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1 How big is the Web

How big is the Web? In the past, this question could was ”easily answered” by counting the
number of files in the servers; in 1997, Bharat and Broder estimated the size of the Web to be
around 200 million. But the Web has grown considerably over the years and many web pages are
generated dynamically today. For example, many pages are the result of sending a form or using
[GET] parameters on links. So, how should we count these dynamically generated paged? One
solution is to let the indexable Web be the Web we are talking about. The indexable Web is the
Web reachable and stored by the web crawlers of the search engines.

In 2005, Gulli and Signorini (U of Iowa) used the notion of indexable Web to estimate the size
of the Web [1]. They compared the number of indexed pages reported by 4 search engines, Google,
Yahoo!, Ask.com and MSN, and estimated how many pages were crawled by more than one search
engine. The result was that the Web had a size of approximately 11.5 billion pages.

Their methodology consisted in the following. Let A, B, etc, be search engines. Let s(A) be
the number of pages indexed by search engine A. Now, let Pr(A&B|A) define the probability a
web page is in indexed by search engines A and B, given that we know it is in A. Then,

Pr(A&B|A) ≈ s(A&B)
s(A)

.

If we divide the same probabilities given different conditionals, we obtain

Pr(A&B|A)
Pr(A&B|B)

≈ s(B)
s(A)

.

Therefore, it is possible to relate the sizes of all the search engines through these conditional
probabilities, and estime their overlap at the same time. Their results are shown in Fig. 1.

Figure 1: The size and overlap between search engine databases. From [1].
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These probabilities Pr(A∩B|A) were estimated thorough sampling. To get samples, they used
pages from dmoz.org, a human curated directory of web pages. This ensured that the indexed
pages had real meaning. Gulli and Signorini retrieved around 4 million pages and 2 million terms.
They sorted these terms by ocurrence count. Then, they divided the terms in bags of 20 words, and
proceeded to obtain the probabilities thorough searches. Then, the sizes s were obtained thorough
linear regression.

2 Ranking and searching pages

Around 1997, Yahoo! was famous for its ontology : they kept an extensive human curated direc-
tory/ontology of web pages. Users went to this ontology to search for what they were looking for.
But search engines appeared, taking the attention away from ontologies. In search engines, a few
keywords satisfied to retrieve some meaningful links. But some time was needed for search results
to improve.

Research for improving search engines focused in developing ranking functions, so that search
results included the best results firsts. One of the main ideas behind these developments was to
return the most authoritative pages. This line of work devoted to defining what being authoritative
means and how to identify these pages.

2.1 Solution 1: Altavista, HotBot, Lycos

One of the first solutions, adopted by Altavista, HotBot and Lycos, consisted in using the indegree
of web pages as a measure of their authority. Note that the indegree of a web page is the number
of links pointing to that page. For example, in the graph of Fig. 2.1, the rightmost node is the
most authoritative one, with indegree 3, while all the other nodes have indegree 1.

Figure 2: A graph of indegrees of 1, 1, 1, and 3.

An obvious problem with this approach is that it is easily played. As some web page/site owners
wanted to have their pages visited more often, they artificially increased the number of incoming
links, Thus, their pages got more views by appearing in the first places of their related searches.
Soon, companies for search engine optimization appeared, selling the service of improving web
pages’ ranks. (The current situation of these companies is different. In the presence of Google,
they try hard to reverse engineer how this search engine works. Also, Google has become a player
in that industry too, allowing pages to appear on top of search results if they pay for that and by
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periodically changing how their search works, making cheating (competition) difficult. However,
this is a tricky business. Search result quality worsens as more pages are allowed to appear on top.)

2.2 Solution 2: PageRank

PageRank was introduced by Sergey Brin and Lawrence Page [2], and is the original algorithm
used by Google to search the Web. But as mentioned before, Google has changed over time and
its current algorithm is kept secret.

