
CS:3330 Homework 9, Spring 2017
Due at the start of class on Thursday, April 27th

1. (a) Let T (n) denote the running time of StoogeSort on an input of size n. This running
time is given by the following recurrence relation –

T (2) = 1

T (n) = 3T (2n/3) + 1
(the three recursive calls and the 1 for the divide and combine)

(b) Here, a = 3, b = 3/2, and f(n) = 1. We have 3 · f(2n/3) = 3 · f(n). Therefore,
α = 3 > 1. So, we are in case 3 of the Master theorem discussed in lecture, so–

T (n) = O(nlog3/2(3))

≈ O(n2.709)

2. (a) Let U(n) denote the running time of Unusual on an input of size n. This running
time is given by the following recurrence relation –

U(2) = 1

U(n) = 3U(n/2) + n (the three recursive calls and the swapping)

(b) Here, a = 3, b = 2, and f(n) = n. We have 3 · f(n/2) = 3
2 · f(n). Therefore,

α = 3/2 > 1. So, we are in case 3 of the Master theorem discussed in lecture, so–

U(n) = O(nlog2(3))

≈ O(n1.58)

3. (a) T (n) = T (n− 2) + 2n for n ≥ 2, T (1) = 1, T (0) = 0.

After the first unroll step, we get

T (n) = T (n− 4) + 2n−2 + 2n.

After the second unroll step, we get

T (n) = T (n− 6) + 2n−4 + 2n−2 + 2n.

After the third unroll step, we get

T (n) = T (n− 8) + 2n−6 + 2n−4 + 2n−2 + 2n.

We will now guess that for any integer k ≥ 1,

T (n) = T (n− 2k) + 2n−2(k−1) + 2n−2(k−2) + · · ·+ 2n−2 + 2n.

This guess can be confirmed using the following inductive proof.
Base Case: k = 1. For k = 1, the guess is simply the original recurrence T (n) =
T (n− 2) + 2n, which is obviously correct.
Inductive hypothesis: Suppose that the guess is correct for some k ≥ 1. So let us
start with the guess

T (n) = T (n− 2k) + 2n−2(k−1) + 2n−2(k−2) + · · ·+ 2n−2 + 2n
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and unroll it once more using T (n− 2k) = T (n− 2k − 2) + 2n−2k. Plugging this for
T (n− 2k) gives us

T (n) = T (n− 2(k + 1)) + 2n−2k + 2n−2(k−1) + 2n−2(k−2) + · · ·+ 2n−2 + 2n.

This confirms the guess for k + 1 and completes the inductive proof.

Now we use the guess to solve for T (n). If n is even, we pick k such that n− 2k = 0,
implying that k = n/2. Then,

T (n) = T (0) + 22 + 24 + · · ·+ 2n−2 + 2n.

We plug T (0) = 0 and verify using the geometric series formula that T (n) = O(2n).

If n is odd, we pick k such that n− 2k = 1, implying that k = (n− 1)/2. Then,

T (n) = T (1) + 23 + 25 + · · ·+ 2n−2 + 2n.

We plug T (0) = 1 and verify using the geometric series formula that T (n) = O(2n).

(b) T (n) = (T (n− 2))2 for n ≥ 1, T (0) = 2.

After the first unroll step, we get

T (n) = ((T (n− 4))2)2 = T (n− 4)4.

After the second unroll step, we get

T (n) = ((T (n− 6))2)4 = T (n− 6)8.

After the third unroll step, we get

T (n) = ((T (n− 8))2)8 = T (n− 8)16.

We will now guess that for any integer k ≥ 1,

T (n) = T (n− 2k)2
k

.

This guess can be confirmed using an inductive proof – I am going to skip this proof
for now. Like in part (a), since k can only take on integer values, we should really be
separately considering odd and even values of n. But, we will “fudge” this and just
pick k such that n− 2k = 0, implying that k = n/2. This gives us

T (n) = T (0)2
n/2

= 22
n/2

.

(c) T (n) = T (n/2) + n for n ≥ 2, T (1) = 1.

After the first unroll step, we get

T (n) = T (n/4) + n/2 + n.

After the second unroll step, we get

T (n) = T (n/8) + n/4 + n/2 + n.

After the third unroll step, we get

T (n) = T (n/16) + n/8 + n/4 + n/2 + n.

We will now guess that for any integer k ≥ 1,

T (n) = T
( n

2k

)
+

n

2k−1
+

n

2k−2
+ · · ·+ n

4
+
n

2
+ n.

2



This guess can be confirmed using an inductive proof – I am going to skip this proof
for now. We now set n/2k = 1, implying that k = log2 n. (There is some “fudging”
going on here also because for k ≥ 1 to be an integer, n needs to be a power of 2.)
This gives us

T (n) = T (1) +
n

2log2 n−1
+

n

2log2 n−2
+ · · ·+ n

4
+
n

2
+ n.

Plugging in T (1) = 1 and evaluating the geometric series gives us T (n) = O(n).

4. (a) 16. Explanation: The first call to strangeSum has parameters (L, 0, 1) and it returns
the sum of the first two elements; so leftSum is 5. The second call to strangeSum

has parameters (L, 1, 2) and it returns the sum of the middle two elements; so midSum

is 6. The third call to strangeSum has parameters (L, 2, 3) and it returns the sum of
the last two elements; so rightSum is 5.

(b) T (n) = 3T (n/2) + 1 for n > 2 and T (n) = 1 for n = 1, 2.

(c) This recurrence has a form for which the Master Theorem applies. So a = 3, b = 2,
f(n) = 1, and af(n/b) = 3f(n). Therefore, T (n) = O(nlog2 3).

5. (a) # Given numbers a and n and a nonnegative integer d, this function

# computes a^d mod n, i.e., the remainder one gets when a^d is

# divided by n.

# The function uses recursion to speedup computation. The function

# performs about log(d) multiplications, rather than d-1

# multipications. So it should have no trouble handling d with 100s

# or even 1000s of digits. Also, in order to keep intermediate values

# small, performs the modulo operation as soon as possible, rather

# than wait for a^d to be computed.

def fastPowerMod(a, d, n):

# Base cases of the recursion

if(d == 0):

return 1 % n

elif(d == 1):

return a % n

# Recursive case

else:

temp = fastPowerMod(a, d/2, n)

if(d%2 == 0): # if d is even

return (temp*temp) % n

else: # d is odd

return (((temp*temp)%n)*a)%n

(b) 1

(c) The algorithm performs O(log n) multiplications and O(log n) mod operations. Each
of these operations is performed on numbers that are at most n in value and therefore
at most O(log n) bits in size. Each multiplication and each mod takes time that is
quadratic in the size of the given numbers. Therefore, each of these arithmetic oper-
ations takes O(log2 n) time and altogether the entire running time of the algorithm
is O(log3 n).

6. T (n) = T (n − 1) + n for n ≥ 2 and T (1) = 1. We can use the unroll, guess, and confirm
method to show that T (n) = O(n2).
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7. (a) T (n) ≤ T (|L1|) + T (|L2|) + n, where n/3 ≤ |L1|, |L2| ≤ 2n/3 and |L1|+ |L2| = n.

(b) Using the recursion tree method, we can solve this to get T (n) = O(n log n) as the
expected running time.
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