Lecture Notes CS:5350 Luby's Randomised \& Distributed Algorithm for MIS: Analysis Lecture 12: Oct 3, 2019
 Scribe: Krishnamoorthy V. Iyer

In this lecture, we focus on a simplified analysis of Luby's algorithm that shows that an expected running time of $O(\log \Delta \cdot \log n)$ suffices to obtain an MIS, where $\Delta \stackrel{\text { def }}{=} \max _{v \in V} \operatorname{deg}(v)$ and $n=|V|$ (standard notation).

1 Overall Strategy of the (Simplified) Analysis

The heart of the simplified analysis is the following lemma. (For the proof, skip ahead to section 2).
Lemma: Let v be a vertex s.t. $\operatorname{deg}(v) \in\left[\frac{\Delta}{2}, \Delta\right]$. Then the probability that v is deactivated at the end of the first iteration is $\geq \frac{1}{2}\left(1-\frac{1}{e^{\frac{1}{4}}}\right)$, a constant.

- Throughout the course of the proof of the lemma, we will refer to nodes satisfying the above condition as "high" degree (for that round) nodes.
- Since the probability that a "high"-degree node is deactivated at the end of one iteration is a constant, if we repeat the process for $\log n$ iterations, the probability that the node will be deactivated is of the form $1-\frac{1}{n^{c}}$, where $c \geq 1$ is a constant. If n is "large", this means that after $\log n$ iterations, with high probability (w.h.p. henceforth), there will be no nodes with "high" degree i.e., degree in the range $\left[\frac{\Delta}{2}, \Delta\right]$. Call this the first "round" (i.e., consisting of $\log n$ iterations).
- We can now focus on the remaining vertices, all of whom will, w.h.p., have degrees $\leq \frac{\Delta}{2}$. We repeat the process above, treating vertices with degrees in the range $\left[\frac{\Delta}{4}, \frac{\Delta}{2}\right]$ as "high"-degree vertices. So after a further $\log n$ iterations (equivalently, at the end of 3 rounds), the maximum degree will (w.h.p) be $\leq \frac{\Delta}{4}=\frac{\Delta}{2^{2}}$.
- At the end of k rounds - equivalently $k \log n$ iterations - the maximum degree will have dropped (w.h.p) to $\frac{\Delta}{2^{k}}$.
- After $\log \Delta \cdot \log n$ iterations, the maximum degree will have dropped to less than 1 . But since the degree must be an integer, this means that the degrees of all nodes will be, w.h.p., 0 . This gives us the required MIS.

2 Proof of the Lemma

Preliminaries: Crucial to understanding the proof are the following basic rules of probability. In the following, the symbols $X, Y, \bar{X}, X_{1}, X_{2}, \ldots, X_{k}$ represent events:

- Rule 0: Probability of (an event) $X=1$ - Probability of the complementary event of X :

$$
P(X)=1-P(\bar{X})
$$

where \bar{X} represents the non-occurrence of X i.e., the complementary event.

- Rule 1: Chain rule for probability :

$$
P(X \wedge Y)=P(X) \cdot P(Y \mid X)
$$

- Rule 2: The probability of the simultaneous occurrence of a collection of independent events $X_{1}, X_{2}, \ldots, X_{k}$ is the product of their probabilities:

$$
P\left(X_{1} \wedge X_{2} \wedge \cdots \wedge X_{k}\right)=\prod_{i=1}^{k} P\left(X_{i}\right)
$$

The LHS above is the probability of the conjunction of the independent events $X_{1}, X_{2}, \ldots, X_{k}$.

- Rule 3: The union bound, which upper bounds the probability of the disjunction of events X_{1}, \ldots, X_{k} :

$$
P\left(X_{1} \vee X_{2} \vee \cdots \vee X_{k}\right) \leq \sum_{i=1}^{k} P\left(X_{i}\right)
$$

The LHS of the above is often written as: $P\left(\bigcup_{i=1}^{k} X_{i}\right)$ where the ' U ' stands for 'union', and hence this is known as the 'Union Bound'.

2.1 Proof of the Lemma

Now we turn to the proof of the lemma. (Finally!)

A vertex v can be deactivated - call this event \mathcal{E} - if either of the following events occurs:

- Either v joins the MIS. Call this event \mathcal{E}_{1}.
- Some neighbour of v joins the MIS. Call this event \mathcal{E}_{2}.

Now, we have:

$$
P(\mathcal{E})=P\left(\mathcal{E}_{1} \cup \mathcal{E}_{2}\right) \geq P\left(\mathcal{E}_{2}\right)
$$

Our proof strategy for the lemma consists of obtaining a lower bound on $P\left(\mathcal{E}_{2}\right)$. This will automatically give us the desired lower bound on $P(\mathcal{E})$.

