22C:21: Computer Science II: Data Structures
Project 3: Due on Wednesday, 12/14

Project 3 has 3 parts. Part (I) allows you to work more on GPSR. Part (II) asks that
you implement Dijkstra’s shortest path algorithm. Part (IIT) asks you to build a GUI for your
project. All three parts are due at the same time, at midnight on Wednesday, 12/14.

1 Part I: More on GPSR

Several students felt that they needed more time for Project 2.3. By incorporating Project
2.3 into Project 3, I am allowing you more time for GPSR. From conversations with TAs and
some students, I have gathered that some of you have implementations of GPSR that go into
an infinite loop for certain kinds of networks. Below, I provide an example that will hopefully
show you how to sort out this problem. Also, in Project 2.3, I described a somewhat simplified
version of GPSR. There are some rare situations in which the simplified GPSR fails to find an
st-path even when one exists. Below, I describe a more complete version of GPSR. This is what
you should implement for Project 3.

Another example of how GPSR works. Consider the following network. GPSR starts at

c

Figure 1: An example of how GPSR works.

vertex s in greedy mode and immediately switches to perimeter mode since its two neighbors a
and b are further away from ¢. GPSR remembers the fact that it switched from greedy mode
to perimeter mode at s. In general, GPSR always remembers the most recent vertex, say x, at
which it switched from greedy mode to perimeter mode. GPSR remains in perimeter mode until
it finds a vertex which is closer to ¢ than x. At that point GPSR switches to greedy mode and
forgets all about z. In this example, GPSR looks for a neighbor of s to go to, by going counter
clockwise around s, starting in the direction st. GPSR finds a and goes to it. GPSR remains in
the perimeter mode and travels from a to s, from s to b and from b to ¢ along the outer face of
the network. At ¢, GPSR realizes that it is closer to ¢ than s and therefore switches to greedy
mode. It immediately finds ¢ and the algorithm ends. Some students had implementations that
cycled among a subset of the vertices in examples such as these. This may have been due to a
confusion about when to switch back from perimeter mode to greedy mode or due to an incorrect
implementation of the right hand rule.

Easy cases for the right hand rule. A minor point that might help your implementation
of the right hand rule is the following. If GPSR is at a vertex of degree 1 or 2 in the perimeter

mode, it is very easy to find out where to go next. If u is of degree 1, then GPSR just travels
to the only neighbor of u. If u is of degree 2, with neighbors a and b, then GPSR travels to b
if it came to u from a (and vice versa). So in cases when a vertex has degree 1 or 2, it is not
necessary to sort by angle to find out where to go next, in perimeter mode.

A more complete GPSR. In describing GPSR in the Project 2.3 handout, I described a
simplified version of GPSR. For example, consider the following network. Suppose GPSR arrives

e

Cc

Figure 2: An example of GPSR in which multiple faces may have to be traversed before GPSR
gets out of the perimeter mode.

at vertex z in the greedy mode. Then GPSR switches to perimeter mode and starts traversing
the face marked F, first going to a, then to b, etc. Now notice that there are no vertices on
face F' that are closer to ¢t than s. The figure above also shows part of the circle with center
t and radius |zt| to emphasize that all other vertices of F' are farther away from ¢ than z. So
GPSR will continue to go around face F' forever in the perimeter mode. This is a somewhat rare
occurrence because vertices have to be arranged just so, for this to happen. However, GPSR has
to deal with this situation also and here is how. As GPSR travels around face F', assuming that
it has not found a vertex closer to ¢ than x, it stops at the first edge on the face that intersects
xt. In the above example, this edge would be be. GPSR then immediately switches to traversing
around the face on the other side of edge bc. Note that in a planar drawing of a graph, every edge
is on the boundary of two faces, one on either side of the edge. GPSR continues in perimeter
mode, possibly traversing several faces of the network, each closer to ¢ than the previous, until
it finds a vertex closer to ¢ than z.

What does it mean for GPSR to switch to a new face, on the other side of edge bc? It simply
means that instead of going from vertex b to vertex ¢, GPSR, finds the next neighbor of b, in
counter clockwise order from ¢ and goes to that neighbor. In the above figure that vertex is e.

2 Part II: Dijkstra’s Shortest Path Algorithm

Here is Dijkstra’s shortest path algorithm (DSP), as discussed in class. Recall that it takes an
edge-weighted graph and a source vertex s as input and returns shortest paths from s to all
vertices in the graph.

for each vertex v €V do

d[v] «— oo
d[s] <0
S—{s}; u—s
for i<—1 to n—1 do
{

for each neighbor v of w do

d[v] < min{d[v], d[u] + w(u,v)}

u +— vertex in V — S with smallest d-value
S — Su{u}

To implement DSP efficiently we need to maintain a binary min-heap in which each record
consists of two fields: (i) a vertex index and (ii) a distance estimate. The heap is organized by
distance estimates, with the vertex with smallest distance estimate at the top of the heap. The
heap needs to support three operations:

1. void INSERT(index, distance).
2. int REMOVE-MINQ).
3. void DECREASE-DISTANCE(index, newDistance).

