
Lecture Notes CS:5350 Design and Analysis of Algorithms
Lecture 13: Oct 8, 2019
Scribe: Hankyu Jang

1 Luby’s Algorithm for Maximal Independent Set (MIS)

In the previous lecture, we proved that high degree nodes get deactivated with at least constant
probability in the first iteration of Luby’s MIS algorithm. This is stated in the following lemma:

Lemma 1 Let ∆ be the maximum degree of the graph. Let v be a vertex with degree ≥ ∆
2 . Then,

v is deactivated in iteration 1 with probability ≥
(

1− 1

e
1
4

)
· 1

2

In today’s lecture, using this result, we will prove that Luby’s MIS algorithm terminates in
O(log n log ∆) rounds, with high probability, where n denotes the number of nodes in the graph.

1.1 Analysis for a particular vertex v

We now strengthen Lemma 1 to apply to all iterations. Note that the notation ∆ is being used in
slightly different ways in Lemma 1 and Lemma 2.

Lemma 2 Let ∆ be an upper bound on the maximum degree of the graph induced by active nodes
just before iteration i. Let us call this the active graph. Let v be a vertex with degree ≥ ∆

2 in this

active graph. Then, v is deactivated in iteration i with probability ≥
(

1− 1

e
1
4

)
· 1

2

A key point in Lemma 2 is that, in any iteration, the probability of a high degree vertex being
deactivated is at least a constant.
Note: The original graph in Lemma 1 or the active graph in Lemma 2 need not be connected. In
other words, there may be completely isolated nodes in the graph.

Let us apply Lemma 2 to the rest of the proof to show that the algorithm terminates in
O(log n log ∆) iterations with high probability.

Lemma 3 Let ∆ be the maximum degree of the original graph. Let v be a vertex with degree ≥ ∆
2 .

Then, for some large enough constant C, v is either deactivated or v’s degree in the active becomes
< ∆

2 in C log n iterations with probability ≥ 1− 1
n3 .

An essential aspect in Lemma 3 is that repeating an iteration C log n times for a high degree
node v amplifies the probability of that node being deactivated. In other words, this repetition
brings down the survival probability for high degree nodes. Amplifying the probability of an event
by simply repeating the iterations is a critical component of randomized algorithms.

Take a look at the following example to understand this clearly. Assume that the probability
of a good event happening is 1

2 . How many independent iterations would it take to ensure that the
probability of the good event not happening is down to 1

n3 ? The answer is 3 log2 n times, because
(1

2)3 log2 n = 1
n3 .

1

Keeping this in mind, let us prove the Lemma 3.

Proof: Without loss of generality (WLOG), let C log n be a positive integer and let T denote
C log n. Let Ei denote the event that v is not deactivated and v has degree ≥ ∆

2 in the active
graph at the end of iteration i.

We want an upperbound on Prob[E1∧E2∧· · ·∧ET]. Based on the chain rule on the conditional
probability,

Prob[E1 ∧ E2 ∧ · · · ∧ ET] = Prob[E1] · Prob[E2|E1] · Prob[E3|E1 ∧ E2]·
· · · · Prob[ET |E1 ∧ E2 ∧ · · · ∧ ET−1]

(1)

As we will be upperbounding Equation 1 , we need to fully understand each component in the
R.H.S. of Equation 1. Following is the explanation of these components:

• Prob[E1]: Probability of a “bad event” happening in iteration 1. Here, a “bad event” refers
to having no progress with respect to v; in other words, if v continues to be a high degree
node remaining active after the iteration 1, we regard that a “bad event” happened. An
upper bound can be imposed based on Lemma 2:

Prob[E1] ≤ 1−
(

1− 1

e
1
4

)
· 1

2

• Prob[E2|E1]: Probability of a “bad event” happening in iteration 2 given that a “bad event”
happened in iteration 1. Similarly, from Lemma 2:

Prob[E2|E1] ≤ 1−
(

1− 1

e
1
4

)
· 1

2

• Prob[E3|E1 ∧ E2]: Probability of a “bad event” happening in iteration 3 given that a “bad
event” happened in iteration 1 and iteration 2. Similarly, from Lemma 2:

