1 Minimum Vertex Cover

Greedy algorithm for MVC (Here is a greedy (deterministic) algorithm for MVC):

- 1. $S \leftarrow \emptyset$
- while (S is not a vertex cover) do: // greedy step
- 3. pick a vertex with highest degree, v, in active graph and add to S
- 4. deactivate all activate edges incident on v
- 5. Output S

1.1 Counter Examples:

Figure 1 shows a simple counter example to show that the greedy algorithm will not always produce an optimal solution for MVC.

Figure 1: Simple counterexamp graph

In fact, the output of the greedy algorithm can be quite poor, as showing in the following claim. **Claim**: There exists a graph G = (V, E), |V| = n such that $|S| = \Omega(\log(n)) \cdot |S^*|$, where S is the output of greedy algorithms, and S^* is the optimal vertex cover.

Proof: Construct a bipartite graph (Figure 2), which contains $G = (L \cup R, E)$. Let k denote |L|, where $R = R_1 \cup R_2 \cup \cdots \cap R_k$. For each set R_i :

1. $|R_i| = \lfloor \frac{k}{i} \rfloor$

2. Each vertex in R_i has degree *i* and no two vertexes in R_i have a common neighbour.

The vertex in R_k would be the first node to to be selected to join S by the greedy MVC algorithm since its degree is k. All other nodes in R have degree less than k and nodes in L also have degree less than k (the largest degree in the L is k - 1). After deleting all the edges that connected with this node R_k , all the degree of nodes in the L will also decrease 1. Then in the next iterations, the nodes in R_{k-1} will be selected one by one, and on and on until all the nodes in R are selected to join S.

Then the final output $|S| = \sum_{i=2}^{k} |R_i| = \lfloor \frac{k}{i} \rfloor| \sim k \sum_{i=1}^{k} \frac{1}{i} = \Theta(k \log(k))$, but |L| = k. \Box .

Figure 2: Constructed counterexample of bipartite graph

2 Landscape of problems approximation factors

Category of	Best known		
Approximation Factor	Approximation Factor	Problem	Notes
			Using data rounding
PTAS	$(1+\epsilon)$, for any $\epsilon > 0$	Knapsack	and dynamic programming, there
			is an $O(\frac{n^3}{\epsilon})$ time complexity algorithm
			α -approximation,
constant	2	K-center	for $\alpha < 2$ is not possible unless
			$\mathbf{P} = \mathbf{NP}$
	2	MVC	Whether there is a better than
			2-approximation is a long-
			standing open problem
			Better approximation is not
logarithmic	ln(n)	SET COVER	possible unless all problems in NP
	n =size of ground set		can be solved in sub-exponential time
	ln(n)	Min. Dominating	MDS is just a special
	n =size of vertexes	Set (MDS)	case of SET COVER
		Maximum	No $O(n^{1-\epsilon})$ -approximation exists
Polynomial	$O(\frac{n}{poly(\log n)})$	Independent Set	unless P=NP

Table 1: Landscape of problems approximation factor

Figure 3: Landscape of techniques

Remark: Figure 3 illustrates the landscapes of techniques for solving the problems in Table 1.

3 K-Center

K-Center: well known clustering problems with many applications (e.g. unsupervised learning.)

Definition (Distance Metric): Let $P = \{p_1, p_2, \dots, p_n\}$ be a set of points. Let $D : P \times P \to \mathbb{R}_{\geq 0}$ be a function. D is a called metric if:

- 1. $D(p_i, p_i) = 0$ for all $p_i \in P$ (reflexive)
- 2. $D(p_i, p_j) = D(p_j, p_i)$ for all $p_i, p = j \in P$ (symmetric)
- 3. $D(p_i, p_j) + D(p_j, p_k) \ge D(p_i, p_k)$ for all $p_i, p_j, p_k \in P$ (triangle inequality)

Examples (Aside from Euclidean Distance):

- 1. Let G = (V, E) be an undirected graph. for any $u, v \in V$, D(u, v) denotes the shortest path distance between (u, v). It is easy to check that D is a metric.
- 2. Let G = (V, E) be an undirected graph. For any $u, v \in V$, let D(u, v) = 1, if $\{u, v\} \in E$ and D(u, v) = 2 if $\{u, v\} \notin E$. Also D(v, v) = 0 for all $v \in V$. D is a metric as $D(u, v) + D(v, k) \ge D(u, k)$.

Notation: Let $S \subseteq P$, $D(p, S) = \min_{s \in S} D(p, s)$:

K-Center:

- 1. Input: A metric $D: P \times P \to \mathbb{R}_{>0}$.
- 2. **Output**: A subset $S \subseteq P, |S| = k$ such that $\max_{p \in P} D(p, S)$ is minimized.

Alternative view of K-Center:

Let $S \subseteq P$, |S| = k. For each $p \in P$, assign p to the nearest center; (i.e point in S). And for each $s \in S$, Ball(s) = set of points assigned to s. And the radius of s is $radius(s) = \max_{p' \in Ball(s)} D(p', s)$. And the radius of the set S Radius $(S) = \max_{s \in S} radius(s)$. We are looking for a subset $S \subseteq P$ with k points, whose radius is the smallest.