For the event \mathcal{E}_{2} i.e., "some neighbor of v joins the MIS" to occur, both of the following events must occur, to wit:

- Some neighbor of v is marked. Call this event \mathcal{A}.
- Some marked neighbor of v survives the tie-breaking competition with its marked neighbors. Call this event \mathcal{B}.

We have:

$$
P\left(\mathcal{E}_{2}\right) \stackrel{\text { def of }}{=} \mathcal{E}_{2} P(\mathcal{A} \wedge \mathcal{B}) \stackrel{\text { Rule } 1}{=} P(\mathcal{A}) \cdot P(\mathcal{B} \mid \mathcal{A})
$$

To obtain a lower bound on $P\left(\mathcal{E}_{2}\right)$, we will lower bound each of $P(\mathcal{A})$ and $P(\mathcal{B} \mid \mathcal{A})$.

2.1.1 Lower Bounding $P(\mathcal{A})$:

$$
\begin{aligned}
P(\mathcal{A}) & =P(\text { some neighbor of } v \text { is marked }) \\
& \stackrel{\text { Rule } 0}{=} 1-P(\text { no neighbor of } v \text { is marked }) \\
& =1-P(\overline{\mathcal{A}})
\end{aligned}
$$

Now:

$$
P(\overline{\mathcal{A}})=P(\text { no neighbor of } v \text { is marked })=P\left(\bigwedge_{\omega \in N(v)}(\omega \text { not marked })\right)
$$

where $N(v)$ is the subset of vertices that are neighbors of v i.e., are adjacent to v.
But whether a vertex is marked or not is independent of whether or not other vertices are marked. In other words, the events "being marked" - or not - are independent. Hence we can apply Rule 2. Thus, we have:

$$
P\left(\bigwedge_{\omega \in N(v)}(\omega \text { not marked })\right)=\prod_{\omega \in N(v)} P(\omega \text { not marked })
$$

So:

$$
\begin{aligned}
P(\overline{\mathcal{A}}) & =\prod_{\omega \in N(v)} P(\omega \text { not marked }) \\
& \stackrel{(\mathrm{a})}{=} \prod_{\omega \in N(v)}[1-P(\omega \text { marked })] \\
& \stackrel{(\mathrm{b})}{=} \prod_{\omega \in N(v)}\left[1-\frac{1}{2 \cdot \operatorname{deg}(\omega)}\right] \\
& \stackrel{(\mathrm{c})}{\leq} \prod_{\omega \in N(v)}\left[1-\frac{1}{2 \cdot \Delta}\right] \\
& \stackrel{(\mathrm{d})}{=}\left[1-\frac{1}{2 \cdot \Delta}\right]^{\operatorname{deg}(v)} \\
& \stackrel{(\mathrm{e})}{\leq}\left[1-\frac{1}{2 \cdot \Delta}\right]^{\frac{\Delta}{2}}
\end{aligned}
$$

in (a), we have applied Rule 0 to each individual factor in the product,
in (b), we have used probability of ω being marked,
in (the inequality) (c), we have used $\operatorname{deg}(\omega) \leq \Delta$. [Check this!],
in (d), we use that all product terms are identical, and there are $\operatorname{deg}(v)$ factors,
and the inequality (e) follows from the observation that $\operatorname{deg}(v) \geq \Delta / 2$ (by choice) and if $\alpha \in[0,1]$, then $\alpha^{p} \leq \alpha^{q}$ if $p \geq q$. (Whew!)

We now use $1+x \leq e^{x} \forall x$ with $x \stackrel{\text { set }}{=}-\frac{1}{2 \cdot \Delta}$ to obtain:

$$
P(\overline{\mathcal{A}}) \leq\left[e^{-1 / 2 \cdot \Delta}\right]^{\Delta / 2}=e^{-\frac{1}{4}} .
$$

Finally, we get the lower bound desired:

$$
P(\mathcal{A})=1-P(\overline{\mathcal{A}}) \geq 1-\frac{1}{e^{1 / 4}} .
$$

Note: One question that was raised in class was "Why do we attempt to bound $P(\mathcal{A})$ for highdegree nodes only? Why do we ignore low-degree nodes?". The answer is that we cannot obtain a constant lower bounding value for $P(\mathcal{A})$ for low-degree nodes. This can be seen easily in the extreme case where we consider a node of degree $=1$. Then the product will have only one factor, and bounding is not possible. Another response to the query is to study [9, MIS II, p.75] or [3, Sec 12.3, p. 341]

2.1.2 Lower Bounding $P(\mathcal{B} \mid \mathcal{A})$:

Consider $P(\mathcal{B} \mid \mathcal{A})$:
$=P($ some marked nghbr of v survives tie-breaking|some nghbr of v is marked $)$
Consider the marked neighbor of v with highest degree. Call it $w .^{1}$ Subtlety: How do we know such a marked neighor even exists? There must exist such a neighbor i.e., the event is well-defined because we have conditioned on there being neighbors of v that have been marked. Now:
P (some mrkd nghbr of v survives tie-breaking|some nghbr of $v \mathrm{mrkd}$)
$=P\left(\bigcup_{u}\right.$ mrkd nghbr u survives tie-breaking|some nghbr of $\left.v \mathrm{mrkd}\right)$
$\geq P($ mrkd nghbr w of highest deg survives tie-breaking|some nghbr of v mrkd $)$
To compute a lower bound on the quantity on the right of the inequality above, we proceed as follows. We partition the neighborhood of w as: $N(w)=[N(w) \cap N(v)] \sqcup[N(w) \backslash N(v)]$ where the symbol ' \sqcup ' means 'disjoint union'.