Using such a heap, DSP can be implemented as follows.

for each v €V do
d[v] «— oo

d[s] <0

S—{s}; u—s

for each vertex v eV do
H.INSERT (v, d[v])

for i —1to n—1 do
{
neighbors « getNeighbors(u)
for j < 0 to neighbors.length-1 do
{
v «— neighbors[j]
if (ves)
d[v] — min{d[v], d[u] + w(u, v)}
H.DECREASE-DISTANCE(v, d[v])

u < H.REMOVE-MIN(Q)
S — Su{u}

To implement the heap data structure mentioned above, start with Lafore’s implementation of
the binary max-heap data structure. A link to this implementation is posted on the course
page. Modify this implementation so that it becomes a min-heap and supports the functionality
mentioned above. The exact names of functions are not very important; feel free to use the
names Lafore uses for his functions. However, one critical issue that needs to be addressed is
that the DECREASE-DISTANCE operation takes as parameter a vertex index. As mentioned in
class, a heap is not an efficient data structure for searching. So given a vertex index, how do
we efficiently find its location in the heap? The solution is to maintain a mapping from vertex
indices to heap locations in the heap class. Specifically, define as a data member of the heap
class, an int array called map such that at all times, map[i] equals the location of the vertex
with index i in the heap. If the vertex with index i has already departed from the heap, then
map [i] would equal -1. As vertices move around in the heap, map would need to get updated
immediately. This only imposes a constant amount of overhead per move and does not change
the worst case asymptotic running time of the heap operations.

The above pseudocode does not contain any code for actually constructing shortest paths
from s to the vertices in the graph. You will have to supply this code. The shortest paths can all
be together maintained in an int array called SPTree — very similar to a BFTTree or a DFTTree
that we have encountered earlier. Suppose vertex v has index ¢. Then SPTree[i] would contain
the predecessor of v with in a shortest path from s to v. Thus to compute a shortest path from
s to t, we would first run DSP with source s, construct SPTree, find the index, say ¢, of ¢, and
follow the chain of predecessors in SPTree until we get to s.

To incorporate DSP into the myGraph class do the following. First, implement DSP as a
public member function of the myGraph class using the following function header:

void DSP(String s)
Then implement a function to compute a shortest path between a given pair of vertices, using
the following function header:
String[] shortestPath(String s, String t, boolean byHops)
The boolean flag byHops informs the function if the user wants a shortest st-path measured by
hops or a shortest st-path measured by edge weights. Specifically, if byHops is sent in true, then
the function needs to call breadth first traversal, otherwise it needs to call Dijkstra’s shortest
path algorithm. You may recall that the myGraph class already contains a function with the
following header:
String[] shortestPath(String s, String t)
Modify this function so that it now computes a shortest path measured by edge weights. For
this, it would simply need to call the above mentioned version of shortestPath with byHops set
to false.

2.1 Experiments

Perform the following experiment. Generate a wireless network G with 1000 points distributed
on a 10 x 10 square. Then repeat the following 10 times. Run topology control on G to get a
planar graph H. Uniformly at random, pick a vertex and designate it the source s and again
uniformly at random, pick a vertex and designate it the destination . Run GPSR on H, with
source s and destination ¢t. Report on the length of the path that GPSR found between s and ¢,
measured in two ways: (i) the number of hops in the path and (ii) the sum of the edge weights
of the edges in the path. Then compute a shortest path between s and ¢ and also report its
path length in the two ways mentioned above. Finally, report the ratio of the “hop length”
of the st-path computed by GPSR to the “hop length” of a shortest st-path and the ratio of
the “Euclidean distance length” of the st-path computed by GPSR to the “Euclidean distance
length” of a shortest st-path. Present your results in a tabular form. Discuss in 2-3 sentences
the performance of GPSR.

2.2 What to submit

Submit the files myGraph. java, heap. java, wirelessNetwork. java, experiments. java, and
results. Use exactly these names and do not submit any other files.

3 Part III: A GUI for the project

For this part of the project feel free to unleash your creativity and get up to 50 extra credit
points. To get 25 points, I would like to see an applet that does the following:

e When started, it displays a wireless network. The network may be generated randomly with
some default and fixed values of the number of vertices in the network and the dimensions
of the square in which they are distributed.

e Runs topology control on network and in a separate window displays the sparser version
of the network.

e Picks two vertices s and ¢t and shows (a) the st-path picked by compass routing, (b) the
st-path picked by GPSR, and (c) the shortest st-path measured by edge weights.

To get the extra credit points, there are many things you can do beyond the minimum
functionality mentioned above. For example, you might let the user select the number of vertices
and the size of the square in which to distribute these. You might also allow the user to pick
a bunch of vertices by just clicking on the window. You might also allow the allow the user to
“step through” compass routing and GPSR in the sense that each time the user hits a key, the
next edge selected by the routing algorithm may be highlighted. I am sure you can think of
many other ways to make your GUI “cool,” interesting, and easy to use.