PageRank differs from the previous approach as it considers the pointer, not only the pointee.
The basic idea behind this approach is that a page has high rank if the sum of the ranks of the
pointing pages is high. PageRank works as follows:

PageRank(G)
rankv:=1/|V (G)|, for all v ∈ V (G)
Until "convergence":

rank′v:=
∑
{u,v}∈E(G) ranku/deg(u), for all v ∈ V (G)

rankv:=rank′v, for all v ∈ V (G)

The solution converges when rank′v ≈ rankv.

Figure 3: Hubs spread their rank to other web pages.

One of the properties of the above algorithm is that it keeps the solution summing 1. But it
has a big drawback: mutually supportive nodes (Fig. 2.2) tend to absorb all the rank. Some fixes
have been introduces to solve this problem, including:

1. Random Restart. The PageRank algorithm can be seen as a random walk procedure, where
the contribution of node u to v is the probability of hitting v starting from u at some time
t, for t � 0 (a steady probability). But in the presence of mutually supportive nodes, the
random walk would get trapped in the cycle(s). Therefore, one solution is that, at each time
step, a random walk can return to the origin node u with some probability.

2. Tax method. Back to the original computation, after the new rank is computed (rank′),
it is taxed and these taxes contribute equally to the ranks of all nodes. This solution still
converges.

Let us study this method through linear algebra. Let us start with classic PageRank. Let A
be the adjacency matrix of the Web graph. Define matrix N as

Nij =
Aij

deg(i)
,
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Figure 4: A graph with a rank sink.

i.e. the normalized version of A. Let rank = (r1, r2, ..., rn) be the current rank vector. Then,
after one iteration, the new rank of i is

r′i = N1ir1 + N2ir2 + ...Nnirn,

so the whole new rank vector is
rank′ = N>rank.

Now, in the taxed case, we tax a proportion s to all nodes. We can specify this through a
new normalized matrix Ñ such that

Ñij = sNij +
1− s

n
.

Using Ñ instead of N does not guarantee
∑

i∈V (G) ri = 1. Thus, due to the necessity to
renormalize, the taxed version of PageRank is slower than the original.

2.3 Solution 3: HITS

HITS is a precursor of PageRank. HITS stands for Hyperlink-Induced Topic Search, and was
introduced by Jon Kleinberg [3]. It is said that a similar algorithm was used by Teoma (which was
later acquired by Ask.com).

HITS starts ”locally”: the algorithm starts with a small set of nodes called the root. Every
node has two sides: it is both a hub and an authority. In practice, it may not be a hub (if it does
not have links) or it may not be an authority (if it is not linked-to and it is in the root). Some
basic ideas behind the quality of a hub and an authority are that:

1. A good authority has high indegree,

2. a good hub has high outdegree,

3. it matters for authority to be pointed by good hubs, and

4. it matters for hubs to point good authorities.
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The Web graph is then described as a bipartite graph G of hubs and authorities (see Fig. 2.3),
where a web page can be both. And pages have two scores: a-score (for authority) and h-score (for
hubs). These scores are normalized to sum 1 independently.

Figure 5: The Web as a bipartite graph of hubs and authorities.

The scores are computed by the following updating operations:

1. ap:=
∑

(q,p)∈E(G) hq,

2. hp:=
∑

(p,q)∈E(G) aq,

3. renormalization.

Regardless of the initial values of a-score and h-score, as long as their are positive, the method
converges.

Let us study this method through linear algebra. Let M be the adjacency matrix of the bipartite
graph G and let vectors ~a0,~h0 consist of non negative values (but not only zeroes!). Then, the new
a-scores are

~a1 = M>~h0,

and the new h-scores are
~h1 = M~a1 = MM>~h0.

Ignoring the renormalization step, we can repeat and obtain

~a2 = M>~h1 = M>MM>~h0,

and
~h2 = M~a2 = MM>MM>~h0.

Following by simple induction, we get that

~ak = (M>M)k−1M>~h0,

and
~hk = (MM>)k~h0.

(It can be shown that these vectors converge in direction. This can be done through the properties
of matrix MM>, which is symmetric semidefinite positive.)
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