
Lecture Notes CS:5350 Introduction to approximation algorithms
Lecture 19: Oct 29, 2019

Scribe: Mudathir Mahgoub

1 MaxCut problem

Input An undirected graph G = (V,E),

Output A partition of V into two subsets V1, V2 such that the number of edges between V1 and
V2 is maximized.

Example

V1 = {B,C}

V2 = {A,F,E,D}

A

B C

D

EF

Figure 1: In this example, the partition (V1 = {B,C}, V2 = {A,F,E,D}) is a max-cut with size =
4.

1.1 Remarks

• MaxCut problem is NP-complete.

• A weighted MaxCut is a general version of the problem where edges have weights.

• We can get a 1
2 -approximation to MaxCut in expectation using a randomized algorithm.

1.2 RandomizedMaxCut algorithm

1: for each vertex v ∈ V do
2: Place v in V1 or V2 uniformaly at random (i.e., probability = 1

2)
3: return (V1, V2)

1

1.3 Analysis of the approximation

For each edge e = {u, v}, define the random variable Xe as

Xe =

{
1 if e crosses the cut (V1, V2)

0 otherwise.

Then the random variable X =
∑
e∈E

Xe represents the number of edges that cross the cut. By

linearity of expectation, we have

E[X] = E

[∑
e∈E

Xe

]
=
∑
e∈E

E[Xe] =
∑
e∈E

Prob[Xe = 1] =
∑
e∈E

1

2
=
|E|
2

=
m

2

where m is the number of edges. Here Xe = 1 means the edge e crosses the cut (i.e., one endpoint
of {u, v} is in V1 and the other is in V2). Since the placement of vertices are independent events,
we have

Prob[Xe = 1] = Prob[(u ∈ V1 and v ∈ V2) or (v ∈ V1 and u ∈ V2)] =
1

4
+

1

4
=

1

2
.

Since the number of edges in an optimal solution for MaxCut is at most m, and the randomized
algorithm above provides a solution with m

2 edges in expectation. we can say the randomized
algorithm is a 1

2 -approximation to MaxCut in expectation.
The expectation analysis above does not give a lower bound for the probability that the cut

returned by RandomizedMaxCut is a 1
2 -approximation. We can get a lower bound for the prob-

ability that the returned cut is a 1
4 -approximation by amplifying the algorithm (i.e., repeating it

many times) as shown below.

1: for i← 1 to k do
2: run RandomizedMaxCut algorithm
3: return the largest cut

Theorem. This algorithm yields a 1
4 -approximation with high probability (i.e., ≥ 1− 1

n) in running
time O(m log n).

Proof. Let Ci for i = 1, 2, · · · , k be the random variable denoting the size of the cut produced by
the ith iteration. Let Yi = m− Ci, which represents the random variable for the number of edges
outside the cut. By linearity of expectation, we have:

E[Yi] = E[m]− E[Ci] = m− E[Ci] = m− m

2
=
m

2
.

Given that our goal here is to obtain a 1
4 -approximation, a “bad event” in iteration i is to get a cut

with size < m
4 (i.e., Ci <

m
4). Getting this bad event in all iterations is equivalent to

k∧
i=1

(
Ci <

m
4

)
.

2

We compute the probability of getting this bad event in all iterations as follows:

Prob

[
k∧

i=1

(
Ci <

m

4

)]
= Prob

[
k∧

i=1

(
Yi >

3m

4

)]

=
k∏

i=1

Prob

[
Yi >

3m

4

]
(by independence of iterations)

<
k∏

i=1

E[Yi]
3m
4

(by Markov’s inequality)

=

k∏
i=1

m
2
3m
4

=

k∏
i=1

m

2

4

3m
=

k∏
i=1

2

3
=

(
2

3

)k

.

Choosing k = C log n for large enough constant C, gives Prob

[
k∧

i=1

(
Ci <

m
4

)]
<
(
2
3

)k ≤ 1
n . There-

fore with probability at least 1− 1
n , the bad event does not happen and the algorithm produces a

cut of size ≥ m
4 .

2 Approximation Algorithms

In the 1970s, researchers in complexity theory proved many problems to be NP-complete. Com-
puting exact solutions to these problems is intractable (i.e., extremely inefficient in practice).
Therefore, many heuristics were developed to find approximate solutions efficiently.

Definition 1 (α-approximation for minimization problems). Let Π be a minimization problem,
and α ≥ 1 a constant. An algorithm A is an α-approximation algorithm for Π if :

1. A runs in polynomial time.

2. For every input I of Π

cost(A(I)︸︷︷︸
solution produced by
algorithm A on input I

) ≤ α× cost(OPT (I)︸ ︷︷ ︸
optimal solution

on input I

). (1)

Definition 2 (α-approximation for maximization problems). Let Π be a maximization problem,
and α ≤ 1 a constant. An algorithm A is an α-approximation1 algorithm for Π if :

1. A runs in polynomial time.

2. For every input I of Π

cost(A(I)) ≥ α× cost(OPT (I)).

In this class, we focus on approximation algorithms for NP-complete problems.

1The constant α is called the approximation ratio.

3

3 Minimum Vertex Cover (MVC)

Input An undirected graph G = (V,E),

Output A vertex subset S ⊆ V of minimum size such that for every edge {u, v} ∈ E, at least one
of u or v is in S.

Example

A

B C

D

EF

Figure 2: An example of a minimum vertex cover.

