Vishkin algorithm to produce, in parallel for all $i, 1 \leq i \leq t$, a 3 -coloring of $G\left[S_{i}\right]$.
Running time: $O\left(\log ^{*} n\right)$ rounds.
Note: This is not a 3-coloring of the entire graph because two adjacent nodes, one in S_{i} and the other in $S_{j}, j \neq i$, can have the same color.
16. Consider the sets $S_{t}, S_{t-1}, \ldots, S_{2}, S_{1}$ (in this order, one after the other). For each set S_{i} and for each $j=1,2,3$, let $S_{i, j}$ denote the subset of S_{i} of nodes colored j. For each set S_{i} orient every edge e with both endpoints in S_{i} from the endpoint with larger color to the endpoint with smaller color. In other words, edges with both endpoints in S_{i} will be oriented from $S_{i, 3}$ to $S_{i, 2}$ and $S_{i, 1}$ and from $S_{i, 2}$ to $S_{i, 1}$. For each $j=1,2,3$ (considered in this order), process all nodes in $S_{i, j}$ in parallel, as follows. Each node v in $S_{i, j}$, examines the at most two out-neighbors it has and assigns itself a color from $\{1,2,3\}$ distinct from the colors assigned to the out-neighbors.
Running time: $O(t)=O(\log n)$ rounds.

This algorithm runs in $O(\log n)$ rounds. We will now show that it is correct, i.e., it produces a proper 3 -coloring of G. The proof is by induction and the inductive hypothesis is the following:

After set S_{i} has been processed in Step 2 above, we have constructed a proper 3-coloring of the subgraph of G induced by sets $S_{i} \cup S_{i+1} \cup \cdots \cup S_{t}$.
Showing this for $i=1$ gives us a proper 3-coloring of G.
The inductive hypothesis is trivially true for $i=t+1$. Now suppose that we have processed set S_{i} and have a proper 3 -coloring of the graph induced by $S_{i} \cup S_{i+1} \cup \cdots \cup S_{t}$. Now the algorithm processes the set S_{i-1} in three sub-steps: first $S_{i-1,1}$ is processed, then $S_{i-1,2}$ is processed, and then $S_{i-1,3}$ is processed. After set $S_{i-1,1}$ is processed, we are guaranteed that the subgraph induced by $S_{i-1,1} \cup S_{i} \cup S_{i+1} \cup \cdots \cup S_{t}$ is properly 3 -colored. This is because no two nodes in $S_{i-1,1}$ are adjacent and therefore they can choose colors independently. Furthermore, each node $v \in S_{i-1,1}$ has no out-neighbors in $S_{1} \cup S_{2} \cup \ldots \cup S_{i-1}$ and at most two neighbors in $S_{i} \cup S_{i+1} \cup \cdots \cup S_{t}$ and therefore v can choose a "permanent" color from $\{1,2,3\}$ distinct from its neighbors in $S_{i} \cup S_{i+1} \cup \cdots \cup S_{t}$. Similarly, after set $S_{i-1,2}$ is processed, we are guaranteed that the subgraph induced by $S_{i-1,2} \cup S_{i-1,1} \cup S_{i} \cup S_{i+1} \cup \cdots \cup S_{t}$ has a proper 3 -coloring. Note that when a node $v \in S_{i-1,2}$ is processed, any neighbor(s) it has in $S_{i-1,1}$ have already received a "permanent" color and v will take this into account when assigning itself a "permanent" color from $\{1,2,3\}$. The same argument holds for $S_{i-1,3}$ and as a result the inductive hypothesis will hold after set S_{i-1} has been processed.
(6) We start the algorithm with nodes exchanging their r-values. This takes $O(1)$ rounds in the Congest model. If two neighboring nodes have the same r-values, then the algorithm aborts without producing a coloring. Otherwise, we start the greedy $(\Delta+1)$-coloring algorithm.
We first show that the probability that two neighboring nodes will have the same r-values is small. Let u and v be two nodes in the network. Then,

$$
\operatorname{Pr}(r(u)=r(v))=\frac{1}{2^{c^{\prime} \cdot\left\lceil c \log _{2} n\right\rceil}}
$$

