
22C:21 Lecture Notes

Jan 23rd, 2006

Example 2.

for(i = 0; i < n; i++)

for(j = 0; j < n; j++)

System.out.println("Hello");

Here n is the input size. We want to estimate the running time of the above code as a function
of n. Just as in Example 1, the above code can be expanded to

1. i = 0

2. if i >= n then goto line 10

3. j = 0

4. if j >= n then goto line 8

5. Output "Hello"

6. j++

7. goto 4

8 i++

9 goto 2

10

Now note that on any machine, each of the above 9 lines of code will run in time that does not
depend on n. So assume that on some hypothetical machine, Line i takes ci units of time, for
i = 1, 2, . . . , 9. Let us now figure out how many times each line executes. Clearly, Line 1 executes
once. Line 2 executes once for each value of i = 0, 1, 2, . . . , n, for a total of (n + 1) times. For
values of i = 0, 1, . . . , n− 1, the condition in Line 2 evaluates to false and we just drop down to
Line 3. Therefore, Line 3 executes n times, once for each value of i = 0, 1, 2, . . . , n − 1. When
i = 0, Line 4 is executed (n + 1) times, once for each value of j = 0, 1, . . . , n. Similarly, when
i = 1, Line 4 is executed (n + 1) times, once for each value of j = 0, 1, . . . , n. Continuing in this
manner we see that Line 4 is executed (n + 1) times, for each value of i = 0, 1, . . . , n − 1. Note
that we don’t get to Line 4 when i = n. Thus, Line 4 is executed n(n+1) times. The calculation
of how many times Line 5 is executed is very similar. For each value of i, Line 5 is executed n

times, once for each value of j = 0, 1, . . . , n − 1. This gives a total of n2 times. Lines 6 and 7
are executed exactly as many times as Line 5, that is, n2 times. Line 8 is outside the inner loop
and is executed once for each value of i = 0, 1, . . . , n− 1 for a total of n times. Similarly, Line 9
is exeecuted n times.

The following table summarizes our calculations.

Line 1 1 time
Line 2 (n + 1) times
Line 3 n times
Line 4 n(n + 1) times
Line 5 n2 times
Line 6 n2 times
Line 7 n2 times
Line 8 n times
Line 9 n times

The total running time of Line i for i = 1, 2, . . . , 9 is ci times the number of times Line i is
executed. The total running time of the code fragment is the sum of the total running time of
each line. We get that the total running time of the code fragment is:

c1 + c2 · (n + 1) + c3 · n + c4 · n(n + 1) + c5 · n
2 + c6 · n

2 + c7 · n
2 + c8 · n + c9 · n.

1



We separate out terms that contain n2, terms that contain n, and terms that are just constants,
to get the following expression:

n2
· (c4 + c5 + c6 + c7) + n · (c2 + c3 + c4 + c8 + c9) + (c1 + c2).

This can be written as An2 + Bn + C, where A, B, and C are constants independent of n.
Any expression of the form An2 + Bn + C, where A, B, and C are constants independent of

n, is called a quadratic function of n. We say that the running time of the above code fragment
is quadratic in n or just quadratic, if it is clear from the context what quantity the running time
is a function of.

Quadratic functions grow faster than linear functions and will eventually catch up, no matter
what the slope of the linear function is. As a result, for large enough n, a code fragment that
runs in linear time will be faster than a code fragment that runs in quadratic time.

2


