
CS:3330 Homework 10, Spring 2017
Due at the start of class on Thursday, May 4th

1. Consider Problem 1 from Lecture 5 in Jeff Erickson’s notes.

(a) Solve Problem 1(a) from Jeff Erickson’s notes.

(b) Now we want to solve the problem of using the fewest number of bills to make k Dream
Dollars. Let D[1..8] denote the size-8 array that holds the given denominations; so
D[1] = 1, D[2] = 4, D[3] = 7, etc. For any k′, 0 ≤ k′ ≤ k and j, 1 ≤ j ≤ 8, let
C(k′, j) denote the fewest number of bills from denominations in D[1..j] that make
change for k′ Dream Dollars. Write down a recurrence for C(k′, j), for 0 ≤ k′ ≤ k,
1 ≤ j ≤ 8. Make sure that the base cases are all carefully specified.
Hint: The trivial observation is that in the optimal change for k′ using denominations
in D[1..j], we either use a bill with denomination D[j] or we don’t.

(c) The recurrence from (b) can be implemented as a recursive function, though you don’t
need to do this. Now think about the memoized version of this recursive function using
a 2-dimensional (k + 1) × 8 table in which the table-slot Table[k′, j] is filled with
C(k′, j). Figure out the order in which this table in filled and then write pseudocode
for a function that finds and returns the fewest number of bills needed to make change
for k Dream Dollars, when the denominations come from D[1..8]. This function uses
two nested loops to fill out the table.

(d) Write a function that takes as input k, D, and Table (filled out using the function in
(c)) and returns the optimal set of bills of denominations D[1..8] used to make change
for k.

2. You are given a an array A[1..n] of numbers (which can be positive, 0 or negative). You
need to design an algorithm that finds a contiguous subsequence of A with largest sum.
(This is just a restatement of Problem 2(a) in Jeff Erickson’s Lecture 5.) For example,
given the array [−6, 12,−7, 0, 14,−7, 5], the contiguous subsequence [12,−7, 0, 14] has the
largest sum, 19.

(a) For 0 ≤ j ≤ n, let S(1, j) denote the largest sum of a contiguous subsequence from
A[1..j], such that the contiguous subsequence includes A[j]. For 0 ≤ j ≤ n, let
S(2, j) denote the largest sum of a contiguous subsequence from A[1..j]. Write down
recurrences for S(1, j) and S(2, j). Make sure that you take care of all the base cases.
Hint: To figure out the recurrence for S(2, j), start with the trivial observation that
either A[j] is included in the contiguous subsequence with largest sum or it is not.
Note that S(2, j) may depend on S(1, ·).

(b) The recurrence from (a) can be implemented as a recursive function, though you don’t
need to do this. Now think about the memoized version of this recursive function using
a 2-dimensional 2×(n+1) table in which the table-slot Table[i, j] is filled with S(i, j),
where i ∈ {1, 2} and 0 ≤ j ≤ n. Figure out the order in which this table in filled
and then write pseudocode for a function that finds and returns the largest sum of a
contiguous subsequence of A[1..n].

(c) Write a function that takes as input A and Table (filled out using the function in (b))
and returns the optimal contiguous subsequence from A[1..n].

1


