CS:3330 Mini-Exam 1, Fall 2015 Due: Tue, Dec 8 2015 by class time (9:30 am)

1. Write down the worst case running time of each of the following code fragments as a function of n. Use the Θ -notation to express your answers. Show your work to receive partial credit.

(a) for $i \leftarrow 1$ to n do $j \leftarrow 1$ while $j \le n$ do print("hello") $j \leftarrow 3 * j$

(b) $B \leftarrow n$ for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to B do print("hello") $B \leftarrow \lfloor 3 * B/4 \rfloor$ (c) for $i \leftarrow 1$ to n do $j \leftarrow 1$ while $j \le n$ do print("hello") $j \leftarrow j + 10$

2. Here is a randomized algorithm that attempts to determine if a given positive integer n is a prime number or a composite.

```
\begin{array}{l} f \leftarrow random(2, \lceil \sqrt{n} \rceil) \\ \text{if } f \text{ evenly divides } n \text{ then} \\ & \text{return "composite"} \\ \text{else} \\ & \text{return "prime"} \end{array}
```

- (a) Under what circumstances will this algorithm return an incorrect answer? Will the algorithm always correctly identify composite numbers? Will the algorithm always correctly identify prime numbers?
- (b) The number 541 is a prime and 541*541 = 292681. Suppose we provide n = 292681 as input to the algorithm I show above. What is the probability that n will be classified as a composite?
- (c) Call a positive integer $n \mod 1$ for at least 1/10-th of the integers in the range $[2, \lceil \sqrt{n} \rceil]$ are its factors. What is the probability that the algorithm will incorrectly classify a good input as a prime?

(d) Now suppose that we want to decrease the error probability of the algorithm to at most 1/10, whenever the input is good. What changes would you make to the above algorithm to achieve this?