
Lecture Notes CS:5350 Introduction to Greedy approximation Algorithms
Lecture 6: Nov. 7, 2019

Scribe: Qi Qi

1 Minimum Vertex Cover

Greedy algorithm for MVC (Here is a greedy (deterministic) algorithm for MVC):

1. S ← ∅

2. while (S is not a vertex cover) do:
// greedy step

3. pick a vertex with highest degree, v, in active graph and add to S

4. deactivate all activate edges incident on v

5. Output S

1.1 Counter Examples:

Figure 1 shows a simple counter example to show that the greedy algorithm will not always produce
an optimal solution for MVC.

Figure 1: Simple counterexamp graph

In fact, the output of the greedy algorithm can be quite poor, as showing in the following claim.
Claim: There exists a graph G = (V,E), |V | = n such that |S| = Ω(log(n)) · |S∗|, where S is the
output of greedy algorithms, and S∗ is the optimal vertex cover.
Proof: Construct a bipartite graph (Figure 2), which contains G = (L ∪ R,E). Let k denote |L|,
where R = R1 ∪R2 ∪ · · ·Rk. For each set Ri:

1. |Ri| = bki c

2. Each vertex in Ri has degree i and no two vertexes in Ri have a common neighbour.

The vertex in Rk would be the first node to to be selected to join S by the greedy MVC
algorithm since its degree is k. All other nodes in R have degree less than k and nodes in L also
have degree less than k (the largest degree in the L is k − 1). After deleting all the edges that
connected with this node Rk, all the degree of nodes in the L will also decrease 1. Then in the
next iterations, the nodes in Rk−1 will be selected one by one, and on and on until all the nodes
in R are selected to join S.

Then the final output |S| =
∑k

i=2 |Ri| = b
k
i c| ∼ k

∑k
i=1

1
i = Θ(k log(k)), but |L| = k. �.

1

Figure 2: Constructed counterexample of bipartite graph

2 Landscape of problems approximation factors

Category of
Approximation Factor

Best known
Approximation Factor Problem Notes

PTAS (1 + ε), for any ε > 0 Knapsack

Using data rounding
and dynamic programming, there

is an O(n
3

ε) time complexity algorithm

constant

2 K-center

α-approximation,
for α < 2 is not possible unless

P = NP

2 MVC

Whether there is a better than
2-approximation is a long-

standing open problem

logarithmic

ln(n)
n =size of ground set

SET COVER

Better approximation is not
possible unless all problems in NP

can be solved in sub-exponential time
ln(n)

n =size of vertexes
Min. Dominating

Set (MDS)
MDS is just a special
case of SET COVER

Polynomial O(n
poly(logn))

Maximum
Independent Set

No O(n1−ε)-approximation exists
unless P=NP

Table 1: Landscape of problems approximation factor

Figure 3: Landscape of techniques

Remark: Figure 3 illustrates the landscapes of techniques for solving the problems in Table 1.

2

3 K-Center

K-Center: well known clustering problems with many applications (e.g. unsupervised learning.)

Definition (Distance Metric): Let P = {p1, p2, · · · , pn} be a set of points. Let D : P×P → R≥0
be a function. D is a called metric if:

1. D(pi, pi) = 0 for all pi ∈ P (reflexive)

2. D(pi, pj) = D(pj , pi) for all pi, p = j ∈ P (symmetric)

3. D(pi, pj) +D(pj , pk) ≥ D(pi, pk) for all pi, pj , pk ∈ P (triangle inequality)

Examples (Aside from Euclidean Distance):

1. Let G = (V,E) be an undirected graph. for any u, v ∈ V , D(u, v) denotes the shortest path
distance between (u, v). It is easy to check that D is a metric.

2. Let G = (V,E) be an undirected graph. For any u, v ∈ V , let D(u, v) = 1, if {u, v} ∈ E and
D(u, v) = 2 if {u, v} /∈ E. Also D(v, v) = 0 for all v ∈ V . D is a metric as D(u, v)+D(v, k) ≥
D(u, k).

Notation: Let S ⊆ P , D(p, S) = mins∈S D(p, s):

Figure 4: Illustrates of the distance between a point to a set i.e., D(p, S).

K-Center:

1. Input: A metric D : P × P → R≥0.

2. Output: A subset S ⊆ P, |S| = k such that maxp∈P D(p, S) is minimized.

Alternative view of K-Center:
Let S ⊆ P , |S| = k. For each p ∈ P , assign p to the nearest c̈enter̈, (i.e point in S). And for each
s ∈ S, Ball(s) = set of points assigned to s. And the radius of s is radius(s) = maxp′∈Ball(s)D(p′, s).
And the radius of the set S Radius(S) = maxs∈S radius(s). We are looking for a subset S ⊆ P
with k points, whose radius is the smallest.

3

