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Lecture 5: Jan 31, 2012

Scribes: Valerie Galluzzi and Meenal Khandelwal

1 Reminders

Paper Topics The preliminary list of topics for research papers and target conferences has been
posted at http://www.divms.uiowa.edu/ sriram/196/spring12/researchPapers.html . You are not
limited to these topics. Once the topic choosing period has expired you cannot change so think
carefully! The list of conferences will be updated as more suggestions are sent in.

Our Focus We don’t want to know only the results, but also the techniques so we can use these
in the future in other applications.

2 “Small World” Property of G(n, p)

2.1 Review of Heuristic Proof

Recall the claim that the expected diameter of a graph G(n, p) is

ln n

ln c
, where c = p(n − 1), the expected degree

We want to prove the stronger claim,

Prob[distance(u, v) >
ln n

ln c
] → 0 as n → ∞∀u, v ∈ v

This second claim is stronger because the first allowed for outlier graphs of very small or large
diameter–only the average diameter needed to be equal to ln n

ln c
. In the second claim the probability

of outlier graphs goes down as the number of vertices rises.
Proof: Heuristic Proof Let v be an arbitrary vertex in G(n, p). We can describe a set Ds

as the set of vertices which are s hops from v. If we assume that v has degree c then we can say
that | D1 |= c. Following this logic we see that at distance s, | Ds |= cs. If cs = n then all vertices
in G(n, p) are reachable in s or fewer hops from v. s = logcn = ln n

ln c
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Problems with this proof

1. As c is the expected degree, actual degree may deviate from this.

2. As cs → n the expected number of edges between a vertex u in the visited set and a vertex
w in the not yet visited set of size r is p(r) << p(n) ≈ c

3. As cs → n, even the expected u, w edges may result in finding far fewer new vertices, and
the size of cs may be much smaller than c.

2.2 Second Heuristic Proof

Because of the problems with the first proof, we need a better and more detailed proof with better
theoretical support. A more perfect proof follows.

Proof: Let v be an arbitrary vertex in G(n, p) and let Si denote the set of vertices at distance
i from v. Let Ti = V \ (S0 ∪ S1 ∪ ... ∪ Si). Now let p ≥ C ln n

n
, where C is a large constant. How is

this p value chosen?

Phase Transitions

Definition 1 Property ℘ of graph G(V, E) is monotone if G has ℘ ⇒ G′(V, E ∪ e) also has ℘
where e /∈ E connects two vertices in V .

Examples

1. Having a giant component

2. Having diameter less than or equal to a constant value d

3. Connectivity

Definition 2 Function t(n) is a threshold function for monotone property ℘ if Prob[G(n, p(n)))

has property ℘] → 0 as
p(n)
t(n) → ∞( lim

n→∞

p(n)

t(n)
= 0)

2



Examples

1. For connectivity, t(n) = ln n
n

2. For a giant component, t(n) = 1
n
. Before this threshold, all components have O(log n),

afterwards they have Ω(n). This is a double jump point.

Note that a threshold will exist for any monotone property, not only ones with a phase transition,
and proving that a given property has a phase transition can be a tricky process. However, for
properties that we know have phase transitions (like the ones above) the threshold indicates the
point where the phase transition occurs. Now that we know this, we want to work in the region of
connected graphs by setting p ≥ C ln n

n
, C > 1, placing us after the phase transition of connectivity

in the region where nearly every graph is connected. Clearly if the graph is not connected we
cannot prove the small world property for the whole graph, so that is why we take this step.

Lemma 3 Suppose | Ti |≥
n−1

2 . Then for | Si+1 |≈ C | Si |, Prob[ c
4 | Si |≤| Si+1 |≤ 5

4 | Si |] ≥
1 − 1

n

Proof: Let u ∈ Ti. Let Xu =

{

1 if u is connected to Si

0 otherwise

Then Prob[Xu = 1] = p | Si |. Since the expectation of such a function is the probability of the
positive outcome, E[Xu] = Prob[Xu = 1] = p | Si |.
Let X

∑

u∈Ti

Xu Note that Si+1 = X.

Then E[X] = E[
∑

u∈Ti

Xu] =
∑

u∈Ti

E[Xu] =| Ti | p | Si |

The size of X is the number of vertices that are connected to Si. Those vertices will be in Si+1, so
we can say that E[| Si+1 |] = p | Si || Ti |.
Since for | Ti |≥

n−1
2 , E[| Si+1 |] ≥ p | Si |

n−1
2

and for | Ti |≤ n − 1, E[| Si+1 |] ≤ p | Si | (n − 1) = c | Si |,
we can conclude that p | Si |

n−1
2 ≤ E[| Si+1 |] ≤ c | Si |.

However, this is just the expectation–in real life an example could fall outside of these bounds.
How can we increase these bounds so they contain the vast majority of probable graphs? We can
use “tail inequalities”.

Tail Inequalities There are many types of tail inequalities, e.g. Markov’s inequality, Cheby-
shev’s inequality, and Chernoff bounds[1]. We will use Chernoff bounds here.

3



Let Xi ∈ 0, 1 with Prob[Xi = 1] = pi, therefore E[Xi] = pi.

Let X =
n

∑

i=1

Xi, therefore E[X] =
n

∑

i=1

E[Xi] =
n

∑

i=1

pi.

Let us denote E[X] as µ.
If Xi are independent, we get excellent tail bounds. Using Chernoff bounds (C.B.), we can say the
following:
Upper tail: Prob[X > (1 + σ)µ] ≤ C.B.
Lower tail: Prob[X < (1 + σ)µ] ≤ C.B.
The upper tail bound in this case is ( eσ

(1+σ)1+σ )µ

We can simplify this as:
σ > 2e − 1 : 2−σµ

σ ≤ 2e − 1 : e−
µσ2
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So for | Si+1 |= X =
∑

u∈Ti

E[Xu], P rob[Xu = 1] = p | Si | we apply Chernoff bounds on | Si+1 |= X.

In particular, Prob[| Si+1 |≥ 5
4c | Si |] can be seen as Prob[| Si+1 |≥ 1

4c | Si | +c | Si |], and we
know that E[| Si+1 |] = c | Si |

Next Time Finish phase transitions, move on to the Watts-Strogatz model.
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