22C:253 Lecture 4

Scribe: Rajiv Raman

September 23, 2002

Call each object j with p; > te a large object and call the remaining objects, small objects. For
each large object j, we have rounded p; down to p;- = te(1 + €)? for some integer i > 0 such that
pj € [te(1+ €)%, te(1 + €)"1). Now, notice that p;/(1+¢€) < P < pj. As mentioned in the previous
lecture, we can compute, in polynomial time, an optimal solution of the restricted version of Bin
packing. If we expand the size of each bin in this packing from ¢ to ¢(1 + €), then we get a packing
of the large objects restored to their original sizes. To pack the small objects, each of size in the
range (0,te), we use a greedy algorithm. In other words, we try to fit each small object into an
existing bin, opening a new bin only when no old bins have space left for the object. So now we
have a bin packing of the original instance of the problem. Let ([, ¢,¢€) denote the number of bins
used in this packing.

Lemma 1 «(l,t,e) < BINS(I,t)

Proof: There are two cases depending on whether the greedy algorithm used to pack the small
objects, used any new bins or not. First, suppose that the greedy algorithm used no new bins. This
means that a(,t, €) is equal to the optimal number of i bins used to pack the restricted instance of
the problem. Note that in this instance we are packing only large objects and each of these objects
has shrunk in size from p; to p;-. This implies that a(l,t,e) < BINS(I,t).

Suppose the greedy algorithm did use new bins. This means except the last opened bin, all
other bins are full at least to the extent ¢t. Hence, in any bin packing of the original instance with
size-t bins, we must use at least «(I,t,€) bins. This implies that a(I,t,e) < BINS(I,t). O

We would like to view (1, t,€) as a quickly computable approximation for BINS(I,t). Specif-
ically, we replace the query “Is BINS(I,t) < m?” by “Is a(l,t,e) < m?” The algorithm now is
essentially doing a binary search in [LB,2LB] for min{t | (I, t,€) < m}.

Since a(1,t,e) < BINS(I,t) this implies the following:

1. If query BINS(I,t) < m has a YES answer, then the query a(I,, €) also has a YES answer.

2. If query BINS(I,t) < m has a NO answer, then the query «(I,t,¢) < m may have a YES
or NO answer. However, if a(I,t,¢) < m has a YES answer we know that BINS(I,t(1+¢))
has a YES answer.

Let t* = min{t | «(I,t,e) < m}. The above remarks imply that t* < OPT < t*(1 + €). Recall
that OPT = min{t | «(I,t,e) < m}. So, if we could find ¢t*, we could return a = t*(1 + €) as the
answer and we would have a < OPT(1 + ¢). However, even though we can answer the query “Is
a(l,t,e) < m” in polynomial time, we still cannot do the binary search in polynomial time. Here
is how we get around this problem.



In each iteration of the search, we shrink the search interval by 1/2. The search interval is
originally [LB,2- LB] and so after k iterations, the search interval is of size LB/2*. We stop when
the interval size is at most eLB. This implies that
L2—kB <elLB < %
and hence, k > logy £ > k — 1. This implies that k = [log, 1].

Note that the right end-point of every search interval corresponds to a YES answer to the query
“Is a(I,t,e) < m?” Furthermore, for any ¢ smaller than the left end-point of the search interval,
the query has a NO answer. So when we stop at a search interval [a’, V'] we know that o/ <t* < V.
So we return the right end-point b’ as the result of the binary search. Since b’ —a’ < €. LB, we
have that

V <t'+e- LB <t +et* <t (1+e).

The result b’ of the binary search get multiplied by (1 + €) before being finally returned, and so
V(1+e) <t*(1+€)? <OPT(1+¢)
For € < 1, € < € and so for € < 1,
V(14 ¢€) <OPT(1+ 3e).

Also note that for € > 1, we might as well use the simple greedy algorithm for MMS.
The running time of of this algorithm is

Odlogé q n2(Mog1 e %Hl))‘
€

This is because there are [log, %1 iterations of the binary search and in each iteration the re-

stricted Bin packing problem is solved in O(nz(ﬂogHE %Hl)) time. Since the running time depends
exponentially on %, the algorithm is a PTAS and not an FPTAS

Integer LP formulation

All the combinatorial optimization problems we have seen so far have simple integer linear programs
formulations. Here are some examples.
SET COVER
Let x;, = 1,...,k be indicator variables that denote whether .S; is in the solution or not. In other
words, x; = 1 if S; belongs to the solution, and x; = 0 otherwise.

SET COVER consists of minimizing

k
Z cost(S;) - x;
i=1

subject to the constraint that each element in the universe if covered. This is equivalent to saying
that for each element j € U
Z Ty Z 1.

1:jE€S;



Thus SET COVER is equivalent to the integer linear program (ILP):
k
min Z cost(S;) - x;
i=1

Za:,- > 1lforall j=1,2,...,n
1:JE€S;
z; € 0,1foralli=1,2,... k

KNAPSACK
Define z;, i = 1,2,...,n as indicator variable for each object. Then the knapsack problem can be
stated as the following maximization problem:

n
maprrofit(ai)xi
i=1
n
Z size(a;) -x; < B
i=1

x; € {0,1} foralli=1,2,...,n

The first constraint forces the total size of the objects chosen to be no greater than the capacity
B of the knapsack.

MINIMUM MAKESPAN
Let z;;, i = 1,2,...,n, j = 1,2,...,m be the indicator variables telling us if job 7 is assigned to

machine j. Then
n
Zl’z’j " Pi
i=1

is the completion time of machine j. Let T be a variable whose value is below by the completion
time of all the machines. In other words,

n
T> inj -p;, forall j =1,2,... n.
i=1
Then the MINIMUM MAKESPAN problem is equivalent to:

min T’
m
inj = 1foralli=1,2,...,n
j=1

n
sz‘]pz S Tfora.l].j:1727"'7n
i=1

zi; € {0,1}foralli=1,2,...,nand j=1,2,...,m



The first constraint ensures that every object is assigned to exactly one machine. In each of these
examples, the last constraint forces the solutions to be integral. This constraint is what makes the
problems ILP, rather than just LP.



