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1 Karger’s Mincut Algorithm

The problem of Mincut can be formally defined as:
Input: A connected graph G = (V,E)
Output: A set E′ ⊆ E of the smallest size such that G\E′ is disconnected

In this lecture we’ll discuss a simple Monte Carlo algorithm for Mincut.

1.1 Contract

This algorithm for Mincut heavily relies on the CONTRACT function which takes the graph G
and an edge {u, v} as input and returns a graph after removing vertices u and v and updating the
edges. Following is the pseudocode for this function:

function CONTRACT(G, {u, v})
1) Replace u and v by a new vertex called uv
2) Delete all edges {u, v}
3) For every edge {w, u}, replace it by {w, uv}.
4) Similarly for every edge {w, v}, replace it by {w, uv}.

end function
This allows parallel edges between vertices.
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Figure 1: Example showing the application of Karger’s algorithm.
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Figure 2: Example showing the application of Karger’s algorithm on an undirected graph, which
gives the wrong output.

1.2 Karger’s Algorithm

Following is the pseudocode for the Karger’s mincut algorithm.
function Karger(G)

for i← 1 to n− 2 do
Pick an edge {u, v} in G uniformly at random
G← CONTRACT (G, {u, v})

end for
return Edges between two vertices that remain

end function
Note: This pseudocode can be modified to return information regarding which edges cross the cut.

EXAMPLE:
Figure ?? demonstrates the working of Karger’s algorithm.

Observation: This algorithm doesn’t always give the correct output. Figure ?? shows another
way in which the graph in Figure ?? could be contracted by Karger’s algorithm. As can be seen in
the figure, this doesn’t give the mincut.

We want to figure out the probability for Karger’s algorithm to compute the right value of Mincut.
For this, let’s first take a look at the intuition behind when would Karger’s algorithm compute the
correct mincut.
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Figure 3: Intuition behind when will Karger’s algorithm give the correct output.

Intuition: Figure ?? shows a graph G having two sets of vertices A and B such that the edges
between these two sets is a mincut, represented by C.

In order to make sure that the mincut C is not changed by the contractions, the algorithm
should always contract edges within A or B. Let’s compute the probability of Karger’s algorithm
not picking an edge in C, to contract.

Lemma 1. Let C be a set of edges representing mincut in the graph G having n number of vertices.

P [ Karger’s algorithm does not contract an edge in C ] ≥ 2

n(n− 1)

Proof. Let Ei (for i = 1, 2, 3, ...n−2) denote the event that the Karger’s algorithm does not contract
an edge in C in iteration i.

Let

Fi =
i⋂

j=1

Ej for i = 1, 2, 3, ...n− 2.

Goal: To show that
P [Fn−2] ≥

2

n(n− 1)
.

Let Gi denote the graph after iteration i and let G0 = G. Then

P [F1] = P [E1]

P [E1] = 1− P [E1]

P [E1] =
k

e(G0)

where,
E1 denotes the event that Karger’s algorithm did choose an edge in C to contract, and
k = |C|, i.e., number of edges in mincut C and
e(G0) number of edges in graph G0.
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More generally e(Gi) represents the number of edges in graph Gi. Since the mincut is of size k,
every vertex in the graph G should have degree at least k (Reminder: n represents the total number
of vertices). Therefore,

e(G0) ≥
n.k

2

P [E1] ≤
k
n.k
2

=
2

n

P [E1] ≥ 1− 2

n
.

Now we consider F2.

P [F2] = P [E1 ∩ E2]

P [F2] = P [E1].P [E2|E1]

P [E2|E1] = 1− P [E2|E1]

P [E2|E1] =
k

e(G1)

Note: Since G1 has one less vertex than G0, number of vertices in G1 would be n−1. And since
we didn’t contract any edge in C, the size of C remains the same in G1 as well, i.e., k. Therefore

P [E2|E1] ≤
k

(n−1).k
2

=
2

n− 1

P [E2|E1] ≥ 1− 2

n− 1

P [F2] ≥
(
1− 2

n

)
.

(
1− 2

n− 1

)
Now consider Fn−2.

P [Fn−2] = P [

n−2⋂
j=1

Ej ]

P [Fn−2] = P [E1].P [E2|E1].P [E3|E1 ∩ E2]...P [En−2|E1 ∩ E2 ∩ ... ∩ En−3]

P [Fn−2] ≥
(
1− 2

n

)
.

(
1− 2

n− 1

)
.

(
1− 2

n− 2

)
...

(
1− 2

3

)
=

2

n(n− 1)
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In order to improve this probability we can repeat the Karger’s algorithm T times. Let’s compute
the probability of this updated Karger’s algorithm giving the correct answer.

P [ algo returns correct answer ] = 1− P [ algo returns wrong answer ]

P [ algo returns wrong answer ] = P [ all T iterations return wrong answer ]

Since the iteraions are independent

P [ algo returns wrong answer ] =
T∏

j=1

P [ jth call to Karger’s algorithm returns wrong answer]

P [ algo returns wrong answer ] ≤
(
1− 2

n(n− 1)

)T

Using, 1 + x ≤ ex

P [ algo returns wrong answer ] ≤ e

−2.T
n(n− 1)

Plugging, T =
n(n− 1)

2
. ln(n)

P [ algo returns wrong answer ] ≤ e− ln(n) =
1

n
.

So this means that if we repeat the Karger’s algorithm T times where T =
n(n− 1)

2
. ln(n) we

can increase the probability of finding the correct answer considerably, to ≥ 1− 1

n
.

2 Linearity of Expectation

The expectation of the sum of two random variables X and Y is just the expectation of X added
with the expectation of Y . This is called the linearity of expectation.

E(X + Y ) = E(X) + E(Y )

It doesn’t depend on any interaction between X and Y i.e., the linearity of expectation holds even
when X and Y are correlated. We’ll now show the use of linearity of expectation in the analysis of
randomized quick sort.

Randomized Quick Sort
Following is the pseudocode for randomized quick sort.

function RandomQS(L)
if |L| ≤ c(const) then
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return nonRecursiveQS(L) // e.g., BubbleSort or InsertionSort
else

pick an index i ∈ {1, 2, ...|L|} uniformly at random
Swap(L, i, 1)
L1 ← ∅
L2 ← ∅
for i← 2 to |L| do

if L[i] ≤ L[1] then
append to L1

else
append to L2

end if
end for
return RandomQS(L1).p.RandomQS(L2)

end if
end function

We will show in the next class that E(T ) = O(n log n) where, n = |L| and T = random variable
denoting the running time of RandomQS(L).
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