
CS:3330 Solutions to Homework 10, Spring 2017

1. Consider Problem 1 from Lecture 5 in Jeff Erickson’s notes.

(a) Since 91 × 4 + 52 = 416, we can make change for 416 using 5 bills. However, the
greedy algorithm uses 365, 28, 13, 7, 1, 1, 1 which is 7 bills.

(b) As mentioned in the hint, the optimal change for k′ using denominations in D[1..j],
we either use a bill with denomination D[j] or we don’t.

This means that the subproblem C(k′, j) can be expressed in terms of two subproblems
C(k′−D[j], j) which denotes the case that we use a bill with denomination D[j] and
C(k′, j − 1) which denotes the case that we don’t use the denomination D[j].

We just need to be careful in the case when the value of the bill D[j] is larger than the
amount that we need change for k′. In this case we simply consider bills with lesser
denomination to construct our solution. The recurrence relation is written below –

C(k′, j) =

0, if k′ = 0

k′, if j = 1

C(k′, j − 1), if D[j] > k′

min{1 + C(k′ −D[j], j), C(k′, j − 1)}, otherwise

(c) In this part we will use a 2-dimensional (k + 1) × 8 table in which the table-slot
Table[k′, j] is filled with C(k′, j). Note that according to the recurrence relation
form part (b), the subproblem C(k′, j) depends on C(k′, j − 1) and C(k′ − D[j], j).
Therefore the entry Table[k′, j] can be calculated if we know what Table[k′, j − 1]
and Table[k′−D[j], j] are. This means that we need to fill Table from top to bottom
and left to right. The following function finds and returns the fewest number of bills
needed to make change for k Dream Dollars, when the denominations come from
D[1..8] –

// Base cases

for j ← 1 to 8 do
Table[0, j]← 0

for k′ ← 1 to k do
Table[k′, 1]← k′

// Recursive cases

for k′ ← 2 to k do
for j ← 1 to 8 do

if D[j] > k′ then
Table[k′, j]← Table[k′, j − 1]

else if 1 + Table[k′ −D[j], j] < Table[k′, j − 1] then
Table[k′, j]← 1 + Table[k′ −D[j], j]

else
Table[k′, j]← Table[k′, j − 1]

return Table[k, 8]

(d) If we look at the intuition for the recurrence relation then we realize that if Table[k′, j] =
Table[k′, j − 1] then we did not pick a bill of denomination D[j] and if Table[k′, j] =
1 + Table[k′ − D[j], j] then we did pick a bill of denomination D[j]. The following
recursive function returns the optimal list of bills –

1

OptimalChange(k,D[1, .., j], Table) :
if k = 0 then

return [] // the empty list

if j = 1 then
return [1] ∗ k // a list containing k 1’s

if Table[k, j] = Table[k, j − 1] then
return OptimalChange(k,D[1, .., j − 1], Table)

if Table[k, j] = 1 + Table[k −D[j], j] then
return [D[j]] + OptimalChange(k −D[j], D[1, .., j], Table)

We can also implement this function as an iteration through the array Table. Note
that both implementations are equivalent in that they will provide the same solution.

k′ ← k
j ← 8
S ← an empty list
while k′ > 0 do

if Table[k′, j] = Table[k′, j − 1] then
j ← j − 1

if Table[k′, j] = 1 + Table[k′ −D[j], j] then
k′ ← k′ −D[j]
S ← S + [D[j]]

return S

2. You are given a an array A[1..n] of numbers (which can be positive, 0 or negative). You
need to design an algorithm that finds a contiguous subsequence of A with largest sum.
(This is just a restatement of Problem 2(a) in Jeff Erickson’s Lecture 5.) For example,
given the array [−6, 12,−7, 0, 14,−7, 5], the contiguous subsequence [12,−7, 0, 14] has the
largest sum.

(a) For S(1, ·) we have the additional constraint that the contiguous subsequence must
contain A[j]. This means that we can either have just A[j] as the subsequence or tag
along a contiguous subsequence that contains A[j−1]. This thought process will lead
to the following recurrence relation –

S(1, j) =

{
0, if j = 0

max{S(1, j − 1) + A[j], A[j]}, if j > 0

And similarly, for S(2, ·), we don’t have this additional constraint, so we can also
consider the possibility of not having A[j] as part of the contiguous subsequence.
Note that we need S(1, ·) to ensure that the subproblems that we are solving produce
contiguous subsequences as the solution. The recurrence relation is –

S(2, j) =

{
0, if j = 0

max{S(2, j − 1), S(1, j − 1) + A[j], A[j]}, if j > 0

(b) In this part, we will use a 2-dimensional 2 × (n + 1) table in which the table-slot
Table[i, j] is filled with S(i, j), where i ∈ {1, 2} and 0 ≤ j ≤ n. Note that in order to
fill Table[1, j], we need the entry Table[1, j − 1] to be filled and to fill Table[2, j], we
need the entries Table[1, j − 1] and Table[2, j − 1]. This means that if we fill column
j − 1 before filling column j then we should be good.

2

// Base cases

Table[1, 0]← 0
Table[2, 0]← 0

// Recursive cases

for j ← 1 to n do
if Table[1, j − 1] + A[j] > A[j] then

Table[1, j]← Table[1, j − 1] + A[j]
else

Table[1, j]← A[j]
Table[2, j]← max{Table[2, j − 1], Table[1, j − 1] + A[j], A[j]}

return Table[2, n]

(c) The following function takes as input A and Table (filled out using the function in
(b)) and returns the optimal contiguous subsequence from A[1..n] –

OptimalSequence(i, A[1, .., j], Table) :
if j = 0 then

return [] // the empty list

if i = 2 then
if Table[2, j] = A[j] then

return [A[j]]
if Table[2, j] = Table[2, j − 1] then

return OptimalSequence(2, A[1, .., j − 1], Table)
if Table[2, j] = Table[1, j − 1] + A[j] then

return OptimalSequence(1, A[1, .., j − 1], Table) + [A[j]]
if i = 1 then

if Table[1, j] = A[j] then
return [A[j]]

if Table[1, j] = Table[1, j − 1] + A[j] then
return OptimalSequence(1, A[1, .., j − 1], Table) + [A[j]]

To get optimal subsequence, we call OptimalSequence(2, A[1, .., n], Table).

3

