# CS:3330 Homework 10, Spring 2017 <br> Due at the start of class on Thursday, May 4th 

1. Consider Problem 1 from Lecture 5 in Jeff Erickson's notes.
(a) Solve Problem 1(a) from Jeff Erickson's notes.
(b) Now we want to solve the problem of using the fewest number of bills to make $k$ Dream Dollars. Let $D[1 . .8]$ denote the size- 8 array that holds the given denominations; so $D[1]=1, D[2]=4, D[3]=7$, etc. For any $k^{\prime}, 0 \leq k^{\prime} \leq k$ and $j, 1 \leq j \leq 8$, let $C\left(k^{\prime}, j\right)$ denote the fewest number of bills from denominations in $D[1 . . j]$ that make change for $k^{\prime}$ Dream Dollars. Write down a recurrence for $C\left(k^{\prime}, j\right)$, for $0 \leq k^{\prime} \leq k$, $1 \leq j \leq 8$. Make sure that the base cases are all carefully specified.
Hint: The trivial observation is that in the optimal change for $k^{\prime}$ using denominations in $D[1 . . j]$, we either use a bill with denomination $D[j]$ or we don't.
(c) The recurrence from (b) can be implemented as a recursive function, though you don't need to do this. Now think about the memoized version of this recursive function using a 2-dimensional $(k+1) \times 8$ table in which the table-slot Table $\left[k^{\prime}, j\right]$ is filled with $C\left(k^{\prime}, j\right)$. Figure out the order in which this table in filled and then write pseudocode for a function that finds and returns the fewest number of bills needed to make change for $k$ Dream Dollars, when the denominations come from $D[1 . .8]$. This function uses two nested loops to fill out the table.
(d) Write a function that takes as input $k, D$, and Table (filled out using the function in (c)) and returns the optimal set of bills of denominations $D[1 . .8]$ used to make change for $k$.
2. You are given a an array $A[1 . . n]$ of numbers (which can be positive, 0 or negative). You need to design an algorithm that finds a contiguous subsequence of $A$ with largest sum. (This is just a restatement of Problem 2(a) in Jeff Erickson's Lecture 5.) For example, given the array $[-6,12,-7,0,14,-7,5]$, the contiguous subsequence $[12,-7,0,14]$ has the largest sum, 19.
(a) For $0 \leq j \leq n$, let $S(1, j)$ denote the largest sum of a contiguous subsequence from $A[1 . . j]$, such that the contiguous subsequence includes $A[j]$. For $0 \leq j \leq n$, let $S(2, j)$ denote the largest sum of a contiguous subsequence from $A[1 . . j]$. Write down recurrences for $S(1, j)$ and $S(2, j)$. Make sure that you take care of all the base cases. Hint: To figure out the recurrence for $S(2, j)$, start with the trivial observation that either $A[j]$ is included in the contiguous subsequence with largest sum or it is not. Note that $S(2, j)$ may depend on $S(1, \cdot)$.
(b) The recurrence from (a) can be implemented as a recursive function, though you don't need to do this. Now think about the memoized version of this recursive function using a 2-dimensional $2 \times(n+1)$ table in which the table-slot Table $[i, j]$ is filled with $S(i, j)$, where $i \in\{1,2\}$ and $0 \leq j \leq n$. Figure out the order in which this table in filled and then write pseudocode for a function that finds and returns the largest sum of a contiguous subsequence of $A[1 . . n]$.
(c) Write a function that takes as input $A$ and Table (filled out using the function in (b)) and returns the optimal contiguous subsequence from $A[1 . . n]$.