Prob[E3|E1 ∧ E2] ≤ 1−
(

1− 1

e
1
4

)
· 1

2

• Prob[ET |E1 ∧E2 ∧ · · · ∧ET−1]: Probability of a “bad event” happening in iteration T given
that a “bad event” happened in all of the previous iterations. Similarly, from Lemma 2:

Prob[ET |E1 ∧ E2 ∧ · · · ∧ ET−1] ≤ 1−
(

1− 1

e
1
4

)
· 1

2

The R.H.S. of Equation 1 is the multiplication of probabilities and the upper bound for each

probability is 1−
(

1− 1

e
1
4

)
· 1

2 . Therefore, following inequality holds for Prob[E1 ∧E2 ∧ · · · ∧ET]:

Prob[E1 ∧ E2 ∧ · · · ∧ ET] ≤
(

1−
(

1− 1

e
1
4

)
· 1

2

)T

(2)

Using the fact that (1
c)C logn ≤ 1

n3 for c > 1 and for sufficiently large C, we can get an upper
bound on Equation 2 as:

Prob[E1 ∧ E2 ∧ · · · ∧ ET] ≤ 1

n3
(3)

2

1.2 Analysis for all high degree vertices

The previous proof was focused on a particular vertex v. Now let us look at all vertices with high
degree.

Lemma 4 Let ∆ be the maximum degree of the initial graph. Then, for a sufficiently large constant
C, there exists a vertex of degree ≥ ∆

2 in the active graph after C log n iterations with probability
at most 1

n2 .

Let v1, v2, · · · , vk denote high degree nodes. We are interested in the probability that either v1

or v2 or · · · or vk survives after C log n iterations. The upper bound on the survival probability of
each of these nodes is 1

n3 by Lemma 3. By union bound, we can bound this probability by 1
n2 . Let

us now formally prove Lemma 4.

Proof: Let v1, v2, · · · , vk be vertices with degree ≥ ∆
2 at the start of the algorithm. Also, let

there be two events E and Evi such that

• E ≡ there exists a vertex of degree ≥ ∆
2 in the active graph after C log n iterations

• Evi ≡ vi has degree ≥ ∆
2 in the active graph after C log n iterations

It is trivial that

E ≡
k∨

i=1

Evi (4)

Therefore, we can bound the Prob[E] as follows:

Prob[E] = Prob[
k∨

i=1

Evi]

≤
k∑

i=1

Prob[Evi] by union bound

≤ k

n3

≤ 1

n2
because k ≤ n

(5)

1.3 Bigger picture of the algorithm

The following figure depicts what is going on during each of the C log n batches of iterations in
Luby’s MIS algorithm. From the figure, we can see that for each C log n batch of iterations, the
degree of the high degree nodes fall by a factor of 2 with high probability (≥ 1− 1

n2 by Lemma 4).
So, after log ∆ number of batches, ∆ would eventually fall to 0 with a high probability.

3

Now let us view the event that the maximum degree does not reduce by a factor of 2 in a batch
of C log n iterations as a “bad event.” By applying the union bound as in the proof of Lemma 4, we
see that the probability that a “bad event” happens during log ∆ batches (each batch has C log n
iterations) is log ∆

n2 ≤ 1
n . This means that the probability that no “bad event” happens is ≥ 1− 1

n .

Theorem 5 Luby’s MIS algorithm computes an MIS in O(log n log ∆) rounds with probability
≥ 1− 1

n .

1.4 Comments on the algorithm

Question: Can the algorithm not compute MIS sometimes, depending on the random choices it
makes?
Answer: No. It always gives a correct answer, i.e., computes an MIS. The algorithm computes
MIS eventually, but with a small probability, it takes longer. In other words, Luby’s MIS algorithm
never produces the wrong output, but the time it takes is a random variable.

Following figure depicts a distribution of the running times of executing Luby’s MIS algorithm.
Almost always, Luby’s MIS algorithm terminates in O(log ∆ log n), but with a small probability
≤ 1

n , the algorithm may run for more iterations until the termination.

4

There are two types of randomized algorithms: (i) Las Vegas and (ii) Monte Carlo. Luby’s
algorithm is an example of Las Vegas algorithm that makes no errors, however the running time
of the algorithm is a random variable. In the next class, we will start discussing these two types
of randomized algorithms.

5

