
Lecture Notes CS:5350 Design & Analysis of Algorithm
Lecture 23: November 12
Masuma Akter Rumi

1 Hardness of Approximating k-Center

We have been talking about greedy algorithms for approximation and we showed a 2-approximation
for k-Center problem in the previous class. We are going to show that it is hard to get a better
than 2-approximation for k-Center.

Theorem 1 For ρ < 2, if there is a ρ-approximation algorithm for k-Center then P = NP .

Proof: We will prove this by reduction from Minimum Dominating Set (MDS).

Now, recall that a dominating set S ⊆ V of a graph G = (V,E) is such that for every v ∈ V ,
either v ∈ S or a neighbor of v is in S. An example is given below:

Example:

Figure 1: The Minimum Dominating Set (MDS) of the example graph is, S={B,D}

Now, we know that MDS is an optimization problem where we want to minimize the number of
vertices that we pick for the dominating set. But, we also know that the theory of NP completeness,
in general the theory of hardness pertains to decision problems. So, we are interested in the decision
version of MDS. When we talk about decision problems, we ask YES/NO questions. We are not
trying to produce an output that is minimizing or maximizing an objective function. Instead we are
asking YES/NO questions and that is why these are called decision problem. The decision version
of MDS is given below:

MDS-decision version:
Input: A graph G = (V,E) and a positive integer k.
Output: “YES” if there is a dominating set of G of size ≤ k; otherwise “NO”.

We know that MDS-decision version is NP-complete.

1

Polynomial time reduction:
Now we are going to talk about the polynomial time reduction from MDS-decision version to k-
Center. Polynomial time reduction means that we will be given input for MDS-decision version
and we will feed this input to an algorithm running in polynomial time. This algorithm will produce
input to k-Center. A simple pictorial representation is given in Figure 2. A key property of the
reduction is that solving the k-Center problem on the input produced by the reduction will lead
to a solution to MDS-decision version input we started with.

Figure 2: Pictorial representation

Now if we assume such algorithm exists, then if we are given the input of MDS-decision version, we
would run the algorithm with this input and produce the input to k-Center. Then we would solve
the k-Center problem assuming that there is a ρ-approximation better than 2. Finally, from that
solution, we would extract solution (YES/NO answer) to MDS-decision problem. However, this will
be a contradiction, as we know that MDS-decision problem is NP-complete, so there should not be
any polynomial time algorithm for it. Now by adding the polynomial time reduction with the ex-
istence of better than ρ-approximation we find a contradiction. This is why, such ρ-approximation
cannot exist.

Input Construction:
We construct an input to k-Center from the given input (G = (V,E), k) to MDS-decision version
as follows:

– D(v, v) = 0 for all vertices

– D(u, v) = 1 for all {u, v} ∈ E

– D(u, v) = 2 for all {u, v} /∈ E

– Set k in k-Center to k in MDS-decision version input.

It is easy to check that D is a metric.

Example:
For figure 3,

– D(A,A) = 0

– D(A,B) = 1 as there is an edge between A and B

– D(A,C) = 2 as there is no direct edge between A and C

2

Figure 3: Example graph

– D(A,D) = 2 as there is no direct edge between A and D

Time complexity:
To construct an input to k-Center, we have to consider each pair of vertices which takes quadratic
time in the number of vertices. Therefore, it is easy to check that this reduction can be done in
polynomial time in the size of (G, k).

To continue the proof, now we suppose there exists a ρ-approximation algorithm A for k-Center
for some ρ < 2.

Now, we can show the scheme together with the following figure:

Figure 4: Pictorial representation of the scheme

Now the question is how can we take this output from algorithm A and get an answer (YES/NO)
to MDS?

To answer this question let us first understand what it means for a dominating set of size k to
exist. It means that every vertex of the graph is within one hop of dominating set vertices. Which
also means that every vertex has a distance of at most 1 from a dominating set. What happened
is that all of the vertices are in distance at most 1 from a center. Which implies that optimal
solution to k-Center has radius ≤ 1. Let us call this case as (Case 1) where the answer to the
MDS-decision version is “YES”. Let us now formally describe this Case 1.

Case 1: Suppose (G, k) is a “YES” instance of MDS-decision version, i.e. there exists a domi-

3

(a) (b)

Figure 5: Illustrating showing “YES” and “NO” instances of MDS-decision version

nating set S ⊆ V of G of size ≤ k. This implies that if we choose vertices in S to be the k centers
for the input (D, k), we get a solution with radius ≤ 1. Therefore, There is an optimal solution to
k-Center on (D, k) with radius ≤ 1. So, algorithm A produces a solution with radius ≤ ρ < 2

Now, we will consider the “NO” instance which states there does not exist any dominating set
≤ k. It means that no matter which k vertices we pick, there exists at least one vertex which is 2
or more hops away from the set of vertices we are considering. Formal description of case 2 is given
below:

Case 2: Suppose (G, k) is a “NO” instance of MDS-decision version. For any S ⊆ V , |S| ≤ k,
there is a vertex outside of S that has no neighbor in S. Therefore, D(v, S) = 2. So, the radius of
any solution to k-Center is = 2. Therefore, algorithm A produces a solution with radius = 2

Therefore, by checking if radius of output is < 2 or = 2 we can distinguish between “YES” in-
stance and “NO” instance of MDS-decision version in polynomial time.

2 SetCover

SetCover is another optimization problem for which a greedy algorithm gives the best approxima-
tion. Here, we are given a ground set X where |X| = m. We are also given n subsets S1, S2, . . . , Sn
of X. Our goal is to find the minimum number of subsets that cover all the elements of X. The
input and output of SetCover problem is given:

Input: Ground set X, |X| = m and subsets S1, S2, S3, . . . , Sn ⊆ X.
Output: C ⊆ {1, 2, . . . , n} such that,

⋃
i∈C Si = X and |C| is minimum.

Example:
We can see in Figure 7, there are 5 sets S1, S2, S3, S4, S5 that covers the given ground set with 12

4

Figure 6: Example of SetCover where solution is (S2, S3, S4)

elements. Our goal is to find minimum number of subsets that cover all the elements. From the
figure we see that subsets S2, S3, S4 cover all the vertices and also it is the minimum number of sets.

Observation: Minimum Vertex Cover (MVC) and Minimum Dominating Set (MDS) are special
cases of SetCover.

For instance, in MVC problem, we try to cover all the edges of the graph. So the edges will
be the ground set. And the subsets we are using to cover the edges are the set of vertices.

Algorithm 1 Greedy Algorithm for SetCover

1: U ← X {U is to be covered elements}
2: C ← ∅ {C is the solution}
3: while u 6= ∅ do
4: Pick Si such that |Si

⋂
u| is maximum

5: Add i to C
6: U ← U \ Si
7: end while
8: Output C

Greedy does not produce optimal solution. In fact we constructed a “bad” example for MVC for
which the greedy algorithm returns a solution whose size is Ω(log n) times optimal solution.

There is a hardness of approximation result known for MDS.

Theorem 2 For any ε > 0, if there is a (1− ε) lnn-approximation algorithm for SetCover then,
NP ⊆ DTIME(nO(log logn))

We will continue this discussion with more details in the next class.

5