In Figure 2, the subset S = {A,B,D,E} ⊆ V is an optimal (minimum) vertex cover that touches
every edge in the graph. In this example S has minimum size because the edges in the triangle
A,B, F requires 2 vertices to be covered, and similarly 2 vertices are required to cover the edges
in the triangle C,D,E. So the minimum vertex cover has size 4.

3.1 Approximation algorithms for MVC

MVC problem was proved to be NP-complete [1]. We will discuss two approximation algorithms
for MVC, one that uses a greedy heuristic, and one that uses a maximal matching to find a vertex
cover. But first, we need a method to compare the approximated solution with the optimal one. In
the inequality (1), the main bottleneck is to characterize OPT (I) for an arbitrary input I. Since
our goal is to find an approximation, we usually work with a lower bound (LB) on the optimal
solution that is easier to characterize. This lower bound satisfies this inequality:

cost(LB(I)) ≤ cost(OPT (I)) (2)

Therefore instead of using inequality (1) directly, we can compare the cost of our solution to the
lower bound and show:

cost(A(I)) ≤ α× cost(LB(I)) ≤ α× cost(OPT (I)) (3)

3.2 Greedy heuristic for MVC

Find a vertex cover by repeatedly picking a vertex with the highest degree in the currently active
graph. This heuristic suggests the following algorithm:

4

1: S = φ,E′ = φ // S maintains solution, E′ maintains covered edges
2: while E \ E′ is not empty do
3: Choose a vertex v ∈ V \ S with the highest degree in G′ = (V \ S,E \ E′)
4: add v to S
5: add all edges incident on v from E \ E′ to E′

6: return S.

It is clear that this algorithm runs in polynomial time O(|V |2). Actually it is not too hard
to implement it in O ((|V |+ |E|) log |V |) if a max heap is used to store the vertices, where the
key of each vertex is its degree. This satisfies the first condition in definition 1. So how good
is the approximation provided by this algorithm? The following example in Figure 3 shows that
the cost of this approximation is Ω(|S∗| log n) where S∗ is the optimal solution for MVC, and n is
the number of vertices. Therefore this greedy algorithm does not satisfy the second condition in
definition 1 for any constant α ≥ 1.

Example2

a1 a2 · · · ab k
2
c b1 b2 · · · bb k

3
c · · · y z

1 2 3 4 5 6 · · · bk2c − 1 bk2c · · · k − 1 k

group bk2c group bk3c group b k
k−1c group bkkc

Figure 3: The optimal solution is the set of gray vertices with cardinality k. The greedy algorithm
returns the set of white vertices with cardinality Ω(log |V |k).

In Figure 3, the graph has k − 1 groups of white vertices at the top, and k gray vertices at the
bottom. The white vertices in group bk2c each have degree 2, and are connected to disjoint gray

vertices. Likewise the white vertices in group bk3c each have degree 3, and are connected to disjoint

gray vertices. In general, the vertices in group bki c, i ∈ {2, 3, · · · , k} each have degree i, and are
connected to disjoint gray vertices. Note that the degree of each gray vertex is at most k − 1,
because it has at most one edge to each white group.

Initially the greedy algorithm chooses vertex z which has the highest degree. After removing z
and its edges, each gray vertex has degree at most k − 2. Therefore, the algorithm chooses vertex

2Introduction and the Minimum Vertex Cover Problem, http://www.eng.tau.ac.il/algs/ALG09/intro-vc.pdf

5

y which has degree k − 1. Continuing this process, the greedy algorithm returns the set of white
vertices as a solution for MVC. The total number of white vertices is:

k∑
i=2

bk
i
c ≥

k∑
i=2

k

i+ 1

= k

k∑
i=2

1

i+ 1
= k

k−1∑
i=1

1

i

= kHk−1 (Hk−1 is a Harmonic number)

= Ω(k log k)

The optimal solution is the set of gray vertices which has size k. Since n = k + Ω(k log k),
then log n = Ω(log k), which implies the greedy algorithm returns an approximation with cost
Ω(|S∗| log n).

3.3 Maximal matching approximation

Recall that a matching of a graph G = (V,E) is a set of edges (M ⊆ E) where the edges do not
touch each other. M is a maximal matching if no edge in E \M can be added to M without
touching other edges in M . The following lemma shows that the size of any matching M is a lower
bound for the size of any vertex cover S.

Lemma 1. Let M be a matching of G = (V,E). Let S be a vertex cover of G. Then |M | ≤ |S|.

Proof. Suppose M is a matching and S is a vertex cover. If M is empty, then it is trivial that
|M | = 0 ≤ |S|. Suppose M is not empty, and {u, v} is an arbitrary edge in M . Since M is a
matching, then for any edge {a, b} 6= {u, v}, we have {a, b} ∈M ⇒ {a, b}∩{u, v} = φ. This means
that {u, v} is the only edge in M that contains either u or v. Since S is a vertex cover, then either
u or v is in S. Therefore for each edge in M , at least one of its vertices is in S, which implies
|M | ≤ |S|.

Example

A

B C

D

EF

Figure 4: An example of a maximal matching and a minimum vertex cover.

In Figure 4, the set M = {{A,B}, {C,D}, {E,F}} is a maximal matching for the graph G, and
S = {A,B,D,E} is a vertex cover. Note that |M | = 3 ≤ 4 = |S| . The previous lemma suggests
the following algorithm:

6

1: S = φ
2: Find a maximal matching M .
3: for each edge {u, v} ∈M do
4: add both u and v to S.
5: return S.

For the maximal matching in Figure 4, this algorithm returns S = V which is a vertex cover,
but not minimum.

References

[1] Jeff Erickson. Algorithms. 2019.

7

