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In Wednesday’s class we mentioned binary search. Let me start by describing the main idea.

Binary search: idea The input is a sorted array and a key we are searching for. Since the
array is known to be sorted, we can do much better than search by doing a linear scan of the
array. Here is how. Go to the middle of the array and compare the given key with the element in
the middle. Note that since an array permits random access, going to the middle or in fact going
to any slot in the array takes constant time. The comparison can yield one of three possible
results:

• The key equals the element in the middle. In this case, we have found the key and we can
exit the function.

• The key is smaller than the element in the middle. In this case, it is guaranteed that if the
key is present in the array, it will only be present among elements before the middle. So
we just have to search the first half of the array.

• The key is larger than the element in the middle. This is similar to the above case, except
that we have to search the second half of the array.

Binary search: implementation As one can see from the above description, the binary
search algorithm keeps track of the portion of the array in which the key has the potential to
be found. Let us use two integer variables, first and last to keep track of the two ends
of this portion of the array. So in each step we compare key with the middle element of
array[first..last] and depending on the result of the comparison, we shrink this portion
to about half its original size, by adjusting first or last. Here is the code.

public static boolean binarySearch(int[] list, int n, int key)

{
int first = 0; int last = n-1;

int mid;

while(first <= last)

{
mid = (first + last)/2;

if(list[mid] == key)

return true;

else if(list[mid] < key)

last = mid - 1;

else if(list[mid] > key)

first = mid + 1;

}
return false;

}

Example. Consider the sorted array:

2 6 11 12 12 17 19 20 30

Suppose we are looking for the key 18. Then the successive values of first, last, and mid after
each iteration are:
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first last mid

0 8 4

5 8 6

5 5 5

6 5

Informally speaking, the reason why binary search is so fast as compared to linear search is
this. In linear search, each comparison reduces the size of the “yet-to-be-searchead” array by 1.
In contrast, each comparison in binary search reduces the size of the “yet-to-be-searched” array
to half its previous size. So the array of the “yet-to-be-searched” array shrinks from n to n/2 to
n/4 and so on and rapidly approaches 1.

We will show in subsequent classes that the running time of binary search is proportional to
log2 n and this quantity is very small compared to n, for large values of n. Before we do the
running time analysis of binary search we will look at some simpler examples.

Running time analysis. The goal of running time analysis is to obtain a “pen and paper,”
machine independent estimate of how efficient an algorithm or a program or a data structure
is as a function of the size of the input. The focus of running time analysis is not on how long
a program or an algorithm takes for a particular input or input of a particular size. Instead,
running time analysis focuses on trends — it tries to give a sense of how the running time of the
algorithm or program grows as the input size increases.
Example 1.

for(i = 0; i < n; i++)

sum = sum + i;

Here n is the input size. We want to estimate the running time of the above code as a function
of n. The above code can be expanded to

1. i = 0

2. if i >= n then goto line 6

3. sum = sum + i

4. i++

5. goto line 2

6.

Now note that on any machine, each of the above 5 lines of code will run in time that does not
depend on n. So assume that on some hypothetical machine, line i takes ci units of time, for
i = 1, 2, . . . , 5. Now note that Line 1 executes once, Line 2 executes (n + 1) times, and Lines 3,
4, and 5 each execute n times. So the the total running time of the above code equals

c1 + c2 · (n + 1) + c3 · n + c4 · n + c5 · n = n · (c2 + c3 + c4 + c5) + (c1 + c2).

Note that this has the form An + B, where A = c2 + c3 + c4 + c5 and B = c1 + c2. Note that
these are constants (i.e.,independent of n). Any function of the form An + B is called a linear

function. We say that this code fragment has linear running time. The constants A and B are
machine dependent and we ignore them. Instead we focus on the fact that the running time
grows linearly with respect to n.
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