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1 Degree Distributions

Last time, we discussed some graph-theoretic terminology. Specifically, we discussed degree distri-
butions. Recall the definition of degree distribution:

Definition 1 For a graph G = (V,E) and for k = 1, 2, ..., the degree distribution of G is pk =
fraction of vertices with degree k. In other words, if we pick a vertex v ∈ V uniformly at random,
P [deg(v) = k] = pk.

We specifically discussed the power law degree distribution which has degree distribution pk =
C ·k−α where C is a constant and α > 1. While not all degree distributions will be power law, many
of the degree distributions of observed networks will be heavy-tailed or long-tailed distributions. A
heavy-tailed distribution is a distribution that is “heavier” than the exponential distribution. Here,
“heavier” means that the tail is much longer than the exponential distribution (which drops off
to zero rapidly). The exponential distribution takes the form f(x, λ) = λe−λx where λ is the rate
parameter. Taking the log of the exponential distribution, we have log(f(x, λ)) = log(λ)− log(λx).

Figure 1: (a) is a typical long-tailed distribution observed in many networks. In general, there
are few vertices with high degree while most vertices have low degree. (b) is a typical exponential
distribution. Note the difference between the long-tailed distribution and the exponential distribu-
tion: the exponential distribution nears zero much faster. (c) is a log plot showing the difference
between the exponential and long-tailed distributions. The exponential distribution, shown in red,
is linear with slope −λ on this scale, while the long-tailed distribution, shown in black, is not linear.

2 Clustering Coefficient

One property of a graph is the clustering coefficient. The clustering coefficient is the measure of the
the extent to which one’s friends are also friends of each other. This measure has become popular
due to a 1998 paper in Nature by Watts and Strogatz [4]. This property is sometimes called the
local clustering coefficient.
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Definition 2 Given a graph G = (V,E) and a vertex v ∈ V , the clustering coefficient of v is
cc1(v) = number of pairs of neighbors connected by edges

number of pairs of neighbors . To compute the clustering coefficient for a graph
G, simple average cc1(v) for all v ∈ V .

Figure 2: Here is a sample graph which we can use to illustrate the calculation of cc1(v). 3 of
v’s neighbors are connected to each other (1-3, 2-4, and 4-5). There are a total of

(
5
2

)
pairs of

neighbors. Thus, cc1(v) = 3

(52)
= 3

5!
3!·2!

= 3
10 = 0.3.

An alternative clustering coefficient calculation, sometimes referred to as the global clustering
coefficient or transitivity, was proposed by Newman, Strogatz, and Watts in 2001 [2].

Definition 3 Given a graph G = (V,E), the clustering coefficient of G is cc2(G) = number of closed 2-paths
number of 2-paths .

Figure 3: (a) is used to show several examples of 2-paths: A-B-C, A-D-E, and C-B-A. Note that A-B-C
and C-B-A are considered different 2-paths and would thus both be present in the calculation of
cc2(G). Examples of closed 2-paths are A-B-C, A-C-B, and A-C-D. (b) clarifies the notion of a closed
2-path. A closed 2-path is a 2-path where the end nodes are connected, forming a triangle. The
global clustering coefficient is therefore asking this question: what fraction of situations presented
in (b) contain the 3rd edge?
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Figure 4: This graph demonstrates how the local clustering coefficient (cc1) can differ from the
transitive clustering coefficient (cc2). The left circular cluster contains n

2 of the vertices in the entire
graph. Each red node r ∈ V has cc1(r) = 1 because each red node only has two neighbors which are
always connected to each other. Because the red nodes comprise half of the left circular cluster, we
have n

4 nodes in the entire graph with cc1 = 1. This then tells us that cc1(G) ≥ 1
4 . The number of

closed 2-paths is n
4 because each red node is part of a triangle. However, the right star cluster (which

has n
2 nodes) contains many 2-paths that aren’t closed. Therefore, cc2(G) =

n
4

...+(
n
2
2 )
≈

n
4

...+n2 ≈ 1
n .

Thus, lim
n→∞

cc2 = 0.

Figure 5: This graph shows the primary complaint about the local clustering coefficient. Each point
on this line (such as the red dot) represents the average cc1, averaged over all degree k vertices.
Vertices with low degree can inflate the value of cc1 for a graph (e.g., in the case of Figure 4).
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N average degree cc1 cc1 of corresponding random graph

actors network 225226 61 0.79 0.00027

power grid 4941 2.67 0.080 0.005

C. elegans 282 14 0.28 0.05

Table 1: Comparing observed networks against “corresponding” random graphs (defined formally
in the notes from 1/26/12), we see that observed networks tend to have much higher clustering
coefficients. In general, cc1 of the random graph is at least one order of magnitude smaller than
the value for the observed graph.

Why is the value of cc1 so much higher for the observed graph? Sociologists offer several possible
explanations:

• homophily – The tendency of individuals to connect to other “similar” individuals. Note
that this is an external effect; the effect is not present because of the edge between the two
people.

– socioeconomic class

– coworkers

– etc.

• network effects – The fact that nodes u and w both know v (but not each other) could
imply some “trust” between u and w. Additionally, the fact that u and w don’t know each
other induces a “latent stress” on v which produces some “incentive” for v to work towards
a u-w edge.

3 “Giant” Components

Definition 4 A giant component in a graph is a maximal subgraph in which each vertex pair is
connected by a path.

Most observed networks have a “giant” component containing ≥ 90% of the vertices. In a
study of a network created by 449913 actors in 2000, 440971 actors (∼98%) were part of the giant
component. Why does this happen? Figure 6 helps explain this phenomenon.
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Figure 6: Suppose we have two components of a graph, each with ∼ n
2 nodes. There are a total

of ∼ n2

4 possible edges in this graph, so the probability of having an edge that connects these two
components is very high. It is more likely that two separate components will exist without an edge
connecting them only if one of the components is much smaller than the other.
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4 Types of Networks

There are a variety of “observable” networks around us. Different types of networks, and even
networks within the same genre, can be radically different in structure.

• biological networks

– metabolic networks

– neural networks

– protein-protein interaction networks

– ecological networks (predator-prey networks)

• technological networks

– internet graph

– power grid

– telephone networks

– transportation networks

• information networks

– world wide web graph

– peer-to-peer graphs (e.g., BitTorrent)

• social networks

– “Southern Women Study” [1]

– prominent families in renaissance Florence (1400-1434) [3]

• social+information networks

– Facebook

– Twitter

– email

Social network analysis and data isn’t new. In 1941, sociologists Davis et al. published a book
containing their “Southern Women Study” [1]. They used newspaper information to construct a bi-
partite graph connecting people to places/events like what’s shown in Figure 7. Using information
like this, it would be trivial to extract the underlying people-people graph. Padgett et al. ana-
lyzed renaissance-era data about the Medici family in Florence, Italy [3]. Using marriage records,
patronage connections, and other similar data, they set out to explain the rise of the Medici family.
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Figure 7: This is an example of the people-places bipartite graph described in the “Southern
Women Study”.
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