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Assume that P(v) is initially set to {1,2,...,2A} for all nodes v. This asumption is just
for this “warm-up” analysis; in the actual algorithm, P(v) = {1,2,...,degree(v) + 1} initially
for all nodes v. Note that this assumption implies that |P(v)| > A for all nodes v, throughout
the algorithm. Fix a round ¢ and let w be an arbitrary node that has not been colored after
the first ¢ — 1 rounds. Let X, denote the event that u is colored in round i. We will show that
Pr(X,)>1/4.

Let W, ,, denote the event that node u has selected color ¢, as a “tentative” color. Note that
Pr(We.,) =1/|P(u)| if ¢ € P(u) and otherwise Pr(W,,) = 0.
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Now we focus on finding a lower bound for Pr(W.,). If ¢ ¢ P(v) then Pr(W.,) = 1. If
¢ € P(v) then Pr(W,,) = 1 —1/|P(v)|. Therefore, independent of whether ¢ € P(v), we see
that Pr(W.,) > (1 — 1/|P(v)|). Since |P(v)| > A, this implies that Pr(W.,) > (1 — 1/A).
Plugging this lower bound into the right hand side of (1) we get

Since [N (u)| < A, ) \A
1;[() (1 - A) = (1 - A) '

Plugging this into (2), we get
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Now we use the fact that (1 — 1/x)* > 1/4 for all z > 2 to obtain the result Pr(X,) > 1/4 for
A>2.




