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1 LP example

Let us consider this LP example, we introduced in last class:

max
{x1,x2,x3,x4}

x1 + 2x2 + x3 + x4

s.t. x1 + 2x2 + x3 ≤ 2

x2 + x4 ≤ 1

x1 + 2x3 ≤ 1

x1, x2, x3, x4 ≥ 0

(1)

Someone has proposed a solution, x1 = 1, x2 = 1
2 , x3 = 0, x4 = 1

2 which gives us the objective
function value = 2.5. They claim that this solution is optimal.

Let us find multipliers one for each of the constraints and consider a linear combination of the
constraints and the multiplier.
Using multipliers (1, 1, 0) gives us, 1×(1)+1×(2)+0×(3). This evaluates to x1+3x2+x3+x4 ≤ 3.

=⇒ Objective function value ≤ x1 + 3x2 + x3 + x4 ≤ 3

Is there a better upper bound? Consider, another set of multipliers (12 , 1,
1
2) that gives, 1

2 × (1) +
1× (2) + 1

2 × (3). This evaluates to x1 + 2x2 + 1.5x3 + x4 ≤ 2.5.

=⇒ Objective function value ≤ x1 + 2x2 + 1.5x3 + x4 ≤ 2.5

The second choice of multipliers gives more strong upper bound on the right hand side. We can
generalize our goal is to find the scaling factors that give us the best possible upper bound (for
maximization problem, lower bound for minimization problem) to the objective function.

2 LP duality

Given a LP problem (referred as a primal problem) with a set of constraints, we approach to find
the optimal multipliers for each of the constraints so as to obtain the strongest bound possible.
We can express the problem of finding the best multipliers as another LP which is called dual LP.
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Suppose that we have a maximization LP in standard form.

max
x1,x2,...,xn

c1x1 + c2x2 + . . . + cnxn

s.t. a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2
...

am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

(2)

Goal:
Find non-negative multipliers y1, y2, . . . , ym such that, b1y1 + b2y2 + . . . bmym is minimized and
following constraints are satisfied.

c1 ≤ y1a11 + y2a21 + . . . + ymam1

c2 ≤ y1a12 + y2a22 + . . . + ymam2

...

cn ≤ y1a1n + y2a2n + . . . + ymamn

y1, y2, . . . , ym ≥ 0

(3)

In the LP example given in (1), we have already discussed this objective. We chose y1 = 1
2 , y2 =

1, y3 = 1
2 such that it satisfied the coefficient constraints given in (3) and also gave the stronger

upper bound b1y1 + b2y2 + b3y3 = 2.5

What we find that the goal basically gives us another LP problem, this time a minimization
problem with following standard form:

min
y1,y2,...,ym

b1y1 + b2y2 + . . . + bmym

s.t. a11y1 + a21y2 + . . . + am1ym ≥ c1

a12y1 + a22y2 + . . . + am2ym ≥ c2
...

a1ny1 + a2ny2 + . . . + amnym ≤ cn

y1, y2, . . . , ym ≥ 0

(4)

So if we have a LP in maximization form (2), which we are going to call the primal LP, its dual
LP (4) is a minimization problem that can be formed by having one variable for each constraint
of the primal and having one constraint for each variable of the primal such that for any feasible
(x1, x2, . . . xn) and (y1, y2, . . . , ym),

c1x1 + c2x2 + . . . + cnxn ≤ b1y1 + b2y2 + . . . + bmym.

It is convenient to think of these LPs in matrix form.
Maximization form:
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max
x

cTx

s.t. Ax ≤ b

x ≥ 0

(5)

Minimization form:

min
y

bT y

s.t. ATxy ≥ c

y ≥ 0

(6)

If there is a primal LP problem, it has a corresponding dual problem. The reverse is also true since
dual of dual is a primal. We can represent the (6) as below:

max
y

(−b)T y

s.t. (−A)T y ≤ (−c)
y ≥ 0

(7)

The problem in (7) is in standard form so we can take its dual to get the LP.

min
x

(−c)Tx

s.t. (−AT )Tx ≥ (−b)
x ≥ 0

(8)

which is basically,
max
x

cTx

s.t. Ax ≤ b

x ≥ 0

(9)

Theorem 1 Weak LP duality
If x is a feasible solution of the primal LP and y is a feasible solution of the dual LP then,

cTx ≤ bT y

Theorem 2 Strong LP duality
If x∗ is an optimal solution of the primal LP and y∗ is an optimal solution of the dual LP then,

cTx∗ = bT y∗

Example:
Given the following primal maximization problem, convert it to a dual LP problem.
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max
x1,x2,x3

3x1 + 2x2 + x3

s.t. x1 + 4x3 ≤ 7

x2 + 2x3 ≤ 1

x1 + x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

(10)

Solution:

min
y1,y2,y3

7y1 + y2 + 3y3

s.t. y1 + y3 ≥ 3

y2 + y3 ≥ 2

4y1 + 2y2 + y3 ≥ 1

y1, y2, y3 ≥ 0

(11)

3 MaxFlow LP

This section introduces an alternate LP for MAXFLOW that will make it easier to write and
interpret the dual LP.

Choice variables: For each s → t path P in G lets define a variable Xp denoting the flow along
path P .

S T

P

Xp = flow along P

Notes:

• Following LP formulation depends on the flow decomposition theorem. In flow decomposition,
we can decompose any feasible flow into a finite number of paths. Different paths P can
include the same edge e in G. So there would be different flows Xp across an edge e.

• The s→ t paths need not to be disjoint in any sense and therefore there can be exponentially
many s → t paths. Therefore, the number of choice variables xp can be exponential in the
size of the graph.
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LP formulation:

max
XP

∑
P

XP

s.t.
∑

P :e∈P
XP ≤ ce, for every e ∈ E

XP ≥ 0, for all paths P

(12)

This LP is in standard form. If we take this to be the primal LP, by comparing with (5) we get,

c1×r = (1, 1, . . . , 1), where r = number of s→ t paths in G and,
b1×m = (ce1 , ce2 , . . . , cem)T , where m is the number of edges.

Am×r =


0 1 1 . . . 1 1
1 0 0 . . . 1 0
1 0 0 . . . 0 1
...

...
...

...
...

0 1 1 . . . 0 1

 (13)

Aij =

{
1 if edge i is an incident on path j

0 otherwise

Matrix A is also called edge-path incidence matrix.

Dual form:
Let consider dual variable ye for each edge e ∈ E. Then,

min
ye

∑
e∈E

ceye

s.t.
∑
e∈P

ye ≥ 1, for each s→ t path P

ye ≥ 0, for each e ∈ E

(14)

Remember, we wanted to illustrate that the MAXFLOW-MINCUT theorem is just a special case
of LP duality. But, at first glance this LP seems to have nothing to do with the MINCUT. In the
next class, we will come up with an interpretation of this LP that connects it to MINCUT.
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