CS:5620 Homework 2 Solution, Fall 2016

Table 1: Execution of cole-Vishkin 6 color algorithm

1101000

y=1111

w=100 y=101

v=101

prc - [(3 23) o

(2b) ¢ =1, ¢" = {3,4,5,6}

1

1-1-2-1-2.1
2

2

1
1-1-1-2-1-1
i)

(1.1.1.1.1.1)+(1.1.1.1.1.1)+(1-1~1-1-1-1)}

(2.c) Replacing 1 with 6 in the palette of v;

Z PT(WC,N(U))

ceP(u)

1 11 1 1 1
pPric,)==-1(1-2-=.=-1-1 1.1-.2.1-=.1 1.1-1-=-1-1
=g |(aag) s orgg) e (g

1 1
<2.1-1-1.1-1)+(1-1-1-1.1-1)+(2-1-1-1-1-1)}

1 /1 1,1 1 1
Pr[Cu]=6-<+++++1)

N | =

8§ 4 2 2 2
23 46 53

PT[Cu]:ZS:%<%

The probability goes down as expected.

(3) In the first phase, we run the Cole-Vishkin algorithm to obtain a 222-coloring in O(log* n)
rounds. This algorithm runs in the CONGEST model. Now we start the second phase of the
algorithm. For each color ¢ € {1,2,...,2%2} considered in this order, we process all vertices
of color ¢ in parallel. If a vertex v of color ¢ has a neighbor of color ¢’ € {1,2,...,¢—1} in
the MIS, then v chooses not to join the MIS; otherwise v joins the MIS. Thus all vertices of
color ¢ are processed in O(1) rounds and therefore, Phase 2 runs in O(224) rounds. Since
it is given that A < 10, 222 is bounded above by a constant (though a somewhat large
constant). Therefore, Phase 2 runs in O(1) rounds, also in the CONGEST model and the
entire algorithm runs in O(log* n) rounds in the CONGEST.

Remark: I did not prove the correctness of the algorithm here, but hopefully it is easy to
see.

(4) Node v intitalizes its color ¢(v) to L and a boolean flag done(v) to False. To initialize
its palette P(v), node v executes the following 2-round algorithm. The purpose of this
algorithm is simply to count the number of nodes in the 2-neighborhood of eacn node v.

. v sends ID, to all neighbors

. v receives IDs from neighbors; let Nyp(v) denote the set of IDs received

. v sends Nyp(v) to all neighbors. (In this step messages can be quite large.)
. v receives sets of IDs from neighbors.

. for each neighbor u do

N[D(’U) — N[D(U) U N]D(U)

. Plv) «{1,2,...,|Np(v)|}

o I

After P(v) has been initialized, node v repeatedly executes the following 4-round algorithm.

// Pick a tentative color, if not already permanently colored

1. if not done(v) then

2. ¢(v) + a color picked uniformly at random from palette P(v)
3. v sends c(v) to all neighbors

// Even permanently colored nodes should continue to pass on received colors to neighbors
4. v receives colors from neighbors; let N¢(v) denote the set of colors received
5. v sends N¢(v) to all neighbors. (In this step messages can be quite large.)

// Determine if my color collides with the color of any node in my 2-nbd
6. if not done(v) then
7. v receives sets of colors from neighbors

(5.b)

8. for each neighbor u that v receives a set of colors from do
9. N¢(v) < Neo(v) U Ne(u)

// If there is no collision then I become permanently colored
10. if ¢(v) € Ne(v) then
11. done(v) < True
12. v sends c¢(v) to all neighbors

//Permanently assigned colors need to be deleted from palletes in 2-nbd of still-active nodes

13. v receives colors from neighbors; let Np(v) denote the set of colors received
14. v sends Np(v) to all neighbors. (In this step messages can be quite large.)
15. if not done(v) then

16. v receives sets of colors from neighbors

17. for each neighbor u that v receives a set of colors from do

18. P(v) « P(v) \ Py(u)

Suppose that the while-loop in the above algorithm runs for ¢ iterations, for some non-
negative integer ¢t. For 1 <14 <, let S; denote the set S in the ith iteration of the while-
loop. Thus 57 denotes the set of nodes in G with degree at most 2. More generally, S; is the
set of nodes that have degree at most 2 in the subgraph of G induced by S;US; 1 U---US;.

We now prove by contradiction that |S1| > n/3. Otherwise, if |S1| < n/3, then G contains
more than 2n/3 nodes with degree 3 or more. Therefore, the total degree of nodes in V'\ S}
is more than 3 - 2n/3 = 2n. Hence, the number of edges incident on nodes in V' \ Sy is
more than n, which contradicts the fact that G is a tree and has at most n — 1 edges.

The proof in the previous paragraph can be used to show the more general claim that |.S;|
is at least one-third the size of S; US;11U---US;. This means that in each iteration of the
while-loop, the size of V' is decreasing by a third, implying that it takes O(logn) iterations
of the while-loop before V' becomes empty.

The deterministic algorithm for 3-coloring an unoriented tree in O(logn) rounds, is as
follows.

1. Implement the non-distributed algorithm described in the problem in the CONGEST
model, but with one change. The given algorithm says that if e has both end points
in S, orient it arbitrarily. The change we make is to leave such edges unoriented for
now.

Running time: Each iteration of the while-loop takes O(1) rounds in the CONGEST
model and therefore, using the proof in 5(a) we see that this algorithm runs in O(logn)
rounds.

