The probability $\mathrm{p}=0.01$ for all the tests.
The following table shows the running times of uncompressedProduct and product for $\mathrm{n}=500$, $600,700,800,900,1000,2000,3000,4000$.

n	Running time of uncompressedProduct (milliseconds)	Running tme of product (milliseconds)	Running time of uncompressedProduct/ Running time of product
500	5	0	N/A
600	6	0	N/A
700	8	0	N/A
800	10	0	N/A
900	13	0	N/A
1000	17	0	N/A
2000	64	1	64
3000	147	2	74
4000	282	4	71

The following figure shows how the running times of product and uncompressedProduct change as n increases:

First the table shows that the time of product is almost 70 times faster than that of uncompressedProduct.
Based on the above figure and table we can see the running time of uncompressedProduct increases quadratically as n increases ($\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$). The running time of product is too small to tell the pattern. Theoretically, the time of product will also increase quadratically as n increases ($\mathrm{O}\left(\mathrm{pn}^{\wedge} 2\right)$), while the slope of its increase is much smaller than that of uncompressedProduct.