Only those neighbors of w that are not neighbors of v i.e. $N(w) \backslash N(v)$ can defeat w in the tie-break. Why? Because w, by virtue of being the highest degree node among v 's neighbors, will win the

[^0]tie-break among its marked neighbors who are also neighbors of v i.e., in $N(w) \cap N(v)$. Thus, we need only focus our attention on $N(w) \backslash N(v)$.

Only a neighbor of w in $N(w) \backslash N(v)$ that is marked and has higher degree will defeat w in the tie-break. Conversely, for w to survive the tie-break, none of its marked neighbors in $N(w) \backslash N(v)$ must have higher degree than w. So we now have:

$$
\begin{aligned}
P(\mathcal{B} \mid \mathcal{A}) & \geq P(\text { no nghbr of } w \in N(w) \backslash N(v) \text { of higher degree is marked) } \\
& =1-P(\text { some nghbr of } w \in N(w) \backslash N(v) \text { of higher degree is marked }) \\
& =1-P\left(\bigcup_{u \in N(w) \backslash N(v): \operatorname{deg}(u)>\operatorname{deg}(w)} u \text { is marked }\right)
\end{aligned}
$$

We use the union bound (Rule 3) to upper bound:

$$
\begin{aligned}
P\left(\bigcup_{u \in N(w) \backslash N(v): \operatorname{deg}(u)>\operatorname{deg}(w)} u \text { is marked }\right) & \leq \sum_{u \in N(w) \backslash N(v): \operatorname{deg}(u)>\operatorname{deg}(w)} P(\{u \text { is marked }\}) \\
& =\sum_{u \in N(w) \backslash N(v): \operatorname{deg}(u)>\operatorname{deg}(w)} \frac{1}{2 \cdot \operatorname{deg}(u)} \\
& \leq \sum_{u \in N(w) \backslash N(v): \operatorname{deg}(u)>\operatorname{deg}(w)} \frac{1}{2 \cdot \operatorname{deg}(w)} \\
& \leq \operatorname{deg}(w) \cdot \frac{1}{2 \operatorname{deg}(w)} \\
& =\frac{1}{2}
\end{aligned}
$$

where the second-to-last inequality follows because $\operatorname{deg}(u)>\operatorname{deg}(w)$ and the last inequality holds because the number of terms in the sum is $\leq \operatorname{deg}(w)$.

Substituting, we obtain:

$$
P(\mathcal{B} \mid \mathcal{A}) \geq 1-\frac{1}{2}=\frac{1}{2}
$$

2.1.3 Putting all the pieces together:

The product of the lower bounds on $P(\mathcal{A})$ and $P(\mathcal{B} \mid \mathcal{A})$ together gives $\frac{1}{2} \cdot\left(1-e^{-1 / 4}\right)$.
Finally, noting that:

$$
P(\mathcal{E}) \geq P\left(\mathcal{E}_{2}\right)=P(\mathcal{A}) \cdot P(\mathcal{B} \mid \mathcal{A}) \geq \frac{1}{2} \cdot\left(1-e^{-1 / 4}\right)
$$

gives the required lower bound.

References

[1] https://en.wikipedia.org/wiki/Maximal_independent_set
[2] Luby, "A Simple Parallel Algorithm for the Maximal Independent Set Problem"
[3] Motwani, Raghavan, "Randomized Algorithms"
[4] Barenboim, Elkin, Pettie, Schneider, "The Locality of Distributed Symmetry Breaking"
[5] Ghaffari, "An Improved Distributed Algorithm for Maximal Independent Set"
[6] Daum, Ghaffari, Gilbert, Kuhn, Newport, "Maximal Independent Sets in Multichannel Radio Networks" Available at: http://tr.informatik.unifreiburg.de/reports/report275/report00275.pdf
[7] Basagni, "Finding a Maximal Weighted Independent Set in Wireless Networks"
[8] Hsin-Hao Su, "Algorithms for Fundamental Problems in Computer Networks"
[9] Gopal Pandurangan "Distributed Network Algorithms"

[^0]: ${ }^{1}$ Initially, ignore the possibility that there may be more than one highest degree neighbor - ties can be handled as in the algorithm by means of IDs, for example, by giving priority to the node with higher ID.