2. Use the Cole-Vishkin algorithm to produce, in parallel for all 7, 1 <17 < ¢, a 3-coloring
of G[S;].
Running time: O(log” n) rounds.
Note: This is not a 3-coloring of the entire graph because two adjacent nodes, one
in S; and the other in S, j # %, can have the same color.

3. Cousider the sets S¢, Si—1,...,52,S51 (in this order, one after the other). For each set
S; and for each j = 1,2,3, let S; ; denote the subset of S; of nodes colored j. For each
set .S; orient every edge e with both endpoints in S; from the endpoint with larger
color to the endpoint with smaller color. In other words, edges with both endpoints in
S; will be oriented from S; 3 to S; 2 and S; 1 and from S; » to S; 1. For each j =1,2,3
(considered in this order), process all nodes in S; ; in parallel, as follows. Each node v
in S; ;j, examines the at most two out-neighbors it has and assigns itself a color from
{1,2,3} distinct from the colors assigned to the out-neighbors.

Running time: O(t) = O(logn) rounds.

This algorithm runs in O(log n) rounds. We will now show that it is correct, i.e., it produces
a proper 3-coloring of G. The proof is by induction and the inductive hypothesis is the
following:

After set S; has been processed in Step 2 above, we have constructed a proper
3-coloring of the subgraph of G induced by sets S; U S; 41 U--- U S;.

Showing this for ¢ = 1 gives us a proper 3-coloring of G.

The inductive hypothesis is trivially true for ¢ = t+1. Now suppose that we have processed
set S; and have a proper 3-coloring of the graph induced by S; U S;11 U---US;. Now the
algorithm processes the set S;_; in three sub-steps: first S;_1 1 is processed, then S;_1 o is
processed, and then S;_; 3 is processed. After set S;_;; is processed, we are guaranteed
that the subgraph induced by S;_1 1US;US;+1U- - :US} is properly 3-colored. This is because
no two nodes in S;_1,; are adjacent and therefore they can choose colors independently.
Furthermore, each node v € S;_1,; has no out-neighbors in S; U Sy U... U S;_; and at
most two neighbors in S; US;4+1 U---US; and therefore v can choose a “permanent” color
from {1, 2,3} distinct from its neighbors in S; US; 11 U---US;. Similarly, after set S;_1 2 is
processed, we are guaranteed that the subgraph induced by S;_1 2US;—1,1US;US;1U- - -US,
has a proper 3-coloring. Note that when a node v € S;_1 2 is processed, any neighbor(s) it
has in S;_1,; have already received a “permanent” color and v will take this into account
when assigning itself a “permanent” color from {1,2,3}. The same argument holds for
Si—1,3 and as a result the inductive hypothesis will hold after set S;_; has been processed.

We start the algorithm with nodes exchanging their r-values. This takes O(1) rounds in
the CONGEST model. If two neighboring nodes have the same r-values, then the algorithm
aborts without producing a coloring. Otherwise, we start the greedy (A + 1)-coloring
algorithm.

We first show that the probability that two neighboring nodes will have the same r-values
is small. Let v and v be two nodes in the network. Then,

Pr (T(u) = 7’(11)) L

By choosing ¢’ to be a large enough constant (e.g., ¢ = 3), we get that Pr(r(u) =r(v)) <
1/n3. In an n-node cycle, there are n pairs of neighboring nodes and using the union bound
on these n pairs, we get

1
Pr (There exist neighbors u and v: r(u) = r(v)) <=
n

(Make sure you understand this calculation.) We say that there is a collision if two
neighbors have the same r-values. Thus, Pr(no collison) > 1 — 1/n?.

We now condition the rest of the analysis on the event that there is no collison. For two
neighbors v; and vs,

1
Pr (r(v1) > r(v2)| no collision) = 3

This follows from the fact that by symmetry r(v1) > r(v2) and r(vy) < r(ve) are equally
likely. Now consider a path (v1,v2,v3) in the cycle. Then,

Pr(r(v1) > r(ve) > r(vs)| no collision) = Pr(r(vy) > r(vz)| no collision) x

Pr(r(ve) > r(vs)|r(v1) > r(ve) and no collision)

5wl

at

TN

Continuing in this manner, we see that for a (v1,va,...,v) in the cycle

1 1
Pr(r(vl) > r(vg) > -+ > r(v)| no collision) =5 < 51

Now let t = 3[log, n] + 2 and for this value of ¢ we see that

Pr (r(vl) > r(vg) > -+ > r(v)| no collision) <33
n

We call a path P = (vy,vs,...,v:) in the cycle decreasing if r(vi) > r(va) > -+ > r(ve).

There are 2n length-t paths in the cycle and taking a union bound over these we see that

1
Pr (There exists a length-t = 3[logy n] + 2 decreasing path| no collision) < —.
n

Thus conditioned on the “no collisions” event, with probability more than 1 — 1/n?, the
greedy (A + 1)-coloring (which is a 3-coloring since A = 2) algorithm will run in at most
3[logy n] + 2 = O(log n) rounds. In other words,

1

Pr (Greedy algorithm produces a 3-coloring in ©(logn) rounds| no collision) >1-—.

n
Finally, using the fact that Pr(A and B) = Pr(A|B) - Pr(B), we see that the probability
that there is no collision and the greedy algorithm produces a 3-coloring in at most ¢ =
3[log, n] + 2 rounds is more than (1 —1/n%)- (1 —1/n?) >1—1/n.

