1 Minimum Vertex Cover

Greedy algorithm for MVC (Here is a greedy (deterministic) algorithm for MVC):

1. $S \leftarrow \emptyset$
2. while (S is not a vertex cover) do:
// greedy step
3. pick a vertex with highest degree, v, in active graph and add to S
4. deactivate all activate edges incident on v
5. Output S

1.1 Counter Examples:

Figure 1 shows a simple counter example to show that the greedy algorithm will not always produce an optimal solution for MVC.

Figure 1: Simple counterexamp graph
In fact, the output of the greedy algorithm can be quite poor, as showing in the following claim.
Claim: There exists a graph $G=(V, E),|V|=n$ such that $|S|=\Omega(\log (n)) \cdot\left|S^{*}\right|$, where S is the output of greedy algorithms, and S^{*} is the optimal vertex cover.
Proof: Construct a bipartite graph (Figure 2), which contains $G=(L \cup R, E)$. Let k denote $|L|$, where $R=R_{1} \cup R_{2} \cup \cdots R_{k}$. For each set R_{i} :

1. $\left|R_{i}\right|=\left\lfloor\frac{k}{i}\right\rfloor$
2. Each vertex in R_{i} has degree i and no two vertexes in R_{i} have a common neighbour.

The vertex in R_{k} would be the first node to to be selected to join S by the greedy MVC algorithm since its degree is k. All other nodes in R have degree less than k and nodes in L also have degree less than k (the largest degree in the L is $k-1$). After deleting all the edges that connected with this node R_{k}, all the degree of nodes in the L will also decrease 1 . Then in the next iterations, the nodes in R_{k-1} will be selected one by one, and on and on until all the nodes in R are selected to join S.

Then the final output $|S|=\sum_{i=2}^{k}\left|R_{i}\right|=\left\lfloor\frac{k}{i}\right\rfloor \left\lvert\, \sim k \sum_{i=1}^{k} \frac{1}{i}=\Theta(k \log (k))\right.$, but $|L|=k$.

Figure 2: Constructed counterexample of bipartite graph

2 Landscape of problems approximation factors

Category of Approximation Factor	Best known Approximation Factor	Problem	Notes
PTAS	$(1+\epsilon)$, for any $\epsilon>0$	Knapsack	Using data rounding and dynamic programming, there is an $O\left(\frac{n^{3}}{\epsilon}\right)$ time complexity algorithm
constant	2	K-center	α-approximation, for $\alpha<2$ is not possible unless $\mathrm{P}=\mathrm{NP}$
	2	MVC	Whether there is a better than 2-approximation is a longstanding open problem
logarithmic	$\begin{gathered} \ln (n) \\ n=\text { size of ground set } \end{gathered}$	SET COVER	Better approximation is not possible unless all problems in NP can be solved in sub-exponential time
	$\begin{gathered} \ln (n) \\ n=\text { size of vertexes } \end{gathered}$	Min. Dominating Set (MDS)	MDS is just a special case of SET COVER
Polynomial	$O\left(\frac{n}{\text { poly }(\log n)}\right)$	Maximum Independent Set	No $O\left(n^{1-\epsilon}\right)$-approximation exists unless $\mathrm{P}=\mathrm{NP}$

Table 1: Landscape of problems approximation factor

Figure 3: Landscape of techniques
Remark: Figure 3 illustrates the landscapes of techniques for solving the problems in Table 1.

3 K-Center

K-Center: well known clustering problems with many applications (e.g. unsupervised learning.)
Definition (Distance Metric): Let $P=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ be a set of points. Let $D: P \times P \rightarrow \mathbb{R}_{\geq 0}$ be a function. D is a called metric if:

1. $D\left(p_{i}, p_{i}\right)=0$ for all $p_{i} \in P$ (reflexive)
2. $D\left(p_{i}, p_{j}\right)=D\left(p_{j}, p_{i}\right)$ for all $p_{i}, p=j \in P$ (symmetric)
3. $D\left(p_{i}, p_{j}\right)+D\left(p_{j}, p_{k}\right) \geq D\left(p_{i}, p_{k}\right)$ for all $p_{i}, p_{j}, p_{k} \in P$ (triangle inequality)

Examples (Aside from Euclidean Distance):

1. Let $G=(V, E)$ be an undirected graph. for any $u, v \in V, D(u, v)$ denotes the shortest path distance between (u, v). It is easy to check that D is a metric.
2. Let $G=(V, E)$ be an undirected graph. For any $u, v \in V$, let $D(u, v)=1$, if $\{u, v\} \in E$ and $D(u, v)=2$ if $\{u, v\} \notin E$. Also $D(v, v)=0$ for all $v \in V$. D is a metric as $D(u, v)+D(v, k) \geq$ $D(u, k)$.

Notation: Let $S \subseteq P, D(p, S)=\min _{s \in S} D(p, s)$:

Figure 4: Illustrates of the distance between a point to a set i.e., $D(p, S)$.

K-Center:

1. Input: A metric $D: P \times P \rightarrow \mathbb{R}_{\geq 0}$.
2. Output: A subset $S \subseteq P,|S|=k$ such that $\max _{p \in P} D(p, S)$ is minimized.

Alternative view of K-Center:
Let $S \subseteq P,|S|=k$. For each $p \in P$, assign p to the nearest c̈enter; (i.e point in S). And for each $s \in S, \operatorname{Ball}(s)=$ set of points assigned to s. And the radius of s is radius $(\mathrm{s})=\max _{p^{\prime} \in \operatorname{Ball}(s)} D\left(p^{\prime}, s\right)$. And the radius of the set $S \operatorname{Radius}(S)=\max _{s \in S}$ radius(s). We are looking for a subset $S \subseteq P$ with k points, whose radius is the smallest.

