22C:253 Lecture

Scribe: Chen Zhang

November 14, 2002

IP for metric facility locatin problem

Indicator variable $y_i \in \{0,1\}$ indicates if facility $i \in F$ is open Indicator variable $x_{ij} \in \{0,1\}$ indicates if city $j \in C$ is connected to facility $i \in F$.

minimize
$$\sum_{i \in F} y_i \cdot f_i + \sum_{i \in F, j \in C} x_{ij} \cdot c_{ij}$$

s.t.

$$\sum_{i \in F} x_{ij} \ge 1 \text{ for each } j \in C$$

$$y_i - x_{ij} \ge 0$$
 for each $i \in F, j \in C$

$$y_i \in \{0, 1\}, x_{ij} \in \{0, 1\} \text{ for each } i \in F, j \in C$$

And the LP-relaxation for this problem is obtained by replacing $y_i \in \{0,1\}, x_{ij} \in \{0,1\}$ by $y_i \ge 0, x_{ij} \ge 0, \ \forall i \in F, j \in C$

The dual problem of LP-relaxation

Indocator variables α_j, β_{ij}

$$\text{maximize } \sum_{j \in C} \alpha_j$$

s.t.

$$\sum_{j \in C} \beta_{ij} \le f_i \text{ for each } i \in F$$

$$\alpha_j - \beta_{ij} \le c_{ij}$$
 for each $i \in F, j \in C$

$$\alpha_j \geq 0, \beta_{ij} \geq 0$$
 for each $i \in F, j \in C$

Complementary slackness conditions

For primal problem

(1) For each
$$i \in F, y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

(2) For each $i \in F, j \in C, x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$

(2) For each
$$i \in F, j \in C, x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$$

For dual problem

(3) For each
$$j \in C, \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

(4) For each
$$i \in F, j \in C, \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$$

Interpretation of these conditions is:

Assume that we have an integral primal feasible solution (X, Y). This induces a set I of open facilities and an assignment Φ of each city to a facility. So let (α, β) be a feasible dual solution, soppose (X, Y) and (α, β) satisfy the complementary slackness conditions, then

- (1) a facility $i \in F$ is open only when the cities contribute enough towards opening the facility.
- (2) a connection from j to i is established only if city j pays enough so that after its contribution towards opening facility i has been subtracted, there is enough to pay for the connection cost to i.
 - (3) for a integral solution, it is trivial
- (4) if a city $j \in C$ makes a positive contribution towards opening a facility $i \in F$, and j is open then j is connected to i.

Approximation of primal complementary slackness conditions

$$y_i > 0 \Rightarrow \frac{f_i}{3} \le \sum_{i \in C} \beta_{ij} \le f_i$$

$$x_{ij} > 0 \Rightarrow \frac{c_{ij}}{3} \le \alpha_j - \beta_{ij} \le c_{ij}$$

The following algorithm actually maintains conditions (1), (3) and (4), only (2) is relaxed as showed above.

Algorithm

Phase 1

- 1. $\alpha_j = 0, \beta_{ij} = 0, \forall i \in F, j \in C, I = \emptyset$
- 2. increase α_j synchronously for all cities $j \in C$
- at a point where for some edge $(i, j), \alpha_j = c_{ij}$, such a edge is said to be tight.
- once an edge (i, j) becomes tight, any further increase in α_j implies an increase in β_{ij} at the same rate. (so $\alpha_j \beta_{ij} = c_{ij}$ is maintained)
- at some point for some facility $i, \sum_{j \in C} \beta_{ij} = f_i$, i is said to be temporarily open. (Now β_{ij} 's can no longer increase $\Rightarrow \alpha_j$'s for j's that have tight edges to i also can not increase.)
- once a facility $i \in F$ is open, any unconnected city $j \in C$ s.t. (i, j) is tight is connected to i, i is said to be the connecting witness for j.

This terminates when all cities are connected.

Observation: a city $j \in C$ can make positive contributions to several facilities \Rightarrow condition (4) could be violated.

Phase 2

Let F_t be the set of temporarily open facilities, let H be a graph with $V(H) = F_t$ and $E(H) = \{(i, i') | i \in F_t, i' \in F_t, and \exists j \in C : \beta_{ij} > 0 \text{ and } \beta_{i'j} > 0\}$

Let I be a maximal independent set in H, and this is our set of permanently open facilities. Now we define Φ :

For each $j \in C$, define $X_j = \{i \in F_t | \beta_{ij} > 0\}$, and $|I \cap X_j| \le 1$. Now:

- (1) if $|I \cap X_j| = 1$, that is, there is an open facility i to which j makes a contribution, set $\Phi(j) = i$
- (2) if city $j \in C$ has not been connected in step (1), consider i', the connecting witness of j, if $i' \in I$, set $\Phi(j) = i'$
- (3) if $i' \notin I$, i' has some neighbor in H that is open (since I is a maximal independent set), let I' be an arbitrary open neighbor of I', set I' set I' is a maximal independent set).