By choosing c^{\prime} to be a large enough constant (e.g., $c^{\prime}=3$), we get that $\operatorname{Pr}(r(u)=r(v))<$ $1 / n^{3}$. In an n-node cycle, there are n pairs of neighboring nodes and using the union bound on these n pairs, we get

$$
\operatorname{Pr}(\text { There exist neighbors } u \text { and } v: r(u)=r(v))<\frac{1}{n^{2}}
$$

(Make sure you understand this calculation.) We say that there is a collision if two neighbors have the same r-values. Thus, Pr (no collison) $>1-1 / n^{2}$.
We now condition the rest of the analysis on the event that there is no collison. For two neighbors v_{1} and v_{2},

$$
\operatorname{Pr}\left(r\left(v_{1}\right)>r\left(v_{2}\right) \mid \text { no collision }\right)=\frac{1}{2}
$$

This follows from the fact that by symmetry $r\left(v_{1}\right)>r\left(v_{2}\right)$ and $r\left(v_{1}\right)<r\left(v_{2}\right)$ are equally likely. Now consider a path $\left(v_{1}, v_{2}, v_{3}\right)$ in the cycle. Then,

$$
\begin{aligned}
\operatorname{Pr}\left(r\left(v_{1}\right)>r\left(v_{2}\right)>r\left(v_{3}\right) \mid \text { no collision }\right)= & \operatorname{Pr}\left(r\left(v_{1}\right)>r\left(v_{2}\right) \mid \text { no collision }\right) \times \\
& \operatorname{Pr}\left(r\left(v_{2}\right)>r\left(v_{3}\right) \mid r\left(v_{1}\right)>r\left(v_{2}\right) \text { and no collision }\right) \\
= & \frac{1}{2} \cdot \frac{1}{3} .
\end{aligned}
$$

Continuing in this manner, we see that for a path $\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ in the cycle

$$
\operatorname{Pr}\left(r\left(v_{1}\right)>r\left(v_{2}\right)>\cdots>r\left(v_{t}\right) \mid \text { no collision }\right)=\frac{1}{t!}<\frac{1}{2^{t-1}}
$$

Now let $t=3\left\lceil\log _{2} n\right\rceil+2$ and for this value of t we see that

$$
\operatorname{Pr}\left(r\left(v_{1}\right)>r\left(v_{2}\right)>\cdots>r\left(v_{t}\right) \mid \text { no collision }\right)<\frac{1}{2 n^{3}}
$$

We call a path $P=\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ in the cycle decreasing if $r\left(v_{1}\right)>r\left(v_{2}\right)>\cdots>r\left(v_{t}\right)$. There are $2 n$ length- t paths in the cycle and taking a union bound over these we see that

$$
\operatorname{Pr}\left(\text { There exists a length }-t=3\left\lceil\log _{2} n\right\rceil+2 \text { decreasing path } \mid \text { no collision }\right)<\frac{1}{n^{2}}
$$

Thus conditioned on the "no collisions" event, with probability more than $1-1 / n^{2}$, the greedy $(\Delta+1)$-coloring (which is a 3 -coloring since $\Delta=2$) algorithm will run in at most $3\left\lceil\log _{2} n\right\rceil+2=\Theta(\log n)$ rounds. In other words,
$\operatorname{Pr}($ Greedy algorithm produces a 3 -coloring in $\Theta(\log n)$ rounds \mid no collision $)>1-\frac{1}{n^{2}}$.
Finally, using the fact that $\operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B)$, we see that the probability that there is no collision and the greedy algorithm produces a 3-coloring in at most $t=$ $3\left\lceil\log _{2} n\right\rceil+2$ rounds is more than $\left(1-1 / n^{2}\right) \cdot\left(1-1 / n^{2}\right)>1-1 / n$.

